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Abstract: Air pollution is a lethal global threat. To mitigate the effects of air pollution, we must
first understand it, find its patterns and correlations, and predict it in advance. Air pollution is
highly dependent on spatial and temporal correlations of prior meteorological, wildfire, and pollution
structures. We use the advanced deep predictive Convolutional LSTM (ConvLSTM) model paired
with the cutting-edge Graph Convolutional Network (GCN) architecture to predict spatiotemporal
hourly PM2.5 across the Los Angeles area over time. Our deep-learning model does not use atmo-
spheric physics or chemical mechanism data, but rather multisource imagery and sensor data. We
use high-resolution remote-sensing satellite imagery from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument onboard the NASA Terra+Aqua satellites and remote-sensing data
from the Tropospheric Monitoring Instrument (TROPOMI), a multispectral imaging spectrometer
onboard the Sentinel-5P satellite. We use the highly correlated Fire Radiative Power data product
from the MODIS instrument which provides valuable information about the radiant heat output
and effects of wildfires on atmospheric air pollutants. The input data we use in our deep-learning
model is representative of the major sources of ground-level PM2.5 and thus we can predict hourly
PM2.5 at unparalleled accuracies. Our RMSE and NRMSE scores over various site locations and
predictive time frames show significant improvement over existing research in predicting PM2.5
using spatiotemporal deep predictive algorithms.

Keywords: air pollution prediction; spatiotemporal forecasting; deep convolutional LSTM; remote-
sensing satellite imagery; wildfire heat data; meteorological data

1. Introduction

Air pollution is a destructive global crisis. It has a death toll of 7 million people per
year, of which 600,000 are children [1]. The harmful effects of short-term and long-term
exposure to air pollution decrease the global life expectancy by 1–2 years on average [2].
Over one in four deaths of children under the age of five can be directly traced back to the
deadly effects of air pollution [3]. Air pollution is linked to various adverse health effects
such as asthma, emphysema, cardiovascular illness, and respiratory illness. Within Los
Angeles, there are over 27 million tons of atmospheric nitrogen dioxide, which is 1.5 times
the amount of the next leading U.S. city [4]. It is evident that finding an effective and
reliable solution to reducing ambient air pollution will drastically improve global health
and wellbeing.

To mitigate the deadly effects of air pollution, we must first be able to understand
it, discover its causes and patterns, and predict it in advance. This paper describes our
approach using deep predictive models and advanced machine-learning algorithms to
learn patterns of spatiotemporal air pollution in various locations and predict for the future.
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When developing these cutting-edge high-performance deep-learning models, we focus on
learning correlations of both the spatial and temporal patterns in the data. Air pollution
prediction is inherently a spatiotemporal task: air pollutants travel in the air and thus
affect the surrounding areas (spatial correlation); air pollution concentrations in the future
depend on prior concentrations (temporal correlation).

Air pollution prediction has been a topic of interest for decades, with the most recent
approaches focusing on using the predictive capabilities of deep neural networks; see the
survey paper Bellinger et al. [5] and the references therein. Current deep-learning research
in this field seeks to learn and predict either the spatial patterns or temporal patterns
of ambient air pollution, but we seldom see models capable of learning and predicting
both [6–9]. Of the limited works performing spatiotemporal prediction, the current state-
of-the-art deep-learning models have lower spatial and temporal resolution than the model
we propose in this paper. Zhang et al. [10] proposes a spatiotemporal prediction model
for predicting daily PM2.5 with a spatial resolution of 3.3 × 3.3 km per unit prediction
with a mean RMSE of 14.94 µg/m3 for 28th-day prediction. We propose a model capable of
learning the spatial and temporal correlations of air pollution measured through hourly
multisource big data at a spatial resolution of 1 × 1 km.

For effective and accurate prediction with deep learning, the key defining tenet of a
successful model is the quality and heterogeneity of the input data. We use meteorological
ground-based sensor data, air pollutant remote-sensing satellite imagery, wildfire/heat
data, and ground-based pollutant sensor data from high-quality validated monitoring sites
in our model to deliver state-of-the-art accuracy in our predictions.

The novelty of our approach is evident in the multisource big data sources and complex
deep-learning architectures employed to learn and predict spatiotemporal correlations in
air pollution data. Our novel approach of sequentially learning meteorological feature
correlations through a complex Graph Convolutional Network (GCN) architecture and
inputting the learned representations into a ConvLSTM architecture alongside wildfire
data, remote-sensing satellite imagery, and ground-based air pollutant sensor data is the
first of its kind in tackling the spatiotemporal air pollution prediction problem in this field.

We make the following contributions: (1) we propose a novel deep predictive GCN model
architecture capable of effectively interpolating, learning, and predicting spatiotemporal patterns
in meteorological data; (2) we collect and use a comprehensive multisource meteorological,
wildfire, atmospheric air pollutant, and ground-based PM2.5 dataset for prediction; (3) we
develop a deep-learning pipeline using the cutting-edge GCN and ConvLSTM models to
predict spatiotemporal PM2.5 in Los Angeles county with state-of-the-art accuracies.

The remainder of the paper is structured as follows. Section 2 describes our methodol-
ogy. Sections 2.1 and 2.3 describes our model architecture and implementation. Section 3
describes our model’s experimental results. Section 4 concludes our findings and Section 5
discusses future work.

2. Methodology

In the following section, we describe our methodology for constructing our two-
stage model for predicting spatiotemporal PM2.5 pollutants over Los Angeles county.
Our motivations for using multisource meteorological data, wildfire data, remote-sensing
satellite imagery, and ground-based air pollution sensor data are that these data sources
are interrelated, and including data from all sources provides the necessary depth of clarity
to accurately predict spatiotemporal air pollution.

We employ a sequential two-stage model to extract the learned representations from
the concentrated input data that we use to predict spatiotemporal particulate matter 2.5
(PM2.5) in various areas of Los Angeles county over time. PM2.5 is denoted as particulate
matter pollutants with a diameter of less than 2.5 micrometers. PM2.5 is perhaps the
deadliest air pollutant on Earth: according to McGill University [11], heightened levels
of PM2.5 has the strongest correlation to early deaths of humans than any other air pol-
lutant. The first stage of our model uses the cutting-edge Graph Convolutional Network
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(GCN) model to learn and predict patterns between meteorological and ground-based
PM2.5 sensor data. The second stage is sequentially fed the outputs of the first stage in
addition to wildfire/heat data and remote-sensing satellite imagery of various atmospheric
air pollutants to predict hourly PM2.5 over various locations of Los Angeles county in
the future.

Predicting air pollution in the geographical location of Los Angeles also poses unique
challenges. The Los Angeles basin is almost completely enclosed by mountains to the
north and east. The vertical temperature structure (inversion) tends to prevent vertical
mixing of the air through more than a shallow layer (1000 to 2000 feet deep). Moreover, the
southern location of the LA basin permits a fairly regular daily reversal of wind direction—
offshore at night and onshore during the day. Finally, the metropolitan city of Los Angeles
and concentrated population leads to atmospheric pollution accumulating and remaining
within this circulation pattern [12].

2.1. Model Architecture

The Graph Convolutional Network (GCN) is a complex deep-learning architecture
applied upon graphs [13]. Graphs are a valuable and effective method of modeling air
pollution and weather forecasting, since the bulk of open-access air pollution and meteoro-
logical data are in the form of stationary ground-based sensors. Thus, it is intuitive to draw
a parallel between these ground-based sensors and nodes in a weighted directed graph. A
weighted directed graph provides the additional functionality to preserve the spatial and
distance-based correlations among sensors. The goal of the Graph Convolutional Network
is to learn the feature embeddings and patterns of nodes and edges in a graph. The GCN
learns the features of an input graph G(V, E) typically expressed with an adjacency matrix
A as well as a feature vector xi for every node i in the graph expressed in a matrix of
size V × D where V is the number of vertices in the graph and D is the number of input
features for each vertex. The output of the GCN is an V × F matrix where F is the number
of output features for each vertex. We can then construct a deep neural network with an
initial layer embedding of h0

v = xi to perform convolution neighborhoods of nodes, similar
to a Convolutional Neural Network (CNN). Then, the k-th layer of the neural network’s
embedding on vertices hk

v is

hk
v = σ

(
Wk ∑

u∈N(v)∪v

hk−1
v√

|N(u)||N(v)|

)
, ∀k > 0,

where σ is some non-linear activation function, hk−1
v is the previous layer embedding of v,

Wk is a transformation matrix for self and neighbor embeddings, and ∑u∈N(v)
hk−1

u
|N(v)| is the

average of a neighbor’s previous layer embeddings. The neural network can be trained
efficiently through sparse batch operations on a layer wise propagation rule

H(k+1) = σ(D−
1
2 ÃD−

1
2 H(k)Wk),

where I is the identity matrix, Ã = A + I, and D is the diagonal node degree matrix defined
as Dii = ∑j Ai,j [14]. In this way, the GCN can train a neural network to output a graph
with feature vectors for each node in the graph. In our implementation, we extend the GCN
model’s capabilities further by providing a feature matrix constructed of feature vectors for
each edge in the graph such that the GCN outputs a graph with an output feature matrix
for all nodes and edges in the graph.

The second stage of our model uses the highly effective Convolutional Long Short-
Term Memory (ConvLSTM) deep-learning architecture which learns and predicts for data
considering both spatial and temporal correlations. The ConvLSTM model is a variant of
the traditional Long Short-Term Memory (LSTM) model, a time-series Recurrent Neural
Network (RNN).
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Traditional LSTM models rely on a single-dimensional input vector parameterized
by time. The structure of the LSTM model relies on a recurrent sequential architecture
of gates and cells which retain and propagate certain information from previous cells
and data. For a traditional FC-LSTM (Fully Connected Long Short-Term Memory), the
time-parameterized input gates it, forget gates ft, cell states ct, output gates ot, and hidden
gates ht are defined as

it = σ(Wixt + Wiht−1 + Wi ◦ ct−1 + bi)

ft = σ(W f xt + W f ht−1 + W f ◦ ct−1 + b f )

ct = ft ◦ ct−1 + it ◦ tanh (Wxxt + Whht−1 + bc)

ot = σ(Wxxt + Whxh−1 + Wc ◦ ct + bo)

ht = ot ◦ tanh (ct),

where W denotes the weight matrix and ◦ denotes the Hadamard matrix multiplication
product [15]. In a traditional FC-LSTM, both the inputs and outputs are single-dimensional
time-series vectors. As a result, LSTM models do not allow for or use spatial correlations
in data. More generally, the traditional FC-LSTM architecture does not allow image or
video-like inputs.

The ConvLSTM model improves upon the FC-LSTM by applying convolution within
the cells and gates of the LSTM to allow for multidimensional video-like inputs and outputs.
This can be achieved by replacing the Hadamard products used to define the key equations
for the FC-LSTM with the convolution operation. Intuitively, this replacement effectively
serves as an intermediary processing layer between the video-like input and the traditional
LSTM model by transforming the video-like input frames to single-dimensional vectors
through convolution at each cell of the FC-LSTM. The key equations for the ConvLSTM are

it = σ(Wixt + Wiht−1 + Wi ∗ ct−1 + bi)

ft = σ(W f xt + W f ht−1 + W f ∗ ct−1 + b f )

ct = ft ∗ ct−1 + it ∗ tanh (Wxxt + Whht−1 + bc)

ot = σ(Wxxt + Whxh−1 + Wc ∗ ct + bo)

ht = ot ∗ tanh (ct),

where ∗ denotes the convolution operation [16].
Please note that there are two methods to induce convolution in a traditional LSTM

model. One such method is denoted as the ConvLSTM model and uses the convolution op-
eration within the cells and gates of the LSTM, thus directly allowing the inputs and outputs
of the ConvLSTM to be time-series multidimensional data. Another method of inducing
convolution is to perform convolution prior to and separately from the LSTM model. By
modularizing the convolution operation and first training a Convolutional Neural Network
(CNN) to transform video-like inputs to single-dimensional time-parameterized output
vectors and then using the CNN’s output in a traditional FC-LSTM, we can achieve a similar
level of learning and prediction based on spatial and temporal correlations. This approach
is succinctly presented as a standalone deep-learning model denoted the Convolutional
Neural Network—Long Short-Term Memory (CNN-LSTM), which, as the name suggests,
uses a CNN and LSTM run in series to learn and predict video-like inputs. We perform
spatiotemporal air pollution prediction using the ConvLSTM model; however, there is
prior research on alternatively using the CNN-LSTM model to predict spatiotemporal air
pollution [17–20].

More specifically, we find that including meteorological features is essential to an
accurate prediction of ambient air pollution. Air pollutants are closely correlated with
meteorological data. A recent study found that of the 896 government-monitored air
pollution sensors in China, 675 ground-based sensors reported an increase in carbon
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monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and PM2.5 when there was
a greater than 10% increase in wind speed at the same location [21].

In the geographical setting of Los Angeles county, it comes as no surprise that wild-
fire/heat data can provide useful insights into the structures and patterns of atmospheric
air pollutants. We find that including remote-sensing satellite imagery and ground-based
grid sensor data information on the wildfire, smoke, and heat patterns in Los Angeles
county greatly improved the accuracy of our predictive model for forecasting PM2.5. In
fact, Burke et al. [22] found that wildfire smoke now accounts for up to half of all fine-particle
pollution including PM2.5 in the Western U.S and up to 25% of fine-particle pollution nation-
wide. Thus, a major focus of our model is fixated on effectively using the wildfire/smoke
information for the reliable and accurate prediction of PM2.5 in Los Angeles county.

We find that including a mixture of both remote-sensing satellite imagery of air pollu-
tion and ground-based sensor air pollution data is necessary for a robust and multifaceted
approach to spatiotemporal air pollution prediction. Remote-sensing satellite imagery
provides information on atmospheric air pollution and its general structures, while ground-
based sensors provide finer-grained information on air pollution at sea level or within
cities. Since the level of air pollution may vary greatly with respect to altitude, we use both
remote-sensing satellite imagery and ground-based sensor data as input to our model to
fully understand and predict air pollution.

Finally, we find that including remote-sensing satellite imagery and ground-based sensor
data from other air pollutants prove to be beneficial when predicting for a particular pollutant—
in our case PM2.5. For example, although the goal of our model is to predict PM2.5, we include
imagery and sensor data of nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and
methane (CH4) atmospheric air pollutants because these pollutants are closely linked to
PM2.5 [23]. According to Jiao and Frey [24], the main source of both PM2.5 and atmospheric
carbon monoxide is vehicle exhausts and emissions. Thus, it serves only benefit to include
additional air pollutant data when predicting for spatiotemporal PM2.5.

The first stage of our model uses the Graph Convolutional Network architecture to
learn patterns of meteorological data through a graph representation. We first construct
a weighted directed graph representation with the meteorological data. The goal of the
GCN architecture is to interpolate a denser meteorological graph with more nodes and
connecting edges than the input graph. The primary issue with high-quality validated
ground-based meteorological sensor data is that for a geographic area as fine-grained as Los
Angeles county, the number of site locations and meteorological features are sparse. Basic
interpolation techniques such as distance-weighted interpolation and nearest neighbor
interpolation fail to accurately map the spatiotemporal correlations of meteorological data.
The task of interpolation is inherently an effective task to obtain high-level learned feature
embeddings. By applying a GCN architecture for spatial interpolation, we can train a deep-
learning model to predict meteorological trends in areas not provided by the input graph.
We can later use these interpolated correlations as inputs to construct a video-like sequence
of spatially continuous predicted meteorological features over time in our geographical
area. For our model, we adapt previous work on spatiotemporal kriging with Graph Con-
volutional Networks to interpolate our nodes and edges of the meteorological graph [25].
We train the GCN for this interpolation task by systematically hiding a small percentage
of node and edges and their corresponding attribute vectors. The GCN model learns to
predict for the hidden meteorological node and edge feature values using the ground truth
data from a neighborhood of nodes and edges surrounding the missing information. By
iteratively training the interpolation process using the loss function between the ground
truth hidden attribute values and the predicted values, the GCN can interpolate a sparse
meteorological graph into a dense graph containing various meteorological features. The
GCN will create a dense meteorological graph for each sample parameterized by time. In
the case of our model, the GCN interpolates the sparse meteorological graph into a dense
graph for every hour of the hourly meteorological dataset.
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We provide a visualization of this interpolation training process in Figure 1. We
visualize two frames of the interpolation training process on the meteorological graph
structure for a single stationary attribute of AQI.

Figure 1. AQI Node Attribute Training Prediction Visualization. (a) shows the Ground Truth AQI
node attribute values for two frames an hour apart, (b) shows the GCN Predicted AQI node attribute
values for two frames an hour apart.

An intermediate step in our model converts the GCN-interpolated dense meteorolog-
ical graph into an image-based format and concatenates many time-series samples into
a video-like input to the ConvLSTM model. We apply an unsupervised learning graph
representation learning approach to create a matrix of high-level weights corresponding to
the representations of nodes and edges in the meteorological graph. This set of weights is
bounded by the geographic area we have defined, and as a result, the high-level embedding
weight array is calculated for each timestep of the meteorological dataset. By converting
the dense meteorological graphs into spatiotemporal embeddings in a video-like input, we
can pass the learned meteorological information as input to the second stage of our model.
A visualization of the first stage and the intermediate step to convert raw meteorological
data into high-level embeddings from dense interpolated graphs is described in Figure 2.

The second stage of our model uses the ConvLSTM architecture to predict spatiotem-
poral PM2.5. The inputs to the ConvLSTM model are all video-like in format: all input data
are formatted as frames of images or arrays parameterized over time. The inputs to the
ConvLSTM model are the learned meteorological information outputs from the first stage
of the model, the remote-sensing satellite imagery of air pollutants, the wildfire heat data,
and the ground-based sensor data of air pollutants. The output of the ConvLSTM model
is a set of predicted ground-based PM2.5 sensor values around Los Angeles county for
multiple days in the future. Figure 3 displays a visualization of the ConvLSTM architecture
which makes up the second module of our model.
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Figure 2. Visualization of GCN module of our model architecture applied to meteorological data.
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Figure 3. Visualization of the ConvLSTM module of our model architecture.

2.2. Dataset

Our geographical bounds for prediction is a square region of roughly 2500 mi2 of
northwest Los Angeles county. More specifically, we select the square region with corner
coordinates ranging from 33.5◦ N to 34.5◦ N and 117.5◦ W to 118.75◦ W. We format all
input data to fit these geographical bounds. For remote-sensing satellite imagery in our
dataset, we crop the satellite images to fit the geographic boundaries we defined. For the
ground-based sensors, we use the data from all sensors within the latitude and longitude
range of our geographic boundary.

Our temporal bound for prediction is three years of data from 1 January 2018 to 31
December 2020. Each sample of our dataset has an hourly temporal frequency. This hourly
frequency is standard across all input data and prediction results. For each of our data
sources, we collect 26,304 samples corresponding to 24 hourly samples for the 1096 days of
data from 1 January 2018 to 31 December 2020.

Our meteorological data are collected from the Iowa State University Environmental
Mesonet database [26]. The Environmental Mesonet database collects and records hourly
Meteorological Aerodrome (METAR) Reports from Automated Surface Observing Systems
(ASOS) located near various airports and municipal airstrips within the continental United
States. The ASOS data are primarily used by airlines and air traffic controllers to monitor
meteorological features near and around airport runways. The METAR data provides
comprehensive hourly reports of 17 ground-level meteorological features including wind
speed, wind direction, relative humidity, dew point, precipitation, Air Quality Index
(AQI), air pressure, and air temperature. The complete list of meteorological features
collected from each site is presented in the Appendix A (Table A2). Within our geographic
boundaries, there are 24 ASOS sensors providing comprehensive, validated, and quality
checked METAR reports. Figure 4 describes the geographical area of interest and site
locations for the raw meteorological features we collected.

To use these meteorological features within the model, we must transform the array
format of the meteorological features into hourly meteorological graphs for the GCN model.
First, since each of the meteorological features are recorded in terms of their respective
units, we normalize the various units of these meteorological features. To normalize the
units, we calculate each data point’s percentile value with respect to the previous day’s
maximum value. This percentile value is calculated for each hourly sample and is the
ratio between the current sample’s raw value and the metric’s maximum value across
all 24 samples for the previous day. In this way, we retain the important meteorological
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information relative to each metric without relying on the domain-specific units of each
meteorological feature.

Figure 4. METAR ASOS data from the Mesonet database: 24 sensor locations in Los Angeles county,
where each sensor records 17 hourly meteorological attributes.

Our ground-based sensor PM2.5 dataset is collected from the Southern California
Air Resources Board AQMIS2 portal [27]. For the geographic range we have defined,
there are seven quality-assured, validated PM2.5 monitoring sites collecting hourly data in
the following locations: Lancaster, Santa Clarita, Reseda, Glendora, Los Angeles—North
Main St, Long Beach, and Long Beach—Rt 710. These seven PM2.5 sensors are the only
government-maintained PM2.5 sensors within the geographical bounds; however, there
are various low-cost privately maintained sensors we did not use in our predictive model.
To effectively validate the performance of our model, we select only highly regulated
and closely maintained sensors to ensure that the error uncertainty for the raw sensor
measurements is as low as possible. We use historical PM2.5 data at these locations while
training the model and validate the accuracy of our model by measuring the error between
our predicted PM2.5 values for future timesteps at these locations against the ground truth
PM2.5 values.

Our remote-sensing data of various air pollutants is collected from the NASA Multi-
Angle Implementation of Atmospheric Correction (MAIAC) algorithm and the ESA TRO-
POspheric Monitoring Instrument (TROPOMI) data sources [28,29]. The MAIAC algorithm
is a preprocessing algorithm performed on imagery collected by the NASA Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument onboard the NASA Terra and
Aqua satellites [30]. The Terra and Aqua provide imagery over 36 spectral bands using
the MODIS imaging instrument. The MAIAC algorithm is a complex data-preprocessing
algorithm that converts raw MODIS imagery to data analytics ready samples by retrieving
atmospheric aerosol and air pollutant data from MODIS images, normalizing pixel values,
interpolating daily data for hourly use, and removing cloud cover masks.

In our model, one of the remote-sensing satellite imagery collections we use is the MAIAC
MODIS/Terra+Aqua Daily Aerosol Optical Depth (AOD) dataset. AOD is a measure of the
direct amount of sunlight blocked by atmospheric aerosols and air pollutants. This measure
is perhaps the most comprehensive measure of ambient air pollution, and years of research
has shown a strong correlation between AOD readings and PM2.5 concentrations in both
atmospheric and ground-level settings [31,32]. The MAIAC MODIS AOD dataset we use in
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our predictive model records the blue-band Aerosol Optical Depth at a central wavelength of
0.47 µm. The raw MAIAC MODIS AOD dataset provides a spatial resolution of 1 km/pixel
for an area of 1200 km by 1200 km. For our implementation, we crop the imagery to fit our
defined geographic bounds within Los Angeles county.

Figure 5 describes a sample of NASA MODIS AOD imagery after preprocessing from
the MAIAC algorithm. We also apply an additional preprocessing step to downsample
the MAIAC output to a grid of 40 by 40 pixels within our geographic bounds. This down
sampling is performed to normalize the sample sizes across all input sources. Please note
that the figure provides a visualization of the raw grid-like data of the MAIAC AOD
imagery, and thus the color values of the visualization correspond to AOD values, not raw
RGB values. As such, this visualization’s color values should be interpreted as a color map,
not as a visual indicator of true AOD values. The brighter-colored pixels in the visualization
correspond to higher AOD values.

Figure 5. Example Downsampled MAIAC Satellite AOD Imagery (1 January 2019 within Los Angeles).

We also collect remote-sensing data from the TROPOMI instrument onboard the ESA
Sentinel-5P satellite. The Sentinel-5P satellite launched on 13 October 2017, orbiting at
a height of 512 miles above sea level, with an orbital swath of 2600 km, and a mission
length of seven years (2017–2024). The Sentinel-5P TROPOspheric Monitoring Instru-
ment (TROPOMI) is a spectrometer capable of sensing ultraviolet (UV), visible (VIS), near
(NIR) and short-wavelength infrared (SWIR) light. TROPOMI provides high-resolution
global hourly data of atmospheric ozone, methane, formaldehyde, aerosol, carbon monox-
ide, nitrogen dioxide, and sulfur dioxide. For our model, we use remote-sensing data
of methane (CH4), nitrogen dioxide (NO2), and carbon monoxide (CO). We chose these
air pollutants based on its correlation to PM2.5 and the spatial resolution of TROPOMI
data. For these features, we apply additional downsampling to the TROPOMI data to
generate hourly 40-by-40-pixel grids of data for each air pollutant. Figure 6 describes exam-
ples of the downsampled methane, nitrogen dioxide, and carbon monoxide data used in
our model.

We use ground-based and atmospheric wildfire and heat data to predict spatiotempo-
ral PM2.5 in Los Angeles county. We collect wildfire and heat data from two sources: NASA
MODIS data and NASA MERRA-2 data. We collect Fire Radiative Power (FRP) imagery
from the NASA MODIS/Terra Land Surface Temperature and Emissivity collection [33].
Fire Radiative Power (FRP) is a measure of the radiant heat output from a fire. The main
contributors to increased levels of FRP include smoke from wildfires and emissions from
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the burning of carbon-based fuel, such as carbon monoxide (CO) and carbon dioxide (CO2)
emissions. Thus, there is a strong positive correlation between wildfires and FRP values as
well as a weaker positive correlation between carbon emissions (CO2, CO) and FRP values.
FRP is measured in megawatts (MW) and can be collected using an imaging instrument
onboard a remote-sensing satellite aircraft. The wavelength of light needed to image FRP is
in the range of 2070 µm to 3200 µm.

Figure 6. Downsampled TROPOMI remote-sensing data of various air pollutants (1 January 2019
within Los Angeles), (a) nitrogen dioxide, (b) carbon monoxide, (c) methane.

In our model, we find that including FRP imagery drastically improves our model’s
performance during the wildfire seasons such as months from June through November
when predicting for spatiotemporal PM2.5 in Los Angeles. We also see improvements in
our model’s performance in non-winter months after including FRP, since during these
months, the imagery provides information on carbon-based fuel emissions, which is highly
correlated with the movement and structure of PM2.5 [34]. Figure 7 describes a 40-by-
40-pixel downsampled visualization of FRP values over various times of the year. Again,
note that the figure provides visualizations of the raw grid-like data of the MODIS FRP
imagery, and thus the color values of the visualization correspond to FRP values, not raw
RGB values.

Figure 7. Downsampled FRP visualization samples at various times in Los Angeles, (a) March 2018,
(b) June 2018, (c) August 2018.

We also use wildfire and heat data from the NASA MERRA-2 data source. The Modern-
Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is a global
atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Of-
fice (GMAO). It spans the satellite observing era from 1980 to the present. The goals
of MERRA-2 are to provide a regularly gridded, homogeneous record of the global at-
mosphere, and to incorporate additional aspects of the climate system including trace
gas constituents (stratospheric ozone), and improved land surface representation, and
cryospheric processes [35]. All the MERRA-2 features we use in our predictive model are
in the format of multidimensional arrays of grid-based raw values throughout Los Angeles
over time.
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We use MERRA-2 imagery of three wildfire/heat features: Planetary Boundary Layer
(PBL) height, surface air temperature, and surface exchange coefficient for heat. Planetary
Boundary Layer Height is a measure of the distance from ground level of the lowest part of
the atmosphere. The lowest part of the atmosphere, or the peplosphere, is directly influ-
enced by the changing surface temperature of Earth, various aerosols in the atmosphere,
and is especially influenced by smoke or ash from a fire. PBL height is also influenced by
precipitation and changes in surface pressure. Over deserts or areas of dry, warm climates
that may be caused by fires burning in the area, the PBL may extend up to 4000 to 5000 m
above sea level. Over cooler, more humid temperatures with little aerosols, dust, or smoke
in the atmosphere, the PBL may be less than 1000 m above sea level. Thus, intuitively, a
low PBL height means that there are no fires burning in the area and the atmosphere is
relatively clear of aerosols. Figure 8 provides a visualization of the MERRA-2 imagery for
PBL height globally and over Los Angeles county.

Figure 8. MERRA-2 PBL Height (in meters) visualization over various geographic scales, (a) Global,
(b) Los Angeles.

We also use the surface air temperature feature collection from MERRA-2 to provide
general information about heat. We find that wildfires, smoke plumes, and industrial
exhausts will all influence surface air temperature. Figure 9 provides a visualization of the
MERRA-2 imagery for surface air temperature globally and over Los Angeles county.

Figure 9. MERRA-2 Surface Air Temperature (in Kelvin) visualization over various geographic scales,
(a) Global, (b) Los Angeles.

Finally, we use the MERRA-2 surface exchange coefficient for heat features. Surface
exchange coefficient for heat provides insights into the effects of wildfires, heat, and smoke
plumes over non-terrain regions as well, such as oceans and rivers. The surface exchange
coefficient for heat feature provides especially useful information since our geographical
area of interest is Los Angeles. For example, we find that including surface exchange
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coefficient for heat helped the model understand atmospheric PM2.5 over the Pacific Ocean
near the Port of Los Angeles and Port of Long Beach. Figure 10 provides a visualization
of the MERRA-2 imagery for surface exchange coefficient for heat globally and over Los
Angeles county. We provide the full summary of input data used, the datasets we collected
them from, the instruments used to capture the data, and the data source types in the
Appendix A (Table A1).

Figure 10. MERRA-2 Surface Exchange Coefficient for Heat visualization over various geographic
scales, (a) Global, (b) Los Angeles.

2.3. Implementation

In our GCN architecture which uses meteorological data to create dense interpolated
high-level embeddings of meteorological features, we must preprocess raw meteorological
data into weighted directed graphs with node and edge attribute vectors. That is, for
each timestep of the meteorological dataset, we create a weighted directed graph denoting
the nodes of the graph as “stationary” meteorological features pertaining to a sensor
location and the edges denoting “non-stationary” meteorological features. We define
“stationary” features as scalar measurements of individual meteorological features at a
sensor location. For example, the node attributes for our meteorological graph include
relative humidity, AQI, temperature, air pressure, dew point, and heat index. We describe
the full dichotomy of “stationary” and “non-stationary” attributes in the Appendix A
(Table A2). Edge attributes consist of “non-stationary” meteorological features that rely
on or connect multiple sensors. For example, the edge attributes consist of the physical
distance in miles from meteorological sensor locations, the wind speed, and the wind
direction. For each timestep, we can create a multidimensional weighted directed graph
containing the spatial and distance-based information of all meteorological sensors and
their recorded features. We then repeat this process to create these multidimensional
weighted directed graphs for each hourly sample in the dataset. Algorithm 1 describes a
step-by-step procedure of creating these weighted directed meteorological graphs for a
single timestep.

To implement the ConvLSTM architecture, we use the Keras ConvLSTM layer [36]. This
implementation requires the input data to be in the form of a five-dimensional tensor with
dimensions (sample, frame, row, column, filter). For the remote-sensing satellite imagery in
our dataset, we set the row, column, and filter dimensions as the 2D image along with the
RGB color values as the filter. All remote-sensing satellite imagery data sets are downsampled
to 40-by-40-pixel resolutions, which correspond to a 40 row by 40 column array for the 5D
tensor input. For the ground-based sensor data, we create a 40-by-40-pixel grid and use the
latitude and longitude coordinates of the monitoring sites to set the location of the sensor
values within the array, similar to the process described in Algorithm 1.



Atmosphere 2022, 13, 822 14 of 20

Algorithm 1 Meteorological Graph Construction
Input: Meteorological site features fi ∈ F, where each fi contains site coordinates xi, yi and
a set of site-specific stationary si ∈ S and non-stationary ni ∈ N feature values. Boundary
latitude values latmax, latmin. Boundary longitude values longmax, longmin.

Initialize 40 × 40 array grid A.
Initialize weighted directed graph G = (V, E)
for fi ∈ F do

gridx, gridy =
⌊

xi ·40
longmax−longmin

⌋
,
⌊

yi ·40
latmax−latmin

⌋
A[gridx][gridy] = vector of site-specific stationary values si

Set A[gridx][gridy] as vertex of G
end for
for fi ∈ F do

for ni ∈ N do
Let startx, starty be the starting coordinates of a weighted directed edge in G
startx, starty = gridx, gridy
Recover endx, endy from site-specific non-stationary value ni.
Create weighted directed edge in G starting from vertex located at (startx, starty)
and ending at vertex located at (endx, endy) with weight of |ni|.

end for
end for

Output: Geographically bound graph feature matrix grid A, Weighted Directed Graph G

For each of the data sources, we construct a set of 3D input “images” with dimensions
of (rows, columns, filters). To construct a 5D tensor for the Keras ConvLSTM layer, we
bundle all input frames over time into multiple samples. We bundle 24 consecutive frames
into a single sample, where each frame represents information at a timestep with an hourly
temporal frequency. Each bundle of 24 frames then represents a single day’s worth of data.

The input data bundles are staggered such that the first sample consists of data from
frames 1–24, the second sample consists of data from frames 2–25, and so on. In this way,
we continue to preserve a continuous flow of temporal correlations among samples. By
constructing this 5D tensor, we can transform the 26,304 3D input “images” (24 samples of
1096 days) into a 5D tensor of shape (26,304, 24, 40, 40, 10). The 10 filters in the 5D tensor
consist of three filters for the MERRA-2 fire features (PBL height, surface temperature, and
surface exchange coefficient for heat), 1 filter for the MODIS FRP imagery, one filter for
the MAIAC MODIS AOD imagery, three filters for the TROPOMI data of air pollutants
(nitrogen dioxide, carbon monoxide, and methane), one filter for the output of the GCN on
meteorological data, and one filter for the ground-based PM2.5 sensor data from AQMIS2.
Figure 11 provides a visualization of these input filters.

Figure 11. Visualization of input filters for our ConvLSTM model.

To evaluate and test our model, we add a final Dense Keras layer with seven neurons
to give a prediction for solely the seven PM2.5 sensor locations instead of a spatially
continuous prediction of a 40-by-40-pixel grid over Los Angeles county [37]. We have the
capability to produce spatially continuous predictions of PM2.5 with our current model,
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but to evaluate against existing ground truth values with little to no measurement error or
uncertainty, we restrict the prediction to monitoring sites available in the California ARB
AQMIS2 portal.

3. Results

Our model predicts spatiotemporal PM2.5 in terms of micrograms per cubic meter
(µg/m3) at seven sensor locations in Los Angeles county hourly using 24 h of data in the
past to predict 24 h of data in the future using meteorological data, wildfire data, remote-
sensing satellite imagery, and ground-based sensor data. We use 1065 days of data from
1 January 2018 to 30 November 2020 as training data and evaluate our prediction on a test
dataset of 744 samples (24 samples for 31 days) from 1 December 2020 to 31 December
2020. Figure 12 provides a visualization of the distribution and variance of the ground
truth PM2.5 values for each sensor location.

Figure 12. Data Distribution Plot of PM2.5 Ground Truth Sensors in LA County during Testing
Timeframe (1 December 2020–31 December 31 2020).

To measure the accuracy of our model, we use the Root Mean Square Error (RMSE) and
Normalized Root Mean Square Error (NRMSE) error. RMSE and NRMSE is calculated as

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
; NRMSE =

RMSE
ȳ

where n is the number of observations, ŷ is the predicted value, y is the ground truth, and ȳ
is the mean of the test data.

Table 1 displays the prediction RMSE and NRMSE metric results for the first frame
average and 24th frame average for each sensor location throughout the test set. Please
note that first frame average error denotes the average error of the immediate next frame
predicted using the previous 24 frames, while the 24th frame average error denotes the
average error of the 24th of 24 frames using 48 frames earlier than the 24th frame. Since the
first frame predictions uses more recent data to predict, the average first frame error is thus
lower than the average 24th frame error.

Table 2 displays the prediction RMSE and NRMSE metric results on the first 24 frames
of the testing set (24 h of 1 December 2020 prediction).
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Table 1. RMSE (in µg/m3) and NRMSE error values averaged over 24 frame bundles (First Frame
Averages and 24th Frame Averages) of test set for each sensor location.

Metric Sensor Location Average Value
1st Frame 24th Frame

RMSE

Lancaster 0.753323 1.039245
Glendora 0.747422 1.138471
Santa Clarita 0.748873 0.937149
Reseda 0.738090 0.875254
LA—Main St 0.648110 0.773491
Long Beach 0.631741 0.759828
Long Beach—RT 710 0.619384 0.738418

NRMSE

Lancaster 0.054438 0.2866
Glendora 0.054642 0.063814
Santa Clarita 0.054677 0.066814
Reseda 0.053913 0.061014
LA—Main St 0.048314 0.059641
Long Beach 0.044283 0.053194
Long Beach—RT 710 0.040283 0.051743

Table 2. RMSE (in µg/m3) and NRMSE Error Values for first five frames of test set or roughly 10 days
of data (5 December 2019–11 December 2019).

Frame Metric
RMSE NRMSE

1 0.671925 0.049715
2 0.678362 0.049751
3 0.673139 0.048904
4 0.689085 0.051835
5 0.713598 0.054311
6 0.677656 0.050077
7 0.719502 0.053545
8 0.771981 0.058694
9 0.904364 0.061504
10 0.673252 0.048378
11 0.907358 0.064156
12 0.672855 0.047664
13 0.847963 0.059228
14 1.073242 0.069844
15 0.709482 0.052143
16 0.756776 0.051116
17 0.748892 0.056426
18 0.672018 0.051460
19 0.674777 0.048313
20 0.678842 0.052491
21 0.684812 0.050102
22 0.866935 0.068929
23 0.765170 0.052922
24 1.042741 0.081660

Our results show significant improvement over current state-of-the-art deep-learning
models on predicting spatiotemporal PM2.5 air pollution. Our testing set first frame
prediction’s percentage accuracy is 95.03%, which is a 60.3% decrease in hourly error from
the leading implementations of the ConvLSTM model for PM2.5 prediction [16]. Our
testing set’s best frame accuracy over the first 24 h in the testing set is 95.10%. Moreover,
our results show a 91% decrease in first frame error compared to our previous model
using solely the ConvLSTM model on Sentinel-2 satellite imagery [38–44]. Our results also
show a 43% decrease in first frame error compared to our previous model with a similar
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architecture without wildfire data from NASA MODIS and MERRA-2. The averaged RMSE
and NRMSE decrease over time with later frames, but this is expected as the nature of
PM2.5 results in concentrations 24 h in the future being more correlated with 24 h in the
past as compared to concentrations 48 h in the future.

4. Conclusions

In this paper, we use complex deep-learning models to accurately predict spatiotempo-
ral PM2.5 in Los Angeles county over time in hourly temporal frequencies using meteoro-
logical data, wildfire data, remote-sensing satellite imagery, and ground-based sensor data.
In designing our model, we include information on spatial and temporal correlations as
well as meteorological features, wildfire patterns, smoke plumes, and related air pollutant
matter data to understand, learn, and predict spatiotemporal PM2.5 air pollution.

We approach the complex task of predicting spatiotemporal PM2.5 through a deep-
learning perspective. In our approach, we focus on developing robust deep-learning algo-
rithms capable of decoding multisource big data in various formats. Thus, there are limitations
for deep-learning models of this nature. We do not consider atmospheric physics or chemical
mechanisms. There are certain local sources we do not consider, including the terrain and
elevation of the study area or the traffic trends within Los Angeles. Although these sources
may be indirectly present in the input meteorological data, we do not directly use such data.
Furthermore, these local sources are often overshadowed in its contribution to PM2.5 when
significant wildfire or smoke events occur in the vicinity. Thus, using both remote-sensing
data and satellite imagery of wildfires, our approach is effective in understanding the effect of
wildfire or smoke events to PM2.5 in a close range. For larger regional impacts of wildfires,
we do not consider their chemical mechanisms or account for dilution.

We use various cutting-edge deep predictive models including the Graph Convolu-
tional Network (GCN) and the Convolutional Long Short-Term Memory (ConvLSTM). We
create a time-parameterized set of multidimensional weighted directed graphs to represent
17 meteorological features in 24 sensor locations within the greater Los Angeles county
area through a novel algorithm. We then use the GCN architecture to perform convolu-
tion on neighborhoods of nodes and edges to interpolate dense meteorological graphs
using spatiotemporal kriging. We also use unsupervised graph representation learning
algorithms to create high-level embedding “images” of the dense meteorological graphs
and use these high-level embeddings as input to the ConvLSTM model. In addition to the
outputs from the GCN, we also supply validated ground-based PM2.5 sensor data in grid
format, NASA MODIS MAIAC AOD remote-sensing satellite imagery, TROPOMI carbon
monoxide, nitrogen dioxide, and methane remote-sensing data, MERRA-2 PBL height,
surface air temperature, and surface exchange coefficient for heat fire features, and MODIS
FRP remote-sensing satellite imagery as input to the ConvLSTM. We calculate the RMSE
and NRMSE error values of the predicted PM2.5 values over the first 24 frames as well
as the averaged RMSE and NRMSE error values of the predicted sample for each sensor
location. We find that our results show significant improvement upon current research in
the field using spatiotemporal deep predictive algorithms.

5. Future Work

In the future, we hope to predict spatially continuously across Los Angeles. We can
achieve better results on grid-based predictions by implementing advanced interpolation
models on the ground-based PM2.5 sensor input data [45]. We also hope to calculate and
account for the data fusion under uncertainty error for ground-based sensor measurements
to ensure the validity of recorded values. Doing this will allow us include low-cost individ-
ually maintained ground-level sensor data as inputs and predictive targets to increase the
spatial resolution of predictions.

This research can also extend further than Los Angeles county and predict an array of
pollutants including carbon monoxide, ozone, nitrogen dioxide, and sulfur dioxide. This
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work can be used to inform and assist researchers in various disciplines on the movement
of PM2.5 along temporal and spatial coordinates.
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Appendix A

Table A1. Data summary table of input data source databases, instruments, and data source types.

Data Database Instrument Data Source Type

PM2.5 CARB AQMIS2 Monitoring Station Ground Sensor Data
Meteorological Features Iowa Environmental Mesonet Monitoring Station Ground Sensor Data
MAIAC AOD NASA AppEARS NASA MAIAC (MCD19A2) Satellite Imagery
MODIS FRP NASA AppEARS NASA MODIS (MOD11A1) Satellite Imagery
PBL Height NASA EarthData NASA MERRA-2 (M2T1NXFLX) Satellite Imagery
Surface Air Temperature NASA EarthData NASA MERRA-2 (M2T1NXFLX) Satellite Imagery
Surface Exchange Coefficient for Heat NASA EarthData NASA MERRA-2 (M2T1NXFLX) Satellite Imagery
Carbon Monoxide (CO) NASA EarthData ESA Sentinel-5P TROPOMI Remote-sensing Data
Methane (CH4) NASA EarthData ESA Sentinel-5P TROPOMI Remote-sensing Data
Nitrogen Dioxide (NO2) NASA EarthData ESA Sentinel-5P TROPOMI Remote-sensing Data

Table A2. METAR Meteorological Features for each of the 24 ASOS sites within Los Angeles county
collected from Mesonet.

Meteorological Feature Unit Stationary/Non-Stationary

Air Temperature F Stationary
Dew Point F Stationary
Relative Humidity % Stationary
Heat Index/Wind Chill F Stationary
Wind Direction ◦ Non-Stationary
Wind Speed mph Non-stationary
Altimeter in Stationary
Sea Level Pressure mb Stationary
1 Hour Precipitation in Stationary
Visibility mi Stationary
Wind Gust mph Stationary
AQI N/A Stationary
Peak Wind Gust mph Non-Stationary
Peak Wind Direction ◦ Non-Stationary
Cloud Height Level 1 ft Stationary
Cloud Height Level 2 ft Stationary
Cloud Height Level 3 ft Stationary
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