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Abstract: Dust weather is common and disastrous at the Tibetan Plateau. This study selected a
typical case of dust weather and analyzed its main development mechanism in the northeast of the
Tibetan Plateau, then applied six machine learning methods and a time series regression model to
predict PM10 concentration in this area. The results showed that: (1) The 24-h pressure change was
positive when the front intruded on the surface; convergence of vector winds with a sudden drop
in temperature and humidity led by a trough on 700 hPa; a “two troughs and one ridge” weather
situation appeared on 500 hPa while the cold advection behind the trough was strong and a cyclone
vorticity was formed in the east of Inner Mongolia. (2) The trajectory of air mass from the Hexi
Corridor was the main air mass path influencing Xining City, in this case, since a significant lag in
the peak of PM10 concentration appeared in Xining City when compared with Zhangye City. (3) The
Multiple Linear Regression was not only timely and effective in predicting the PM10 concentration but
had great abilities for anticipating the transition period of particle concentration and the appearance
date of maximum values in such dust weather. (4) The MA and MP in the clean period were much
lower than that in the dust period; the PM10 of Zhangye City as an eigenvalue played an important
role in predicting the PM10 of Xining City even in clean periods. Different from dust periods, the
prediction effect of Random Forest Optimized by Bayesian hyperparameter was superior to Multiple
Linear Regression in clean periods.

Keywords: dust weather; PM10; prediction; machine learning; Tibetan Plateau

1. Introduction

Dust weather is common and disastrous at the Tibetan Plateau. It not only seriously
reduces the quality of the ecological environment but causes great damage to the social
economy and human health [1–4]. Dust storm behavior varies based on five attributes
that are wind speed, pressure, temperature, humidity, and surface type [5,6]. The dust
events significantly increase the air pollutants PM2.5, CO, and O3, which are directly
associated with the increase in the spread and severity of the pandemic [7]. Sandstorms
are the primary source of air pollutants, dust, gases, fine particulate matter, and their
long-distance transport [8,9]. The dust storms mainly occur in winter and early spring with
high frequency, and the path moves gradually from south to north, which is closely coupled
with the northward moving of the westerly jet from winter to spring over the Tibetan
Plateau [10]. Past studies have shown that the Gobi Desert, Hexi Corridor, Qaidam Basin,
Turpan Basin, and the edges of the Tarim and Junggar basins are identified as the main
dust sources for the northern Tibetan Plateau [11,12]. The occurrences and developments of
dust weather are closely related to cold air and geographical conditions; under the block of
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mountains, the PM10 concentrations increase significantly [13,14]. The aerosol optical depth
(AOD) data and relevant meteorological parameters can be used to analyze the sandstorm
and evaluate the temporal–spatial distributions with the evolution process of dust [15–19].

The applications of artificial Intelligence technology in the field of meteorology are
mainly about various machine learning methods, including weather forecast, meteoro-
logical services, medical meteorology, and agricultural meteorological products [20–22].
Machine learning includes computational methods for learning from complex data. In
the classification and evaluation of predicting meteorological elements or air pollution,
some machine learning methods show the superiority and stability of fitting in nonlinear
fields [23]. The case-based reasoning (CBR) approach with other AI techniques can be
effective in predicting dust storm events as well as help in establishing effective counter
policies [24]. By capturing temporal dependencies in the time series data, the Long Short-
Term Memory (LSTM) achieved the better results in forecasting PM2.5 concentrations with
low Root Mean Square Error, proving that this method can be effective for forecasting and
controlling air pollution [25–29]. An online forecasting method based on Random Forest is
proposed to predict the concentrations of three kinds of air pollutants (PM2.5, NO2, SO2),
24 h in advance, which achieves state-of-art performance [30]. A novel hybrid approach
based on two-stage decomposition embeds sample entropy and extreme learning machine
to forecast the concentration of particulate matter (PM10 and PM2.5), which overcomes the
difficulties caused by the randomness and non-stationarity of air pollutant data [31,32].
The dust assimilation forecasting model is used to quantify the impact of assimilation on
forecasts of a severe Asian dust storm [33]. Due to the lack of monitoring data limited
by equipment, the Autoregressive Integrated Moving Average Model (ARIMA) and Mul-
tiple Linear Regression Additive Model based on linear interpolation are better [34,35].
Analyzing the data using different machine learning models, including linear regression,
Artificial Neural Networks, and Long Short-Term Memory recurrent neural networks,
considering the accuracy and capability of each method, and using different models to
predict unhealthy pollution levels, are very important [36,37]. Various machine learning
and deep learning methods estimating the concentration of particulate matter need more
validation on a global scale.

The purpose of this study is to find the most suitable machine learning method for
predicting PM10 in the northeast of the Tibetan Plateau. The structures are as follows: firstly,
analyze the main development mechanisms by selecting a typical case of dust weather
in the northeast of the Tibetan Plateau; secondly, apply the machine learning methods to
the prediction of PM10 concentration and compare the advantages or disadvantages of
the two most important methods in this area; finally, compare the prediction effects of the
two machine learning methods during the cleaning period and dust period. In order to
better capture the time, area, and intensity of the strong sandstorms at the Tibetan plateau,
scientific and reasonable prediction and analysis were used in the study to reduce the
adverse impact of sandstorms on the living environment and social economy.

2. Materials and Methods
2.1. Data Sources and Integration

The meteorological data provided by the Qinghai Provincial Meteorological Bu-
reau included three-hourly surface observations and upper data from December 2020
to March 2021, mainly including: 500 pressure level (500 hPa) geopotential height, 500 hPa
temperature, 500 hPa relative humidity, 500 hPa wind speed and direction, 700 pressure
level (700 hPa) geopotential height, 700 hPa temperature, 700 hPa relative humidity, 700 hPa
wind speed and direction, surface temperature, surface 24-h pressure change, surface rela-
tive humidity, surface minimum visibility.

The PM10 concentrations were from the national urban air quality real-time publishing
platform of the China National Environmental Monitoring Centre, including the hourly
and daily mean of PM10 concentration in Xining and Zhangye cities from December 2020
to March 2021 and from January 2022 to April 2022.
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We adopted prediction products from the European Centre for Medium-Range Weather
Forecasts (ECMWF) fine grid model from December 2020 to March 2021 and from Jan-
uary 2022 to April 2022 every three hours, which were provided by the Qinghai Provincial
Meteorological Bureau, mainly including 700 hPa vector winds (Figure 1), 700 hPa temper-
ature, 700 hPa relative humidity (the spatial resolution was 0.25◦ × 0.25◦), and surface 24-h
pressure change (the spatial resolution was 0.125◦ × 0.125◦).
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2.2. Model Introduction
2.2.1. Introduction to Machine Learning Methods

The Scikit-learn machine learning library was used, of which most of the functions
could be divided into estimator and converter, and the estimator was a model used for the
regression and prediction [38,39]. The samples were trained repeatedly by basic regression
methods such as the Support Vector Machine (SVM), Multiple Linear Regression (MLR),
K-Nearest Neighbor (KNN) in scikit-learn, and integrated methods, including the AdaBoost
algorithm (Ada), Gradient Boosting Regression Tree (GBRT), and Random Forest (RF).

The Multiple Linear Regression (MLR) is one of the basic algorithms in machine
learning methods. It adds more characteristic variables on the basis of univariate linear
regression [40–43]. The regression model is as follows:

yθ(x) =
n

∑
j=0

θjxj (1)

In the equation, yθ(x) represents the dependent variable with θ as the parameter,
θ0, θ1, θ2, . . . , θn are the regression parameters to be solved, and x1, x2, . . . , xn are the charac-
teristic variables.

The Random Forest (RF) algorithm compiles the information from multiple random
trees (a group of decision trees) at the same time, and naturally incorporates the selection
and interaction of eigenvalues in the learning process [44] so as to provide decision-making
and selection for estimating pollutant concentration. The simulation variable values can be
output by summarizing and averaging the individual simulations of all such composite
trees. There are many hyperparameter optimization methods for Random Forests, in-
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cluding particle swarm optimization, genetic algorithm, differential evolution, Bayesian
optimization, and so on. We selected Bayesian optimization in this study.

The Support Vector Machine (SVM) is a new statistical learning technique based on
machine learning and generalization theories which use a hinge loss function to estimate
the empirical risk and add a regularization term into the calculation process that can be
solved non-linearly by the kernel method; it can be considered as a method to minimize the
risk. Moreover, a generalization capability makes possible their application to modeling
dynamical and non-linear data sets [45].

K-Nearest Neighbor (KNN) processes and classifies the data according to the distance
between each site sample in the training and the verification sets and arranges all the
distance values in order [46,47].

The AdaBoost integration algorithm reduces or increases the weight information by
training samples each time, and then transfers the weight data to the next layer classifier
for complex sample training [48].

The Gradient Boosting Regression Tree (GBRT) calculates the gradient direction of the
residual reduction of each sample site by establishing multiple decision trees, obtains a
decision tree composed of multiple leaf nodes, and obtains the gain of each leaf node for
prediction [49].

The time series regression model used in this study was the Autoregressive Integrated
Moving Average Model (ARIMA). The model transforms non-stationary time series into
stationary time series, which is established by regressing the dependent variable to its lag
value or the present and lag value of random error. This method was compared with the
above six machine learning methods.

2.2.2. HYSPLIT Model

The HYSPLIT model (hybrid single particle Lagrangian integrated trajectory model)
was developed jointly by the NOAA and Australian Meteorological Administration. It
is used to calculate the simple air mass trajectory and simulate complex diffusion and
deposition. The model can deal with a variety of physical processes and the transportation,
diffusion, and settlement of pollutant emission sources with a variety of meteorological
elements input fields [50].

Based on the HYSPLIT model, we set the parameters of the model and selected the
GDAS (global data estimation system) meteorological data in March 2021 to analyze the air
mass trajectory of dust weather in Xining City.

2.3. Evaluation and Analysis Approach
2.3.1. Air Quality Standards

This study evaluated and analyzed the air quality index (AQI) and PM10 concentration
strictly according to the “Ambient Air Quality Standards” implemented in China from 1
January 2016 [51]. The evaluation standards are shown in Table 1:

Table 1. PM10 concentration evaluation standards.

Air Quality
Index

Air Quality
Grade Level

Air Quality
Category

Air Quality
Sub-Index

24-h Mean Concentration of
PM10 (Unit: µg/m3)

(0,50] I Excellent (0,50] (0,50]
(50,100] II Good (50,100] (50,150]

(100,150] III Mild pollution (100,150] (150,250]
(150,200] IV Moderate pollution (150,200] (250,350]
(200,300] V Heavy pollution (200,300] (350,420]
(300,400] VI Serious pollution (300,400] (420,500]
(400,500] VI Serious pollution (400,500] (500,600]

>500 VI Serious pollution >500 >600

2.3.2. Dust Weather Grade Standard

The dust weather grades are shown in the Table 2.
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Table 2. Dust weather grade standard [52].

Weather Phenomenon Weather Conditions Visibility
Unit: km

Dustfall Calm or wind speed ≤3 m/s, dust float in the air ≤10
Blowing sand Wind blows dust from the surface, making the air turbid [1,10)

Sandstorm Strong wind blows dust from the surface, making the air quite turbid <1
Strong sandstorm Quite strong wind blows dust from the surface, making the air very turbid <0.5

Extreme strong sandstorm Extreme strong wind blows dust from the surface, making the air extremely turbid <0.05

2.3.3. Valuation Method

In this study, the index to test the observed values and the predicted values were the
Index of Agreement (IA), Mean Absolute Error (MA), and Mean Absolute Percentage Error
(MP). The calculation formulas were as follows:

IA = 1− ∑N
i=1 (Oi − Pi)

2

∑N
i=1 (

∣∣Oi −O
∣∣+ ∣∣Pi −O

∣∣)2 (2)

MA =
1
N

N

∑
i=1
|Oi − Pi| (3)

MP =
1
N

N

∑
i=1

100|Oi − Pi|
Oi

(4)

Oi is the observed value, Pi the predicted value, and O is the mean observed value. The
closer IA is to 1, the more accurate the predicted values are. The lower the of MA and MP,
the less error the predicted values.

3. Analysis of Dust Weather from

From the 14th to 20th March 2021, dust weather from north to south and west to east
occurred in the northern area of China, with a wide range of influence and long duration,
which was rated as the strongest dust in the past decade. This dust weather not only
seriously interfered with the daily life and transportation of the public, causing casualties
and disappearances in some areas, but also had a terrible impact on agriculture and animal
husbandry. Figure 2 shows the terrain height of the Tibetan Plateau with the geographical
locations of the Qaidam Basin, Qilian Mountains, Hexi Corridor, Inner Mongolia, and the
main meteorological observation sites affected by this dust weather.
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3.1. Dust Weather in the Northeast of Tibet Plateau
3.1.1. Dust Distribution

As shown in Figure 3, Inner Mongolia, the northern part of the North China Plain
and the Hexi Corridor had the highest near-surface dust concentration and the largest
accumulation of dry deposition. Nearly 20 meteorological observation sites of the northern
Tibetan Plateau experienced dustfall, blowing sand, or short-term sandstorms.
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In the urban agglomeration of the Hehuang Valley in the northeast of the Tibetan
Plateau, dust began appearing at 05:00 on the 16th and ended at 20:00 on the 20th, including
dustfall and blowing sand in Xining, Menyuan, Guide, and Tongren cities. The visibility in
Xining City was the worst from 23:00 on the 18th to 05:00 on the 19th, which was only 2 km.
Dustfall and blowing sand appeared in Gangcha, Chaka, and Gonghe cities. In addition,
sandstorms occurred in the Xiaozaohuo, Golmud, Nuomuhong, Dulan, and Wulan cities
with visibility of less than 1 km, and the visibility of Xiaozaohuo at 23:00 on the 18th was
as poor as 200 m.

The above showed that this dust weather lasted for a long time, which had strong
intensity and a wide range of influence in the northeast of the Tibetan Plateau.

3.1.2. Surface Meteorological Conditions

Figure 4 shows the distribution of the surface visibility, 24-h pressure change isolines,
and the surface wind field at 08:00 on 15th and 16th of March. On the 15th, the 24-h pressure
changes were significantly positive in the Hexi Corridor of the Tibetan plateau on the north
side and Inner Mongolia with 14 hPa; a wide range of dust weather had occurred, which
reduced the visibility to less than 1km in this area. The 24-h pressure change gradient
was very significant, showing that there was a cold front passing through the area, and
the surface wind speeds were strong. Until 08:00 on the 16th, 24-h pressure change was
positive and exceeded 3 hPa in the Hehuang Valley, showing the cold front had completely
invaded and carried large amounts of dust, resulting in a rapid decrease in the visibility
and increase in the AQI in the area. The southern and southwestern regions of the Tibetan
Plateau were not affected by the dust weather due to the high altitude and steep terrain.
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3.1.3. 700 hPa and 500 hPa Meteorological Conditions

Figure 5 shows the 700 hPa meteorological conditions with geopotential height, tem-
perature, wind field, and relative humidity. At 08:00 on March 16th, the contours and
isotherms were denser than the previous day, and the isotherms moved southward caus-
ing significant cooling in most areas, especially affecting the Hehuang Valley where the
temperatures at 700 hPa dropped to below 0 ◦C. It could be clearly observed that there
was a trough deepening into the area that led to the convergence of vector winds. The
distribution of relative humidity at 700 hPa was significantly lower than that of the previous
day, especially at the northeastern Tibetan Plateau and the central Hexi Corridor where the
relative humidity and temperatures decreased when the dust passed.
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Figure 6 shows the 500 hPa meteorological conditions with geopotential height, tem-
perature, wind field, and relative humidity. At 08:00 on March 15th, the atmospheric
circulation of “two troughs and one ridge” with a large meridional scale and a maximum
wind speed exceeding 32 m/s occurred. The cold advection behind the trough was strong
and a cyclone vorticity was formed in the east of Inner Mongolia.
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Such powerful dynamic transmission and cold advection at 700 hPa and 500 hPa
would contribute to the formation and intensification of a cold front on the surface. The
temperature difference between the upper strong cold advection and the surface was the
main reason for the formation of the dry convective sandstorm.

3.2. HYSPLIT Backward Trajectory Model Analysis in Xining City

Trajectories were calculated using the NOAA-HYSPLIT model based on the meteoro-
logical field of March 2021. Xining City was selected as the starting point of the simulation
to trace the air mass trajectory 48 h ahead at 08:00 every day. The simulation results showed
that the main sources of air masses in Xining City included the westward path, the eastward
path, the local source, and the northeast path of the backflow of the Hexi Corridor; 33.33%
of them came from the local source and the easterly path, 16.67% came from the westward
path, and 8.33% came from the Hexi Corridor (Figure 7).
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The length of the air mass trajectory line of the westward path was the longest, which
indicated that the wind force in this direction was strong, resulting in the air mass moving
fast, and the air mass moved from high-altitude mountainous areas to low-altitude urban
areas in this direction, therefore, the pressure differences were large and there were few
pollutants making the transmission and diffusion conditions more favorable. The shortest
trace of local source or eastward path indicated that, under the influence of calm or mild
easterly wind, the air mass moved slowly from the east or stayed in place. At the same
time, considering the terrain of the Hehuang Valley, the difference of pressure was slight
with stable atmospheric stabilization, which resulted in poor transmission and diffusion
conditions. The trajectory of air mass of the Hexi Corridor was shorter than that of the
west, which indicated that it was blocked by the eastern edge of the Qilian Mountains in
the northeast, resulting in slower movement, and converging with the east air flow, moving
slowly into Xining City or staying in place. Lines a and b represent the main air mass paths
in Xining City affected by this dust weather, and poor atmospheric diffusion conditions led
to large amounts of dust carried by the air mass which accumulated in place.

3.3. Analysis of Meteorological Elements in Xining City

Xining City, the provincial capital city in the northeast of the Tibetan Plateau, was
directly affected by this dust weather. The 24-h pressure change gradually increased at 11:00,
which changed from negative (−0.6 hPa) to positive (0.3 hPa). At 21:00, visibility decreased
rapidly to 2 km, indicating that the cold air had reached Xining City and carried large
amounts of dust. Since on the 16th, the 24-h pressure changes in Xining City were mainly
positive, the surface temperature decreased, and the southeast wind speeds increased day-
by-day (as shown in Figure 8). Until on the 20th, the temperatures began to rise day-by-day,
the 24-h pressure changes decreased, and the visibility improved, indicating that the dust
weather affecting Xining City was coming to an end.
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and minimum visibility in Xining City from 13 to 23 March 2021.

According to the structure of the T-lnp diagram (emagram) of Xining City at 08:00 on
the 16th in Figure 9, the water vapor content of the whole layer over the area was poor,
and two obvious inversion layers appeared between 700 hPa and 600 hPa, leading to the
stable atmospheric stratification, which indicated that there were adverse meteorological
conditions on the upper levels that were not conducive to the diffusion of pollutants.
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3.4. Comparison of PM10 Concentrations between Xining and Zhangye Cities

Zhangye City was in the central Hexi corridor. The changes of surface PM10 concen-
tration during this dust weather in Xining and Zhangye cities are shown in Figure 10. If
Xining City was affected by the dust transport of path b, Zhangye City belonged to the
upstream area of Xining City.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 10. Hourly variation curves of surface PM10 concentration in Xining and Zhangye cities from 
13 to 23 March, 2021. 

4. Prediction Based on Machine Learning 
4.1. Eigenvalues Selection 

Through the analysis of the dust weather in the third section, it was found that when 
the dust occurred in Xining City, the surface 24-h pressure change, 700 hPa relative hu-
midity, and 700 hPa temperature almost changed synchronously with the dust; the wind 
speed and direction between 600 hPa and 700 hPa played a decisive role in the transmis-
sion and accumulation of pollutants; according to the time lag effect of dust transport, the 
historical PM10 concentrations of Zhangye City in the Hexi Corridor could be used as data 
to predict PM10 in Xining city. Therefore, we selected the surface 24-h pressure change 
(∆P24), 700 hPa relative humidity, 700 hPa temperature, 700 hPa u-component of wind, 700 
hPa v-component of wind, and Zhangye City’s PM10 concentration as the eigenvalues of 
machine learning methods to predict Xining PM10 concentration. In order to achieve the 
purpose of prediction, we used all eigenvalues of the first day to predict the PM10 concen-
tration of the second day in Xining. It was more convenient that grid forecast products 
from ECMWF of the first day had the prediction results for the meteorological elements 
of the second day, which could be directly used. The machine learning eigenvalues from 
December 2020 to March 2021 and from January 2022 to April 2022 were selected in Table 
3. 

We constructed the machine learning models and data sets to predict the daily mean 
change of PM10 concentration in Xining City during the dust pollution from March 13 to 
23, 2021. In addition, the time series regression model was also constructed to compare 
with the machine learning models. 

Table 3. Selection of machine learning eigenvalues for PM10 concentration prediction in Xining City. 

Dataset Variable Unit 
Spatial 

Resolution 
Temporal 

Resolution 
Data 

Source 
Observations 

(PM10) PM10 μg/m3 Zhangye Hourly CNEMC 

Prediction  
Products 
(700 hPa) 

u-component of 
wind 

m/s 

0.25° × 0.25° 

3-Hourly ECMWF 

v-component of 
wind 

m/s 

Temperature °C 
Relative humidity % 

Prediction  
Products 
(surface) 

∆P24 hPa 0.125° × 0.125 

  

Figure 10. Hourly variation curves of surface PM10 concentration in Xining and Zhangye cities from
13 to 23 March 2021.

The PM10 concentration in Zhangye City reached the peak of 2190 µg/m3 at 16:00
on the 13th, while the PM10 concentration reached the peak of 475 µg/m3 in Xining City
at 11:00 on the 14th; the time differences between the two peaks were 19 h. At 13:00 on
the 15th, the dust appeared again in Zhangye City, which was the main part of the dust
weather. The PM10 concentration was 4975 µg/m3 at 00:00 on the 16th in Zhangye City; at
01:00 on the 17th, a peak of 1691 µg/m3 appeared in Xining City, which was 25 h behind the
peak of Zhangye City. Due to the high altitude and tortuous terrain with the obstruction
of buildings in the Hehuang Valley compared with the Hexi Corridor, most of the dust
diffused, settled, and was removed through backflow transportation. Although the PM10
concentration in Xining City was much lower than that in Zhangye City, the AQI grades
were still at level VI for many days, and the air quality was significantly polluted.

Comparing the PM10 concentration between the two places and analyzing the time
differences could better predict the particulate pollution from this dust weather in Xining
City. The above showed that in such weather, the occurrence time of dust pollution in
Xining City presented an obvious lag effect compared with Zhangye City. Therefore, when
the machine learning methods were used to predict the PM10 concentration in Xining City,
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the PM10 historical data of Zhangye City could be extracted as one of the eigenvalues of
the training and verification sets in order to achieve the prediction effect.

4. Prediction Based on Machine Learning
4.1. Eigenvalues Selection

Through the analysis of the dust weather in the third section, it was found that when
the dust occurred in Xining City, the surface 24-h pressure change, 700 hPa relative humidity,
and 700 hPa temperature almost changed synchronously with the dust; the wind speed
and direction between 600 hPa and 700 hPa played a decisive role in the transmission
and accumulation of pollutants; according to the time lag effect of dust transport, the
historical PM10 concentrations of Zhangye City in the Hexi Corridor could be used as data
to predict PM10 in Xining city. Therefore, we selected the surface 24-h pressure change
(∆P24), 700 hPa relative humidity, 700 hPa temperature, 700 hPa u-component of wind,
700 hPa v-component of wind, and Zhangye City’s PM10 concentration as the eigenvalues
of machine learning methods to predict Xining PM10 concentration. In order to achieve
the purpose of prediction, we used all eigenvalues of the first day to predict the PM10
concentration of the second day in Xining. It was more convenient that grid forecast
products from ECMWF of the first day had the prediction results for the meteorological
elements of the second day, which could be directly used. The machine learning eigenvalues
from December 2020 to March 2021 and from January 2022 to April 2022 were selected in
Table 3.

Table 3. Selection of machine learning eigenvalues for PM10 concentration prediction in Xining City.

Dataset Variable Unit Spatial
Resolution

Temporal
Resolution

Data
Source

Observations (PM10) PM10 µg/m3 Zhangye Hourly CNEMC

Prediction
Products
(700 hPa)

u-component of wind m/s

0.25◦ × 0.25◦

3-Hourly ECMWF

v-component of wind m/s
Temperature ◦C

Relative humidity %

Prediction
Products
(surface)

∆P24 hPa 0.125◦ × 0.125

We constructed the machine learning models and data sets to predict the daily mean
change of PM10 concentration in Xining City during the dust pollution from 13 to 23 March 2021.
In addition, the time series regression model was also constructed to compare with the
machine learning models.

4.2. Methods Optimization

For the Random Forest model, tree depth (max depth) and tree number (n estimators)
were the most important hyperparameters [53], hence, we used the Bayesian optimization
algorithm to adjust these two hyperparameters. The core of the Bayesian optimization was
to use prior knowledge to approximate the posterior distribution of the unknown objective
function and then select the next sampling hyperparametric combination according to the
distribution [54]. We built a Bayesian optimizer and performed optimization iterations
through importing the Bayesian Optimization of Python. The optimized max depth was 23
and n estimators was 1144.

For Multiple Linear Regression, overfitting often affected the accuracy of results.
According to the definition of the Least Square Method, it was obvious that when the inde-
pendent variables were added into the model, the fitting residual was smaller. However,
when there were too many independent variables, the collinearity of the matrix was high,
and the variance became larger resulting in overfitting of the model. In this study, the
independent variables were input into the Multiple Linear Regression model in turn, and
finally the Equation V was selected with the minimum Mean Absolute Error of the training
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set (Table 4). In addition, we also found that the PM10 concentration in Zhangye City was
the most important eigenvalue.

Table 4. Optimization equations of the Multiple Linear Regression.

Number Equation MA

I Y = 53.52 + 0.32X1 20.06
II Y = 53.54 + 0.32X1 − 0.16X2 20.07
III Y = 54.04 + 0.32X1 + 0.28X2 + 1.24X3 20.06
IV Y = 63.49 + 0.28X1 + 0.07 + 1.36X3 + 0.89X4 19.85
V Y = 63.70 + 0.28X1 − 0.001X2 + 1.39X3 + 0.83X4 − 0.02X5 19.84
VI Y = 65.07 + 0.28X1 − 0.03X2 + 1.21X3 + 0.85X4 − 0.04X5 + 0.12X6 19.89

Y was the dependent variable (PM10 concentration in Xining City), X1, X2, . . . , X6 were independent variables
(X1 was PM10 concentration in Zhangye City, X2 was u-component of wind at 700 hPa, X3 was v-component of
wind at 700 hPa, X4 was temperature at 700 hPa, X5 was relative humidity at 700 hPa, X6 was ∆P24 on surface).

4.3. Prediction Results of PM10 Concentration in the Dust Weather

Six machine learning methods and a time series regression (ARIMA) were used to
establish the models for the prediction. In addition, the Index of Agreement (IA), correlation
coefficient, Mean Absolute Error (MA), and Mean Absolute Percentage Error (MP) were
used to evaluate the prediction effect; and the advantages and disadvantages of all methods
were compared to select the best method.

The Index of Agreement between the predicted values and the observed values are
shown in Table 5. The Multiple Linear Regression algorithm could better predict the daily
mean changes of PM10 concentration with the lowest Mean Absolute Error from the 13th to
23rd; the Index of Agreement was as high as 0.83, and the correlation coefficient was as high
as 0.93. The Index of Agreement of RF and GBRT were lower than 0.4, but the correlation
coefficients were higher than 0.5; the Mean Absolute Error of Random Forest was second
only to Multiple Linear Regression. The Index of Agreement of Support Vector Machine
algorithm was the lowest, only 0.34, and the correlation coefficient was negative, indicating
that the predicted values of this method had the opposite trend with the observed values,
which showed that the prediction ability in such dust pollution was the worst. The KNN,
AdaBoost, and ARIMA was poor on predicting PM10 concentration in the dust weather,
and the Index of Agreement of ARIMA was only 0.34. It showed that the prediction of
PM10 concentration with the Multiple Linear Regression in Xining City was better than
other nonlinear models by these selected independent variables.

Table 5. IA, correlation coefficient, MA, and MP of all methods for predicting PM10 in dust weather.

Methods IA Correlation Coefficient MA MP (%)

RF 0.38 0.59 423 53
MLR 0.83 0.93 192 39
SVR 0.34 −0.57 452 61
KNN 0.39 0.33 427 54
Ada 0.37 0.48 432 56

GBRT 0.39 0.52 427 54
ARIMA 0.34 0.10 458 64

Figure 11a shows the trend of PM10 concentration predicted by the Multiple Linear
Regression algorithm during the dust weather in Xining City, which had a great correspond-
ing relationship with the observed daily mean values. During the period that the dust did
not arrive in Xining City between the 13th and 15th, the observed PM10 concentrations
were low, the predicted values on the 13th were basically consistent with the observed
values; although the predicted values on the 14th and 15th were higher than the observed
values, the deviations were relatively minimal in the model. During these three days,
the prediction effect of Random Forest in Figure 11b was better than the Multiple Linear
Regression because the predicted values were more consistent with the observed values.
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On the 16th, large amounts of dust arrived in Xining City, and the observed PM10
concentrations increased sharply, with a daily mean of 959 µg/m3; the AQI grade was
at level VI, and the air quality was significantly polluted with the PM10 concentration
exceeding 420 µg/m3. The Multiple Linear Regression algorithm could predict the PM10
concentration on this day more effectively. Although the predicted value was lower than
the observed value, which was 596 µg/m3, the AQI grade of the predicted value was also
at level VI with serious pollution, which proved that this method could make effective
predictions for such turning weather.

On the 17th, the daily mean of the observed value of PM10 concentration reached the
peak, and the predicted value with Multiple Linear Regression also exceeded 1000 µg/m3.
There was a consistent corresponding relationship between the observed and predicted
values, showing that this method had a satisfactory effect in predicting the maximum
value, while the other five machine learning methods did not predict the turning trend
and the peak of pollution. From the 18th to the 21st, the predicted value changes were
consistent with the observed values, which also decreased day-by-day and the trend was
more obvious. The observed value on the 18th was 1276 µg/m3, though the predicted
value had been reduced to 594 µg/m3 with large deviation, the AQI grade of the predicted
value was still at level VI.

During the period from 16th to 21st, the prediction effect of the Random Forest was far
weak than that of Multiple Linear Regression, and the predicted values were far lower than
the observed values. The Random Forest had strong generalization ability and stability, but
it was not significant to the missing characteristics. In other words, it was insensitive to
outliers. For multidimensional sparse data, the performance of the Random Forest was not
ideal. Therefore, in this sudden dust weather, outliers appeared on a large scale, and there
was no such feature tree in the training set, so the Random Forest was unable to predict the
maximum PM10.

From the 22nd to 23rd, the predicted values were also consistent with the observed
values with little deviation using the two methods. In addition, the AQI grades of the
predicted values were at level II, and the air quality was significantly improved.

As a whole, the Multiple Linear Regression algorithm was not only timely and effective
in predicting the PM10 concentration but had great abilities for anticipating the transition
period of particle concentration and the appearance date of maximum values in such
dust weather.

4.4. Prediction Results of PM10 Concentration in Clean Period

In order to compare with the dust weather, we selected the clean period without
dust from the 16th to the 24th of April, 2022 and used Multiple Linear Regression and
Random Forecast to predict the PM10 concentration again. As shown in Table 6, the Mean
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Absolute Error (11 and 14) and Mean Absolute Percentage Error (16% and 20%) of the
two methods during the clean period were much lower than that in the dust period; the
Index of Agreement and correlation coefficient were also higher. In addition, if the PM10 of
Zhangye City was removed from the eigenvalues, the Mean Absolute Error of Random
Forest and Multiple Linear Regression increased to 17 and 23, respectively, which indicated
that even during the clean period, the PM10 of Zhangye City still played an important role
in predicting the PM10 concentration of Xining City.

Table 6. IA, correlation coefficient, MA, and MP of two methods for predicting PM10 concentration
during clean period.

Methods IA Correlation Coefficient MA MP (%)

RF 0.99 0.76 11 16
MLR 0.98 0.78 14 20

The Index of Agreement of Random Forest was higher, and Mean Absolute Error
and Mean Absolute Percentage Error were lower, than Multiple Linear Regression. Com-
pared with Multiple Linear Regression, the predicted values of Random Forest were more
consistent with the observed values during the clean period (Figure 12).
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5. Conclusions and Discussion

In view of dust weather affecting the northern Tibetan Plateau from 14 to 20 March 2021,
we analyzed the main development mechanisms and explored the leading factors of the
dust weather. Using the ECMWF prediction products and PM10 historical observation data
with machine learning methods, the trend of PM10 concentration in Xining City during this
dust weather was predicted.

(1) The main mechanisms influencing the dust were as follows: The 24-h pressure change
was positive when the front intruded on the surface; the convergence of vector winds
with a sudden drop in temperature and humidity led by a trough at 700 hPa; a
“two troughs and one ridge” weather situation appeared at 500 hPa while the cold
advection behind the trough was strong and a cyclone vorticity was formed in the
east of Inner Mongolia;

(2) The trajectory of air mass from the Hexi Corridor was the main air mass path influenc-
ing Xining City, in this case, since a significant lag in the peak of PM10 concentration
appeared in Xining City when compared with Zhangye City;

(3) The Multiple Linear Regression was not only timely and effective in predicting the
PM10 concentration but had great abilities for anticipating the transition period of par-
ticle concentration and the appearance date of maximum values in such dust weather;
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(4) The MA and MP during the clean period were much lower than that during the
dust period; the PM10 of Zhangye City as an eigenvalue played an important role in
predicting the PM10 of Xining City even during the clean period. In contrast to the
dust period, the prediction effect of Random Forest was superior to Multiple Linear
Regression during the clean period.

This work was the first time that machine learning methods were applied to dust
weather in the northeast city (Xining) of the Tibetan Plateau, which filled the gap of
pollution prediction based on artificial intelligence in this area. We selected the eigenvalues
from the main weather development mechanisms and found that the PM10 of Zhangye
City was the most important eigenvalue. The prediction effect of Random Forest optimized
by the Bayesian hyperparameter and other methods were inferior to Multiple Linear
Regression for the dust weather, while the Random Forest was the best during clean
periods. It indicated that the stability and generalization ability of tree models showed
a disadvantage in the prediction of sudden dust weather. In the subsequent work, the
machine learning methods need to be further optimized in order to be applied to a wider
range of fields.
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