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Abstract: A climatology of Mesospheric Inversion Layers (MIL) has been created using the Rayleigh
lidar located in the south of France at L’Observatoire de Haute Provence (OHP). Using criteria based
on lidar measurement uncertainties and climatological mean gravity wave amplitudes, we have
selected significant large temperature anomalies that can be associated with MILs. We have tested a
novel approach for classifying MILs based on a k-mean clustering technique. We supplied different
parameters such as the MIL amplitudes, altitudes, vertical extension, and lapse rate and allowed
the computer to classify each individual MIL into one of three clusters or classes. For this first proof
of concept study, we selected k = 3 and arrived at three distinct MIL clusters, each of which can be
associated with different processes generating MILs in different regimes. All clusters of MIL exhibit
a strong seasonal cycle with the largest occurrence in winter. The four decades of measurements
do not reveal any long-term changes that can be associated with climate changes and only show an
inter-annual variability with a quasi-decadal oscillation.

Keywords: mesosphering inversion layer; clustering method; middle atmosphere; Rayleigh lidar

1. Introduction

The mesosphere, which extends from approximately 50 to 90 km altitude, is a dynami-
cally active layer of the atmosphere which is defined by a negative temperature lapse rate.
Due to its high altitude and tenuous nature, the mean thermal state of the air is a complex
balance of radiative, dynamical, and some chemical forcing. Above the stratosphere, the
constituent gasses of the atmosphere radiate much of the available energy to space. This
results in a negative temperature lapse rate with temperatures decreasing with the increas-
ing altitude. Small-scale, fast moving perturbations to the mean radiative mesospheric
temperature profile occur commonly as gravity waves (GWs), planetary waves (PWs) and
tides displace parcels of air vertically. However, there are also large-scale anomalies lasting
several days observed in the mesosphere, which are known as the Mesospheric Inversion
Layers (MILs). MILs are large deviations of several tens of Kelvins over several kilometers
of altitude, which induce a positive lapse rate of the temperature in the mesosphere.

MILs were first observed by meteorological rockets in the 1970s [1] and were confirmed
by other vertical profilers such as Rayleigh lidars [2], sodium temperature lidars [3], falling
spheres [4], and satellites [5]. Several mechanisms have been proposed and reviewed [6]
for the formation of MILs, but many of the details are still subject to debate.
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In a review article, Meriwether and Gardner [6] described two broad classes of MILs.
The first class is the lower MIL, occurring between 65 and 75 km with a summer

amplitude of 5 to 10 K and a winter amplitude sometimes exceeding 20 K. It is generally
considered that the lower MILs have two formation mechanisms: Firstly, when large,
upward-propagating planetary waves reach an altitude where their phase speed matches
the speed of the background horizontal wind, the waves break down, dissipate via turbu-
lence, and begin to deposit momentum and energy into the atmosphere. This process acts
to slow and potentially reversing the background wind and provide local heating, which re-
verses the local temperature lapse rate and creates the inversion layer [7]. Secondly, gravity
waves can also saturate and interact with the mean horizontal wind in the same fashion as
planetary waves. It was further shown by Hauchecorne et al. [2], Le Du, et al. [8] that GWs
will preferentially break within a MIL, providing sufficient energy to sustain an inversion
with amplitudes up to 40 K. This theory has the added appeal that it can explain seasonal
variations in mid-latitude MIL frequencies by relating them directly to their analogues in
GW seasonal cycles. Disentangling the relative contributions of PWs and GWs to lower
MIL formation is still a relatively open question.

The second class is the upper MIL, occurring in the upper mesosphere with typical
amplitudes between 10 and 35 K. This class of MIL is thought to result from non-linear
wave breaking and wind–wave interactions [2], as well as from tidal wave breakdown
and GW–tidal interactions [9,10]. A third class of MIL was also recently reported by
Ramesh et al. [11] in the mesopause region, driven by chemical heating of atomic oxygen.
In this paper, we will restrict our analysis to the lower MILs occurring mainly in the lower-
middle mesosphere between 60 and 80 km, which are regularly measured by the lidar
with high accuracy and precision. Given that what we are presenting is a novel statistical
technique for classifying MILs, we will demonstrate our method on the more robust dataset
and defer the analysis of upper MILs for a future study.

In general, understanding MIL phenomena and their driving mechanism is im-
portant as it can provide insight into the general stability and energy transfer of the
middle-atmosphere.

Such a large variability has a large impact on the mean temperature and could probably
have a significant impact on decadal trends in the mesosphere. The mesosphere is expected
to cool due to the increase in greenhouse gases. In addition, some dynamical feedback
is expected as a secondary effect of the climate response due to wave generation and
propagation. Cooling is already observed with different sensors [12] and above Observatory
of Haute-Provence at mid-latitude [13]. However, multi-decadal, high-resolution datasets
of temperature and gravity waves are rare, and MIL occurrence can be a good proxy
for assessing long-term gravity wave effects. MILs have a large impact on gravity wave
propagation [14], as well as on turbulence [15]) and probably on local wave generation [8].
This huge variability is also a critical issue for atmospheric re-entry either space shuttle,
missile, or natural materials such as meteorites [16–19]. The density vertical profile has
a large impact on the trajectory of these objects and also thermal effects, including the
potential altitude of the sublimation phase. The phenomenon of meteor ablation from 80 to
110 km allows for the measurement of metal layers by resonance lidars [20] and wind by
meteor radars [21].

Addressing the first reason, at the bottom side of the thermal layers (where the tem-
perature profile is increasing in altitude) the positive temperature gradient with increasing
altitude signifies an increase in atmospheric stability and reduction in vertical mixing.
In contrast, at the top side of the thermal layer, the negative temperature gradient with
decreasing altitude implies a reduction in atmospheric stability to the point that the atmo-
sphere may become convectively unstable, thus possibly supporting the development of
turbulence [15].

To better understand the cause of MILs, the characteristics of their features need to
be better described: altitudes, vertical extension, temperature anomalies, lapse rate, as
well as their occurrence frequency. As a tool, we will use the systematic lidar observa-
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tions performed for more than four decades in the south of France at the Observatory of
Haute-Provence [22–24] to derive advanced statistical analyses and create an MIL clima-
tology. In this study, we perform a clustering analysis to determined if different types of
MILs can be identified by their characteristics. In Section 2, the lidar data and methods are
presented. In Section 3, we describe the method used to extract individual MIL characteris-
tics. In Section 4, a climatology of the different MIL parameters is shown. In Section 5, we
report the results of a statistical analysis of temperature inversion layers. In Section 6, we
describe the results of a new K-mean clustering analysis conducted on ‘MIL families’. In
Section 7, we discuss the attributes of these potential MIL families, and finally, in Section 8,
we provide some conclusions.

2. Temperature Lidar Observations

Vertical temperature profiles in the middle atmosphere have been obtained with
Rayleigh lidar at the Observatory of Haute-Provence (OHP) located in the south of France
(44° N, 6° E) within the framework of NDACC network. The Rayleigh lidar temperature
datasets were downloaded from the NDACC website (http://www.ndsc.ncep.noaa.gov/).
These measurements were set up in the frame of the Network for the Detection of Strato-
spheric Changes [25] dedicated to stratospheric ozone monitoring.

The dataset consists of a series of nightly temperature profiles from 30 to 80 km starting
from 1978 [22]. Routine observations are conducted during clear sky over several hours,
mainly at the beginning of the night. The rate of measurements can fluctuate with time;
however, due to the quality of the sky transparency and weather, 2–3 measurements per
week were obtained. The principle is based on molecular scattering. The method used
to retrieve temperature profiles from molecular backscattered signals and the associated
errors has been described in detail by Hauchecorne and Chanin [26]. A description of the
instrumental error sources and bias has been reported by Keckhut et al. [23]. Temperature
uncertainties are negligible in the stratosphere and grow exponentially with decreasing
atmospheric density, reaching approximately 5 % near 75 km and 15 % near 90 km. Since
1987, the two existing channels have been mixed together to provide a single signal for the
entire height range. This is achieved in comparing both channels in the common altitude
range (30–50 km) and in calculating the ratio between both channels and the high-flux
nonlinearity of the high-gain channel, considering the low gain channel as a reference. The
signal-induced noise (SIN) is considerably reduced using electronic gating, but it can still
be identified from the very low mean background noise. It is estimated by fitting with a
parabolic function the background signal between 10 km above the top of the temperature
profile and 153 km. The residual atmospheric signal at high altitudes is estimated using the
MSIS model.

Computation of temperature profiles requires a pressure initialization. Instead of
assuming that the pressure at the top of the profile is equal to the value given by the
standard atmosphere model, the scale height of the pressure (which is directly related to the
temperature) is adjusted in the MSIS model. Part of the actual algorithm can be found in
Keckhut et al. [23] and in Singh et al. [27]. Importantly, the accuracy in determining density
and temperature is directly related to photon noise and is associated with temporal and
vertical resolution. Statistical noise increases with the altitude and becomes suddenly very
large as the signal amplitude reaches the noise level. Relative and absolute uncertainties
have been identified and quantified using simulated data [28]. Error calculation can be
found in Hauchecorne and Chanin [26]. For NDSC purposes, a 2-km vertical resolution
constant with altitude is obtained using a Hanning filter. The integration time is about 4 h,
depending on weather conditions. The amplitude of the correction of the non-linearities
of the counting is determined with an accuracy of 1 K. The error due to the initialization
was estimated to be equal to 15% at the initialization level. The calculation of uncertainty
shows that this error becomes negligible 15 km below, as opposed to the noise statistic. The
sum of these uncertainties is reported in the NDSC archive. The system has undergone
successive improvements since its initial construction in 1978 [23]; however, uncertainties

http://www.ndsc.ncep.noaa.gov/
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remain smaller than ±1 K below 70 km, and potential biases were continuously evaluated
with different tools [29], including intercomparisons with a mobile lidar [30].

For the present study, the data have been processed using the V6 version of the Temper
code developed by LATMOS [31]. The nightly mean profiles from 30 to 90 km have been
smoothed over 3 km and interpolated every 1 km are used. The mean thermal profile of the
mesosphere is characterized by a regular temperature decrease from the stratopause around
50 km up to the mesopause around 90 km. However, the temperature profiles obtained
by Rayleigh lidar in the south of France frequently exhibit near 65 to 70 km a temperature
inversion. Examples of nightly mean vertical temperature profiles from the OHP lidar
since 1982 have been shown in Figure 1. These temperature profiles indicate temperature
inversion layers with different vertical behaviors. The temperature uncertainties have been
reduced by vertical and time integration and have been derived with 3 km effective vertical
resolution and one sigma error. MILs in the mesosphere, are characterized by a minimum
temperature around 60–70 km, with a strong positive gradient above, and a secondary
maximum higher up.

Figure 1. Selected examples of vertical temperature profiles from the OHP lidar since 1982. Perturba-
tions, potentially identified as MILs, appear at different levels and altitudes of the bottom part of the
MIL are indicated with an arrow. According to noise and gravity wave mean amplitude, 2 cases were
rejected as significative MILs: 6 January 1984 and 24 August 2001.

3. MILs Detection

Previous studies Hauchecorne et al. [2] already show mesospheric temperature inver-
sions with the OHP lidar and the first statistical characteristics of the mesospheric inversion.
In the middle and lower mesosphere, MILs occur at altitudes ranging from 55 to 75 km in
winter and 70 to 83 km in summer. Some specific characteristics of MILs such as amplitude
and thickness can appear to be similar to other temperature perturbation forcing such as
gravity waves or planetary waves. However, MILs tend to persist for several hours to a
few days, their vertical extent spans several kilometres, and they can have significantly
larger amplitudes compared with gravity waves [32]. However, the exact range of these
characteristics is not well-defined. In the examples provided in Figure 1, such a complex
issue is obvious. In addition, several MILs can be observed simultaneously. The amplitude
of an inversions layer was defined by Leblanc and Hauchecorne [5] as the temperature
difference between the top and bottom of the inversion layer. The thickness of the inversion
layer is the difference between the altitude of the temperature at the top and the altitude of
the temperature at the bottom. Therefore, the top and bottom of the inversion layer by the
maximum and minimum temperature peaks need to be defined. The bottom part of the



Atmosphere 2022, 13, 814 5 of 17

MIL is defined as the closest minimum temperature Li of the ith layer, while the top part is
defined by the maximum temperature, Mi as illustrated in Figure 2.

Figure 2. A sample middle atmospheric temperature profile obtained at OHP on 16 December 1982,
illustrating the detection of MIL and their characteristics. The Li and Mi correspond to the altitudes
of minimum and maximum temperature for the evident ith structure in the data. The thickness (km),
the amplitude (Kelvin), and the temperature gradient of the MIL retained are in italics in this case,
with several large structures.

The retrieval of the characteristics of the temperature inversions consists of identify-
ing the minimum and maximum peaks on the temperature graph named as Li and Mi,
respectively. To extract the local extremum, a smooth ‘background’ temperature profile is
subtracted from the measured temperature profile. The method for estimating temperature
extremum is using the derivative of the temperature as a function of altitude, T = dT

dz with
z considered as the altitude. By horizontal tangent of the temperature graph, the graph of
the derivative of the temperature crossing the zero axis dT

dz = 0.
In the next step, detecting all the maximum and minimum peaks from a temperature

profile, the amplitude values, Ai, are calculated from the difference between the tempera-
ture at the top, Mi, and the temperature at the bottom, Li, of the temperature graph:

Ai = Mi − Li (1)

The errors of the maximum temperature and minimum temperature can be used
to calculate the amplitude error, ∆A. This estimated error is a quadratic calculation, and
accordingly, sigma amplitude is the summation of sigma maximum temperature and sigma
minimum temperature. Indeed, the error amplitude, ∆A, is the square root of the sigma
amplitudes, and sigma temperatures are the square of Lidar errors, ∆Lidar:

∆T = (∆Lidar)2 (2)

σA = σTmax + σTmin = σMi + σLi (3)
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∆Ai =
√

σA =
√

σMi + σLi (4)

The thickness values, Hi, is the altitude difference between Li and Mi:

Hi = ZMi − ZLi (5)

For the present study, the nightly mean profiles from 30 to 90 km smoothed over 3 km
and interpolated every 1 km are used. Thickness error is the summation of the square root
of the squares of maximum altitude and squares of minimum altitude:

∆H =
√
(Zmax)2 + (Zmin)2 (6)

Understanding MIL phenomena is important to the understanding of middle-
atmosphere dynamics for two primary reasons: stability and energy transfer. At the
bottom side of the thermal layers, where the temperature profile is increasing in altitude,
the positive temperature gradient with increasing altitude signifies an increase in atmo-
spheric stability and reduction in vertical mixing. In contrast, at the top side of the thermal
layer, the negative temperature gradient with decreasing altitude implies a reduction in
atmospheric stability to the point that the atmosphere may become convectively unstable,
thus possibly supporting the development of turbulence. Therefore, the temperature gradi-
ent Gi with amplitude divided by the thickness was calculated, and the gradient standard
error ∆Gi/Gi is the square root of the squared amplitude error, ∆Ai, divided by amplitude,
Ai, and squared thickness error ∆Hi divided by thickness Hi:

Gi =
Ai
Hi

(7)

∆Gi
Gi

=

√
(
∆Ai
Ai

)2 + (
∆Hi
Hi

)2 (8)

Our primary focus here is detecting the geometric characteristics of individual MILs
from the vertical temperature profiles given by lidar observations. An example of deter-
mining MIL characteristics from the temperature profile is shown in Figure 3 and Table 1.
This example provides the different characteristics of describing inversions observed on
4 January 2000. Figure 3 shows a clear vertical temperature profile in the 30–90 km altitude
range with detected MILs that are marked by red and pink triangles. The amplitude,
thickness, and gradient has been calculated according to the mentioned formulas. Based
on Table 1, more details of the calculation performed are available. For this case, the maxi-
mum value of the amplitude is 14.61 K, and the minimum one is 0.31 K. Importantly, the
temperature profiles may be too noisy for considering the detected inversions as significant.
In the following sections, the temperature data have been filtered to a vertical resolution of
2 km according to the techniques described in [24]. This has been performed to distinguish
between significative MILs and perturbations associated with small-scale GWs and noise.
Based on measurement noise, only the inversions from 62 to 66 km are very significative,
while the one between 57 and 59 km is just above the threshold given by the noise-estimated
level Table 1.

Table 1. Potential MIL anomalies on the vertical temperature profile derived from lidar observation
on 4 January 2000.

Zmax (km) Mi ± ∆Mi (K) Zmin (km) Li ± ∆Li (K) Ai ± ∆Ai(K) Hi ± ∆Hi(km) Gi ± ∆Gi (K/km)

43.85 259.80 ± 0.49 - - - - -
59.37 225.48 ± 1.84 57.40 221.49 ± 1.45 3.98 ± 2.35 1.96 ± 0.71 2.03 ± 2.80
66.05 232.00 ± 4.13 62.02 218.55 ± 2.39 13.44 ± 4.77 4.02 ± 0.71 3.33 ± 3.42
69.48 225.27 ± 6.06 68.50 224.95 ± 5.36 0.31 ± 8.09 0.98 ± 0.71 0.32 ± 2.34
71.94 223.66 ± 8.25 71.15 223.19 ± 7.44 0.46 ± 11.11 0.78 ± 0.71 0.59 ± 4.17
78.13 227.51 ± 19.81 74.89 212.89 ± 11.63 14.61 ± 22.97 3.24 ± 0.71 4.50 ± 8.50
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Figure 3. Temperature profile illustrating the detection of different atmospheric layers that could be
associated with a MIL on 4 January 2000. The measurement uncertainty for the temperature profile is
indicated by the green lines. Potential MILs’ minimum altitudes are indicated by the red and pink
triangles. The red triangle corresponds to the bottomside of the layer, which passed all tests and was
classified as an MIL.

4. MILs’ Climatology

MILs were identified by following the procedure outlined by Leblanc and Hauchecorne [5]
and Fechine et al. [33] and is briefly presented here. It is worth noting that this procedure
has been applied in many previous studies investigating the phenomenon of mesospheric
inversion. A non-exhaustive list of such MIL studies includes: [6,28,34–38]. The identi-
fication procedure of Leblanc and Hauchecorne [5] considers the amplitude, thickness,
gradient, and altitude of an MIL as the primary characteristics of an inversion layer. The
amplitude is defined as the maximum temperature anomaly with respect to a mean ‘un-
perturbed’ vertical temperature profile. The thickness refers to the vertical extent of the
layer spanning the bottomside to topside cold points. The gradient relates how rapidly the
temperature of the layer changes over the altitude spanning the MIL. The altitude of the
MIL is defined as the altitude of the bottomside cold point below the start of the positive
temperature gradient.

In this study, MILs are identified by using the following three criteria:

• The bottom of the inversion is located at least 5 km above the stratopause, and the top
is below 90 km;

• The temperature perturbation must be significant within measurement uncertainty;
• The amplitude of the MIL temperature perturbation must be 2σ larger than the tem-

perature perturbations expected from gravity waves at the specific altitude

Given that lidars are restricted to zenith viewing, we are unable to see the horizontal
extent of the MIL. Likewise, we are restricted to nighttime measurements and are unable
to measure a particular MIL continuously over the course of several days. In the context
of a lidar measurement, we distinguish between ‘very large gravity waves’ and MILs by
utilizing the mean potential energy per unit mass, Equation (9), in order to characterize
gravity wave activity, mean temperature deviations can be derived from potential energy
following the methods of Wilson et al. [39]:
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Ep =
1
2

g2

N2 (
T′

T
)2 (9)

In the definition of Equation (9), g is the gravitational acceleration, N is the Brunt–Väisälä
frequency given in Equation (10), and (T′/T) is the atmospheric variance:

N2(z) =
g(z)
T(z)

(
dT
dz

+
g(z)
Cp

)
(10)

The lidar temperature variance has been computed for each night of our study in the
altitude range between 30 km and 85 km. We then calculate a potential energy profile from
the mean lidar temperature profile, applying the median and the interquartile range to
determine a robust estimator of the Ep variance. We can then compare our nightly average
Ep profile to the climatology of potential energy due to the gravity waves observed above
the OHP [40]. As a rough estimate for the reader, the climatological Ep at the OHP is
around 10 J. kg−1 at 50 km, increasing up to 100 J.kg−1 at 75 km.

In the OHP gravity wave potential energy climatology presented by Mzé et al. [40], the
standard temperature deviations at 50 and 75 km are 1.6 and 4 K, respectively. We assume
that these fluctuations represent “average gravity wave activity” at OHP. The phenomena
we consider to be MILs are much larger in amplitude than even very large gravity waves.
We have constructed an altitude dependent cut-off between GWs and MILs based on 2σ.
Explicitly, lidar temperature anomalies with amplitudes below 3.2 K at 50 km and 8 K at
75 km are considered as GWs.

As an example of how these selection criteria are applied, Table 1 and Figure 3 shows a
list of all parameters determined for the lidar profile from the 4 January 2000. Our algorithm
determined five layers in the temperature profile. The first two layers with zmin larger
than 57.40 and 62.02 km pass the temperature significance test and have temperature
anomalies exceeding the measurement uncertainty. However, the layer at 57.40 km does
not exceed our 2σ potential energy threshold and could be a gravity wave. The second
layer at 62.02 km passes both criteria and is labeled as an “MIL” with a large red arrow in
Figure 3. The top three layers at zmin equal to 68.50, 71.15, and 74.89 all fail the measurement
uncertainty criterion.

5. Statistical Analysis of Temperature Inversion Layers

This study has used 4366 OHP nightly Rayleigh lidar observations between 1978
and 2019 to detect MILs. This is a much more robust dataset than has been used in any
previous studies of MILs using lidar. Following the MIL detection criteria described in
the previous section, 3194 significant inversion layers are detected, and 539 of those layers
satisfied the gravity wave Ep criteria in this study. The occurrence distributions of the MIL
amplitude, bottomside altitude, layer thickness, and temperature gradient were calculated
for each three-month period of summer, winter, spring, and autumn. Figure 4 represents
four groups of histograms of the distributions of the MIL’s values to compare seasonal
evolutions from 1978 to 2019.

In the first row of Figure 4, we can see that the peak amplitudes of the MILs during
winter have a broad, skewed distribution with a maximum near 66 to 70 km. In contrast,
the summer maximum is smaller, more narrow, and higher than in the winter, near 69 to
73 km. There does not appear to be a coherent distribution in spring and autumn, giving
the reader the visual impression that these periods seem to be transition periods between
winter and summer. The absolute number of MIL occurrences measured during the winter
months is greater than that measured during the other seasons (see also Figure 5).
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Figure 4. Histogram of the occurrence of MIL characteristics (amplitude, minimum altitude, thickness,
and gradient) by season.

In the second row of Figure 4, we can see that the amplitude of the temperature devia-
tion of the MIL also has the largest variability in the winter. Most MILs have amplitudes
less than 25 K, but a few can grow as large as 50 K. The spring, summer, and autumn show
very similar distributions and are notably different from the winter.

In the third row of Figure 4, we can see that the thickness of the MIL follows the same
winter vs. spring–summer–autumn pattern as for the MIL amplitude. Most MILs are thin
structures having average vertical extents of 2.5 km; however, some extreme winter layers
have a thickness of 8 to 10 km.

In the fourth row of Figure 4, we can see that the gradient of the MIL also follows the
same pattern as the previous two MIL variables. If we assume that a typical mesospheric
temperature lapse rate might be around 3 K/km, then we can see that summer and spring
might have broad normal distributions about the environmental lapse rate. However, it
appears that autumn and winter have skewed distributions indicating that complex energy
dissipation is happening in these layers.

We can compare our results to a similar study based on 119 nights of Rayleigh lidar ob-
servations over an equatorial site from March 1998 to February 2000, Siva Kumar et al. [36].
They showed that the peak occurrence altitudes were between 73 and 79 km (n.b., these
authors defined the altitude of the maximum temperature deviation instead of the altitude
of the bottomside of the layer, as has been performed in this study). Adjusted for an average
MIL thickness of 3–4 km, this result agrees well with our winter results. These authors
found the temperature amplitude of the MILs ranged between 12 and 32 K, which again
agrees with our winter results.
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Figure 5. Observation of MIL’s groups from 1978 to 2019 based on k-mean clustering. There are three
main groups. The first group is shown by blue dots, while groups 2 and 3 are shown by orange and
yellow, respectively.

The inversion frequency is defined as the fraction of the total number of temperature
profiles in the month exhibiting one or more inversions. Considering the whole lidar
dataset of observations, the frequency of MIL occurrence in winter months (DJF) is much
higher than in other seasons.

According to Table 2, the highest MIL detection ratio is observed during the winter months
of December, January, and February (19.07%, 29.18%, and 18.71%, respectively). In contrast, the
minimum occurs in the late spring and early summer months of April, May, and June (4.33%,
6.25%, and 6.13%, respectively). March as well as late summer and autumn appear more
transitional, having neither maxima nor minima.

Table 2. Distribution of MIL measurements by month, 1978–2019.

Month Season Number of
MILs

Number of
Lidar Observation

MIL Detection
Ratio (%)

Seasonal MIL
Detection Ratio (%)

December 74 388 19.07
January Winter 122 418 29.18 49.9072
February 73 390 18.71

March 45 405 11.11
April Spring 14 323 4.33 14.1002
May 17 272 6.25

June 20 326 6.13
July Summer 32 377 8.48 15.2134
August 30 345 8.69

September 28 391 7.16
October Autumn 45 353 12.74 20.7792
November 39 378 10.31

This annual wintertime maximum agrees with one of the proposed mechanisms of
occurrence of the MILs involving the breaking of gravity waves to sustain the MIL [2]. The
lidar and satellite observations reported by Leblanc and Hauchecorne [5] also showed that
the frequency of occurrence of MILs follows an annual cycle, with a maximum during the
winter months at mid-latitudes and a semi-annual cycle with maxima during the equinoxes
at low latitudes. Note that this could also be important earlier in this section, where we
compared the distribution of our MIL parameters to those measured by the Gadanki lidar
at equatorial latitudes [36].
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6. K-Mean Clustering Analyses Applied to MILs

In the previous section, we have seen the broad and sometimes skewed distribution
of and seasonal variation in the MIL characteristics. We know from Section 1 that there
are several mechanisms proposed for the creation of MILs. Directly linking complex, non-
linear, gravity-wave-dissipating phenomena measured by single site Rayleigh lidar systems
directly to other quantities such as wave flux is a daunting prospect. Further complications
arise, for example, that we do not have simultaneous measurements of the winds and the
temperatures and that we cannot work out intrinsic gravity wave parameters or energy
dissipation directly.

Given these observational constraints, we wanted to try a different approach and use a
clustering technique on this MIL climatology to test the concept of sorting MIL observations
into self-similar categories. In this trial study, we will start with a simple K-mean clustering
technique, and we will choose k = 3. In the future, we might try a more complex technique
with more dynamic variable selection.

Clustering is a descriptive technique[41] when different populations are suspected;
therefore, in this study, the k-means clustering method was used for more detailed MIL
characteristics analysis to obtain a 3D model of MIL classifications. Cases in the same
cluster are similar with respect to the information, cluster analysis was based on variables
inducing the dissimilarities. According to the k-means clustering definition, assigning n
MIL observations to one of the k clusters is defined by centroids, where k is chosen before
the algorithm starts. Then, the point-to-cluster-centroid distances of all observations to each
centroid was computed. We should note that to determine distances, the squared Euclidean
distance metric has been used. To proceed, an observation was selected uniformly at
random from the data set X (main MILs parameters: amplitude, thickness, and minima
altitude). The chosen observation is the first centroid and is denoted c1. The next step
is computing distances from each observation to c1. The Distance between cj and the
observation m was considering as d(xm, cj). The next centroid is selected by c2 at random
from X with the probability of P:

P =
d2(xm, c1)

∑n
j=1 d2(xj, c1)

(11)

To choose center j, at first, the distances from each observation to each centroid are
computed, and each observation is assigned to its closest centroid. Thus, for m = 1, . . . , n
and p = 1, . . . , j−1, a centroid j is selected at random from X with probability:

P =
d2(xm, cp)

∑h;xh∈cp d2(xh, cp)
(12)

where Cp is the set of all observations closest to centroid Cp, and xm belongs to Cp. It means
each subsequent center is selected with a probability proportional to the distance from itself
to the closest center that is already chosen. Therefore, this step is repeated until k centroids
are chosen.

The present study analysis for 42 years of MIL observations, by using the clustering
results, tried to classify the characteristics responsible for MIL. In the following, the clus-
tering results reveal three significant MIL groups (Figure 5). The first group with denser
data is determined by characteristics such as the minimum height with a maximum peak at
65 km, with a mean amplitude of 9 K, and a thickness between 1 and 6 km with a mean
of 3 km (Lower MILs). The second group, minor upper MILs, is located in the middle
height range (63–84 km) and has a greater amplitude range in comparison with group 1,
from 2 K to 26 K. In addition, the thickness range is larger by 2 to 9 km. Group 3, with
more scattered data than the previous two groups, is located in the same altitude range in
comparison to group 2, but amplitude is larger than two previous groups (27–60 K) called
major upper MILs. The different clusters show significant differences in their amplitude.
The first cluster is significantly lower in altitude than the two others. However, similar
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thicknesses between Groups 2 and 3 are observed, with slightly thicker MILs than group
1. The seasonal behavior of the MIL occurrence shows a full annual cycle for the three
categories, with a maximum in winter and a minimum in summer by a factor of 6. Based
on the results of each MIL’s group characteristics that are classified in Table 3, an average of
10.9 K amplitude with 3.1 km thicknesses for Lower MILs calculated in the mean minimum
altitude at 57.5 km can be mentioned. However, the mean range values of amplitude for
the major upper MIL (27.5 K) are very different from the lower MIL (10.9 K) and the minor
upper MILs (10.3 K) values. The overall thickness of major upper MIL and minor upper
MIL appears somewhat is evident at first glance that the thickness of major upper MIL
(4.5 K) is significantly greater than the other two layers.

Figure 6 represents the annual evolution of mesospheric inversion layers, showing
decadal oscillations. We see local maxima in MIL occurrence in 1981–1983 and 1990–1991
and potentially a minor maxima from 2000–2003 and 2016 to 2019. We speculate that there
may be some phase-shifted connection to the solar cycle. The maximum of solar cycle
21 spanned 1976–1979, cycle 22 spanned 1986–1989, cycle 23 spanned 1996-2001, and cycle
24 spanned 2008 to 2014. Previous work [42,43] has well established the connection between
mesospheric temperatures and the solar cycle. Going forward, it would be interesting to
know the potential role of the solar cycle in the observed fluctuation in MIL.

Figure 6. Annual histogram of the MIL occurrence frequency from 1978 to 2019.

Table 3. Average values of MIL characteristics separately for each cluster group, 1978–2019.

MIL Amplitude (K) MIL min Altitude (km) MIL Thickness (km)

Mean Std Mean Std Mean Std

Lower MIL 10.9 4.1 57.6 4.1 3.1 1.4
Minor upper MIL 10.3 3.6 68.6 2.5 3.0 1.0
Major upper MIL 27.5 8.1 65.7 3.4 4.5 1.8

As an alternative hypothesis, the increase in the number of MIL observations in recent
years could be only related to the improved quality of the Rayleigh lidar devices over the
years. The variations in the quality of observational sampling of MILs could dominate the
time series. Further work is required to investigate this problem.

Figure 7 represents the histograms of the MIL frequency (the percentage of times the
MILs occurred) for each cluster from 1978 to 2019 by month. Two skewed distributions
to the right and left indicate an annual cycle, with most MILs occurring in November,
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December, January, and February. Note that values greater than 100 account for the
detection of multiple MILs during a night, often observed as the ‘double MIL structure’
reported by Meriwether and Gardner [6].

Figure 7. Histogram of the MIL frequency (the percentage of times the MILs occurred) for each
cluster from 1978 to 2019.

The major upper MILs have a minimum share in monthly distribution, while its maxi-
mum is for the lower MIL layer. It is important to mention that the minimum distribution
for the lower MIL layer was recorded in July, and no distribution was recorded in June
for the significant upper MIL layer. Moreover, the minor upper MIL layer has an almost
uniform distribution throughout all months except in June and August. Generally, the dis-
tribution of MIL layers has been decreased from April to September. In this work, we have
tried a new technique for the classification of MILs. We would like to raise the possibility
of using this classification scheme to connect the formation of MILs having different sets of
characteristics (i.e., winter, high altitude, thin) to various proposed theoretical mechanisms.
In a future work, it would also be interesting to correlate these MIL clusters to other well
studied phenomena such as:

• PW breaking, GW breaking and turbulent mixing, and/or GW–tidal interactions that
focus GW breaking [7,44–46];

• Tropopause and polar-summer mesopause climatological inversions [47,48];
• Reactions to large-amplitude GWs that induce strong wind shears and huge fluctu-

ations in local static stability, as evidenced in stratospheric temperature and wind
profiles and MLT [49,50];

• Multiscale dynamics that produce “sheet and layer” structures are easily observable
from the surface into the MLT due to wave–wave and wave–mean-flow interactions,
instabilities, and turbulence accompanying superposed GWs [51–53].

7. Discussion

In this study, we are making a qualitative assessment of mesospheric anomalies that
can be associated with mesospheric inversion layer, large anomalies that persist several
hours to few days. While three main dynamic phenomena [6] have been proposed to
explain these large temperature deviations, there is a question about the attribution of their
respective origin. Previous observations suggest that there is a continuum in the altitude
of these dynamical anomalies. The statistical analysis of the large anomalies occurring in
the mesosphere suggests that these features can be grouped into three classes, yielding
multiple regions of strong positive temperature lapse rate on various spatial and temporal
scales. The statistical analysis of the large anomalies occurring in the mesosphere above
the Observatory of Haute-Provence, as seen by systematic lidar sounding for four decades,
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suggests that these features can be grouped into three classes. The temperature deviations
considered have been separated from smaller anomalies associated either to measurement
noise or either to gravity waves. Considering only temperature vertical characteristics, the
differentiation between various anomalies with significant positive lapse rates can be found
in the altitude of occurrence and their amplitude while the value of the derived temperature
positive gradient appears not to be a determinant factor between the different MILs. The
seasonal climatology of the MIL occurrence is similar to previous studies and is somehow
similar for the different MIL classes. This is not a surprising result, while all the dynamical
processes that may be involved in the MIL generation all exhibit a strong seasonal cycle.
Whatever the initial cause of MIL generation, either tides, gravity waves, or planetary
waves, the dissipation of the gravity waves could maintain a quite stable temperature
inversion as the breaking of waves occurs preferably inside and above the inversion layer
[2]. Salby et al. [7] seems to indicate that planetary waves could induce MIL. This effect
can occur preferably in the lower mesosphere, where the largest anomalies associated
with stratospheric warming are observed. These MILs could be associated with the class
named Lower MIL. The numerical simulations France et al. [46] have confirmed the role
of planetary waves, with, however, a regional response. Tides are the largest in the upper
mesosphere. However, Leblanc et al. [54] shows that MILs above California associated with
tides occur in the bottom altitude range around 60–65 km but with a very large amplitude.
This can be probably associated with the Class 3, named Major upper MILs. Gravity wave
breaking occurs above 60 km [40], and then the pure gravity-wave-induced MILs may be
associated with the second class called Minor Upper MILs. Thanks to the four decades
of measurements above the OHP, the time evolution of the MIL occurrence have been
estimated. While all MILs do not reveal any trends that can be associated with any climate
change, their evolution has been analyzed according to their classification (Figure 5). A
similar behavior can be noted for the lower MIL compare to the global ones. The minor
upper MILs reveal a positive trend, while their increase is not significant, as it is mainly
observed after 2016. The major upper MILs category shows a nearly constant occurrence,
showing that lidar detection is not biased by the detection capability of the lidar that has
known some changes since the beginning of the series [23,24].

8. Conclusions

The characteristics of mesospheric inversion layers in the high stratosphere and meso-
sphere over OHP are the focus of this research. Seasonal trends and variability were studied
using the OHP dataset over a lengthy period of time, from 1978 to 2019. In the high strato-
sphere and lower mesosphere, we confirmed an annual cycle, with a maximum in winter
and a minimum in summer. The lidar observations showed night-to-night fluctuations, as
well as inter-annual variability in the mesospheric inversion layers. Based on 42 years of
Rayleigh lidar data in the middle atmosphere (30–85 km), we also generated mesospheric
inversion layer climatology. In addition, the reasons for different classifications of MILs,
as well as diverse dynamics that result in the formation of mesosphere inversion layers,
were attempted to be clarified (MILs). Finally, we analyzed the seasonal variations in the
mesospheric inversion layer activity that observed the dissipation of gravity waves in all
seasons. The long-term changes appear to be more difficult to be interpreted either the
total MIL occurrence or derived according to the classes, showing at least above OHP that
there is no climate evidence associated with MIL occurrence suggesting also no significa-
tive climate effect on gravity wave interaction with the mean flow. Attribution of MIL
categories to formation processes is not obvious. Analyses with global data with frequent
observations will be required using a satellite constellation, for example, [55]. Another
alternative is to use much more measured parameters to clarify the processes involved,
and the combined analyses of temperature and wind could be also a good indicator of the
spatial MIL extensions and then the related processes of either tides, gravity waves, or
planetary waves.
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