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Abstract: Although carbonyl compounds are a key species with atmospheric oxidation capacity, their
concentrations and sources have not been sufficiently characterized in various atmospheres, especially
in desert areas. In this study, atmospheric carbonyl compounds were measured from 16 May to
15 June 2018 in Tazhong in the central Taklimakan Desert, Xinjiang Uygur Autonomous Region,
China. Concentrations, chemical compositions, and sources of carbonyl compounds were investigated
and compared with those of different environments worldwide. The average concentration of total
carbonyls during the sampling period was 11.79 ± 4.03 ppbv. Formaldehyde, acetaldehyde, and
acetone were the most abundant carbonyls, with average concentrations of 6.08 ± 2.37, 1.68 ± 0.78,
and 2.52 ± 0.68 ppbv, respectively. Strong correlations between formaldehyde and other carbonyls
were found, indicating same or similar sources and sinks. A hybrid single-particle Lagrangian
integrated trajectory was used to analyze 72 h back trajectories. The values of C1/C2 (formaldehyde
to acetaldehyde, 3.22–4.59) and C2/C3 (acetaldehyde to propionaldehyde, 15.00–17.03) from different
directions and distances of the trajectories were consistent with the characteristics of a remote area.
Relative to various environments, the carbonyl concentration in the Tazhong desert site was lower
than that in urban areas and higher than that in suburban and remote areas, implying contributions
from local primary and secondary sources. The obtained data can be used to improve the source and
sink estimation of carbonyls at the regional scale.

Keywords: atmospheric carbonyls; Taklimakan Desert; composition; source analysis

1. Introduction

Carbonyl compounds exist widely in ambient air and play an important role in atmo-
spheric photochemical reactions. The photolysis of most carbonyls generates many free
radicals [1,2], which makes carbonyls important precursors of near-surface ozone and inter-
mediate products in secondary organic aerosol (SOA) formation [3,4]. Additionally, many
carbonyl compounds have been proven to have adverse health effects [5]. Formaldehyde
and acetaldehyde are inherently toxic and have been listed as dangerous carcinogens by
the World Health Organization and the United States Environmental Protection Agency
(US EPA), and acetone has critical effects on the blood and kidneys [6].
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In recent years, carbonyls have received much attention. Carbonyls are derived
from a variety of sources, including anthropogenic (e.g., vehicles and industry) and bio-
genic emissions (e.g., vegetation) [3,7–9]. Secondary production via hydrocarbon oxida-
tion also plays a significant role in carbonyl formation [10,11]. Carbonyls are the ma-
jor sources of OH, HO2, RO, and RO2 radicals, which affect the atmospheric oxidation
capacity [3,12–14]. Formaldehyde, acetaldehyde, and acetone are the three most abundant
compounds, sometimes accounting for more than 70% [3,15,16].

For carbonyls’ sampling and analysis, the typically used method is the EPA method
TO-11A. Because of the instability of carbonyls, DNPH cartridge sampling and HPLC
analysis are required. So, most carbonyl compound studies have been performed in
large cities, with fewer focusing on rural or suburban areas or mountain, marine, or polar
environments [17–19]. In particular, there has been little research on desert areas. A previous
study of desert areas focused on alkanes, alkenes, and aromatics, rather than carbonyls [20].
Desert areas have few anthropogenic emission sources and sparse vegetation coverage, but
with sufficient solar radiation, making them a unique environment. Carbonyls might have
various formation mechanisms and characteristics, and impacts on the local atmosphere.

The Taklimakan Desert in the Xinjiang Uygur Autonomous Region of China is the
world’s second-largest shifting sand desert. The area of this desert is approximately
340,000 km2 and has important environmental effects on the Tibetan Plateau and eastern
Asia [21,22]. In this study, air samples were collected in the central region of the Taklimakan
Desert, and their carbonyl compounds were analyzed to understand the ambient level,
composition, and sources of carbonyl compounds in that environment. Based on previous
research, the carbonyl concentration and species’ ratio in this study were compared with
those in various atmospheres. Adding data from a desert environment to existing knowl-
edge and exploring their similarities and differences would help to guide future research
and to better understand carbonyl pollution.

2. Materials and Methods
2.1. Sampling Site

Samples were collected in Tazhong (38.97◦ N, 83.66◦ E; Figure 1), which is located in
the center of the Taklimakan Desert in the Xinjiang Uygur Autonomous Region, western
China. There was extremely low vegetation coverage and a human settlement (less than
1.5 km2) around the sampling site, with a road 1 km to the northeast. Oil wells and
pumping machines are distributed across the region. Due to its continental climate, diurnal
temperature variation is wide, and annual precipitation is extremely low, with an average
precipitation of 26 mm in the center of the desert [23]. Due to the extremely arid climate,
there was a sparse coverage of desert plants, such as Tamarix ramosissima and Populus
euphratica, around the sampling site and on both sides of the road.
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2.2. Sampling and Analysis

The carbonyl sampling and analysis were based on the EPA method TO-11A [24–26].
Air samples were collected at a local automated meteorological station from 16 May to
15 June 2018. Sampler was placed in the laboratory. The sampling tube extended out of the
window with a filter in the inlet of the tube to avoid particle interference. The sampling
height was about 1.5 m above the ground. Sampling was conducted with a multichannel
automatic sampler with four channels, each connected to a 2,4-dinitrophenylhydrazine
(DNPH) cartridge (Inertsep Mini Aero DNPH 300 MG, Shimadzu Corporation, Kyoto,
Japan). The inlet and outlet of each channel were equipped with two program-controlled
electromagnetic valves. Sampling was conducted in four channels in succession. Each
channel corresponded to a sampling time period. The DNPH cartridges were sealed after
sampling and stored in a refrigerator before being analyzed. KI columns (Tianjin Agela
Technology Co., Ltd., Tianjin, China) were used to eliminate ozone interference. When
relative humidity in the ambient air was high, KI changed to yellow after absorbing a
certain amount of water. If this happened, KI column was changed immediately.

The sampling flow rate was approximately 1.5 L/min, and real-time measurement
was performed with a digital flowmeter. Sampling was performed in four periods of the
day: 9:00–13:00, 13:00–17:00, 17:00–21:00, and 21:00 to 9:00 the next day (local time was
UTC+06:00, as it was for times mentioned later). Four samples were obtained every 24 h,
and a total of 119 samples were collected. Two DNPH cartridges were connected in series to
collect and evaluate the breakthrough every 3 d. The samples were stored in a refrigerator
below 4 ◦C until analysis, which met the requirement of EPA TO-11A.

Eighteen carbonyls were selected as target species. Fifteen of the carbonyls are listed
in EPA method TO-11A: formaldehyde, acetaldehyde, acrolein, acetone, propionalde-
hyde, crotonaldehyde, butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-
tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexaldehyde, and 2,5-dimethylbenzaldehyde.
Additionally, methacrolein and two dialdehydes (glyoxal and methylglyoxal) were stud-
ied [25,26].

The hydrazone derivatives in the DNPH cartridges were eluted with 5 mL acetoni-
trile (ACN) (HPLC grade, Fisher, USA). Part of the solution was transferred to a 1.5 mL
brown analytical flask. Then, a 20 µL sample was extracted by an automatic sampler and
injected into a high-performance liquid chromatography (LC-20AD, Shimadzu, Kyoto,
Japan)/ultraviolet (SPD-20A, Shimadzu, Kyoto, Japan)/mass spectrometry (MS) API3200
(AB Sciex Company, Framingham, MA, USA) system. The mobile phase of HPLC com-
prised two eluent: acetonitrile (HPLC grade, Fisher, Hampton, NH, USA) and deionized
water (Watsons, Beijing, China). The total flow rate was constant and was 1.0 mL/min.
The gradient program was as follows: (1) 0–20 min 60% acetonitrile and 40% water, (2)
20–30 min from 60% to 100% acetonitrile and 40% to 0% water, (3) 30–32 min from 100% to
60% acetonitrile and 0% to 40% water, (4) 32–40 min 60% acetonitrile and 40% water.

The carbonyls listed in TO-11A and the methacrolein were detected by a 360 nm
UV detector at 40 ◦C in a column oven, and the others were detected by an MS detector.
The qualitative and quantitative analyses of the carbonyls were based on their retention
times and peak areas. The mass concentrations of carbonyls were obtained by AB SCIEX
software [25,26]. Besides acrolein, the other seventeen carbonyls were detected in this study.

Meteorological data obtained from the automated weather station at the sampling site
included temperature, relative humidity, wind direction, and wind speed.

2.3. Quality Assurance and Quality Control

The standard materials were as follows [24,26]: TO-11A standard solution (Supelco,
Bellefonte, PA, USA), methacrolein DNPH standard (Supelco, Bellefonte, PA, USA), 40% gly-
oxal in water (analytical grade, Sigma-Aldrich Company, Burlington, MA, USA), and 40%
methylglyoxal aqueous solution (analytical grade, Sigma-Aldrich Company, Burlington,
MA, USA). Blank cartridges from each batch were tested before sampling. The derivative
standard curves of 18 carbonyl compounds were positively correlated (R2 = 0.9968–1.0000).
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Cartridge collection efficiency was calculated as over 97.8%, and it was demonstrated that
one 5 mL extraction was enough to recover all carbonyls completely by double-extraction
testing. The method detection limits were 0.006–0.045 ppbv for the 18 carbonyls with a
360 L sampling volume [25,26]. The field blank was usually the same order of magnitude
as the laboratory blank, indicating no contamination. For all identified carbonyls, the
relative standard deviation of each calibration standard measurement value was <7.9%. For
each sample, the HPLC chromatogram was calibrated to ensure the accuracy of different
carbonyl identifications.

3. Results and Discussion
3.1. Carbonyl Concentrations and Compositions

Figure 2 shows the general meteorological conditions and total concentrations of
carbonyls observed during the sampling period. The sampling site’s average temperature
and relative humidity were 22.9 ± 7.4 ◦C and 26.6 ± 17.8%, respectively. The dominant
wind direction was northeast. The average wind speed was 3.5 ± 2.2 m/s.
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Figure 2. Time series of averaged data for (a) wind speed and direction (every 3 h), (b) temperature
and relative humidity (every 3 h), and (c) total carbonyl concentration during the sampling period
(every 4 h from 9:00−21:00, and 12 h from 21:00−9:00 the next day).

The average concentrations (±standard deviation) of those carbonyls measured at
four time periods are summarized in Table 1. The average concentration of total car-
bonyls during the sampling period was 11.79 ± 4.03 ppbv, ranging from 3.70 to 26.44 ppbv.
The three most abundant carbonyls were formaldehyde (6.08 ± 2.37 ppbv), acetaldehyde
(1.68 ± 0.78 ppbv), and acetone (2.52 ± 0.68 ppbv), which accounted for 51.6%, 14.2%,
and 21.4%, respectively, of the average total carbonyl concentration. Those three com-
pounds as major components are similar to those in studies of urban areas [18,27,28] and
other rural areas [17,19,29,30]. However, the total percentage of those three components
(87.2%) was higher than that found in previous studies [17,19]. The other individual car-
bonyl concentrations were <1 ppbv and accounted for only 12.8% of the average total
carbonyl‘concentration.
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Table 1. Average ± SDs of carbonyl concentrations in each time period in Tazhong (units: ppbv).

Carbonyl 9:00–13:00 * 13:00–17:00 * 17:00–21:00 * 21:00–9:00 * Mean

Formaldehyde 5.96 ± 2.96 5.55 ± 1.64 5.25 ± 1.9 6.57 ± 2.67 6.08 ± 2.37
Acetaldehyde 1.42 ± 0.64 1.54 ± 0.53 1.16 ± 0.45 1.98 ± 1.12 1.68 ± 0.78

Acetone 2.51 ± 0.81 2.72 ± 0.56 2.43 ± 0.43 2.50 ± 0.84 2.52 ± 0.68
Propionaldehyde 0.08 ± 0.05 0.10 ± 0.03 0.07 ± 0.03 0.12 ± 0.09 0.10 ± 0.06
Crotonaldehyde 0.01 ± 0.02 0.01 ± 0.03 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.02
Butyraldehyde 0.28 ± 0.13 0.28 ± 0.09 0.24 ± 0.10 0.39 ± 0.21 0.33 ± 0.15
Benzaldehyde 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.02 0.05 ± 0.03 0.05 ± 0.03

i-Valeraldehyde 0.02 ± 0.02 0.03 ± 0.04 0.02 ± 0.02 0.04 ± 0.04 0.03 ± 0.03
n-Valeraldehyde 0.05 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.03 ± 0.01 0.04 ± 0.02
o-Tolualdehyde 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
m-Tolualdehyde 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.01 0.02 ± 0.01
p-Tolualdehyde 0.08 ± 0.09 0.07 ± 0.07 0.05 ± 0.05 0.11 ± 0.12 0.09 ± 0.09

Hexaldehyde 0.08 ± 0.05 0.09 ± 0.04 0.07 ± 0.03 0.13 ± 0.09 0.10 ± 0.06
2,5-Dimethyl-benzaldehyde 0.02 ± 0.03 0.01 ± 0.02 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03

Methacrolein 0.06 ± 0.06 0.05 ± 0.03 0.05 ± 0.04 0.10 ± 0.08 0.08 ± 0.06
Glyoxal 0.25 ± 0.20 0.20 ± 0.16 0.14 ± 0.10 0.22 ± 0.10 0.21 ± 0.15

Methylglyoxal 0.48 ± 0.31 0.49 ± 0.28 0.30 ± 0.17 0.41 ± 0.14 0.42 ± 0.25
Total 11.39 ± 4.81 11.27 ± 2.80 9.95 ± 2.96 12.7 ± 4.83 11.79 ± 4.03

* Note: Time is local time (UTC+06:00).

It was also found that two dicarbonyls, glyoxal and methylglyoxal, had relatively
high concentrations of 0.21 ± 0.15 ppbv and 0.42 ± 0.25 ppbv, respectively. Glyoxal
and methylglyoxal are important precursors of SOAs due to their strong reactivity [4,31].
Relative to those of other studies, the concentrations of those two dicarbonyls in Tazhong
were lower than those of glyoxal (0.30 to 0.69 ppbv) and methylglyoxal (0.90 to 1.39 ppbv)
recorded in summer in an urban area [11]. However, they were higher than those of glyoxal
(0.02 to 0.08 ppbv) and methylglyoxal (0.03 to 0.09 ppbv) recorded in summer in suburban
and forest areas [32,33].

There were no marked diurnal variations for the carbonyls. The total concentration
difference between day and night was 16%. Higher average concentrations of total car-
bonyls and some individual carbonyl compounds, such as formaldehyde, acetaldehyde,
propionaldehyde, glyoxal, and methylglyoxal, were recorded in the period of 21:00 to
9:00 the next day, whereas lower average concentrations were recorded in the period
of 17:00−21:00. At the sampling site, sunrise, noon, and sunset occurred at 6:25−6:45,
14:06−14:10, and 21:30−21:50, respectively, during the sampling period. Thus, the sam-
pling period from 21:00 to 9:00 the next day can represent nighttime. So, the total carbonyl
concentration peaked in the nighttime instead of at noon. That was different from the noon
peaks reported in cities, such as Orléans and Beijing, and oil fields, such as the Dongy-
ing oil field [18,34,35], where carbonyl concentrations were strongly elevated by the local
photo-oxidation of relatively high concentrations of hydrocarbon precursors. That suggests
that local secondary formation might not have been the dominant source of carbonyls in
the test area. The boundary layer descent at night could have also caused the accumulation
of carbonyls. Note that the relatively low temporal resolution used might have obscured
some diurnal variations.

3.2. Sources of Carbonyls
3.2.1. Pearson Correlation

Pearson correlations (version 22.0, SPSS, Almonc, USA) were used to investigate the
relationships among concentrations of carbonyl species (Table S1). Strong correlations
(0.55**, Pearson correlation, 0.01 level) were found between formaldehyde and other car-
bonyls, such as acetaldehyde, acetone, propionaldehyde, butyraldehyde, benzaldehyde,
p-tolualdehyde, hexaldehyde, and methacrolein. Significant positive correlations (0.57**,
Pearson correlation, 0.01 level) were also observed between glyoxal and methylglyoxal.
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This suggests that most major carbonyls had the same or similar sources and sinks. Glyoxal
was used as an indicator to estimate secondary formaldehyde concentrations because it
does not react with NO and has sink reactions similar to those of formaldehyde [36]. Gly-
oxal had a weak correlation (0.35**, Pearson correlation, 0.01 level) with formaldehyde over
the sampling period, indicating the existence of secondary carbonyl formation. Acetone
has a relatively long lifetime (53 days with • OH reaction, approximately 60 days by photol-
ysis) [37] and is considered one of the potential precursors of methylglyoxal [38–41]. In this
study, the mean daily concentration of ketone was five times higher than that of methylgly-
oxal, and there was a significant positive correlation between acetone and methylglyoxal
(0.62**, Pearson correlation, 0.01 level). Those also confirmed that the secondary formation
played an important role in methylglyoxal formation. For meteorological factors, there
were weak correlations between some carbonyl concentrations and meteorological factors.
This suggests that meteorological conditions may have some effect on carbonyl formation,
but a minimal one.

3.2.2. Back Trajectory Analysis

To better understand the sources of carbonyls, the back trajectories of air masses were
calculated (as shown in Figure 3). Trajectories were computed by hybrid single-particle
Lagrangian integrated trajectory (HYSPLIT) software (v 5.0). Each trajectory was calculated
every 1 h for 72 h (24 trajectories per d). Based on the dominant directions and distances of
the trajectories, the sampling period was divided into nine episodes (E1–E9) and was then
classified into three types. The time series and chemical constituents of the carbonyls are
shown in Figure 4 and Table S2.
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Figure 3. Back trajectories of air masses arriving in Tazhong at an elevation of 200 m during the nine
episodic events. The 72 h of back trajectories were calculated, with a new trajectory starting every 1 h.
See Table S2 for the start and end times of each episode. Red triangles = cities; red star = Tazhong,
with city names shown in the Episode 1 chart.
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Corresponding with the paths of air masses, the carbonyl concentrations of each type
showed different characteristics. Type 1 contained E1, E3, E5, and E7, the air masses
with medium-distance transport. Those air masses were derived from multiple cities (in-
cluding the provincial capital Urumqi, Kelamayl, Turpan, Kurla, Illi, and Aksu) with
a relatively low wind speed (3.31 m/s). The hourly mean concentrations of HCHO
(6.00 ± 2.66 ppbv) and total carbonyls (11.97 ± 4.86) were in the middle level among
the three types. When those air masses passed over large cities, they carried highly polluted
air masses, so high concentrations were observed in those periods. Type 2 comprised E2,
E4, and E6, the air masses with long-distance transport. Those air masses were from Kaza-
khstan or Kyrgyzstan and brought clean air masses and better diffusion conditions with a
wind speed of 3.60 m/s. In those cases, most carbonyl compounds and total concentrations
were relatively low. The hourly mean concentrations of HCHO and total carbonyls were
5.69 ± 2.25 ppbv and 11.07 ± 3.84 ppbv, respectively. Type 3 comprised E8 and E9, the air
masses with short-range transport distances. Those masses were more affected by local air
masses than those of other episodes, with the highest HCHO (7.04 ± 2.17 ppbv) and total
carbonyl (12.59 ± 3.58 ppbv) concentrations. The air masses hovered over the area and
passed through the nearby cities, such as Kurla and Kashgra for E8 and Hotan and Aksu
for E9. Those short-distance transports led to an accumulation of pollutants. For acetone,
the average concentration was similar in each type and was from 2.29 ± 0.69 ppbv to
2.64 ± 0.77 ppbv. Acetone has a relatively long life, as previously stated. During the 72 h of
transport, chemical formation and consumption occurred simultaneously, and the acetone
showed a similar concentration in each episode. The values of C1/C2 (formaldehyde to
acetaldehyde, 3.22–4.59) and C2/C3 (acetaldehyde to propionaldehyde, 15.00–17.03) were
consistent with the characteristics of a remote area [32,42].

Additionally, the temperature gradually increased from spring (May) to summer
(June). As photochemical reaction products, the concentrations of carbonyls increased
too, especially HCHO. From E1 to E3, the sum of carbonyls (9.71 ± 3.37 ppbv on average)
was lower than that in the following episode, which was in accord with the lower tem-
perature (20.74 ◦C). Formaldehyde maintained similar percentages and never exceeded
50%. In E4, the concentration of formaldehyde increased by approximately 9% compared
to E3. In E5, the highest total carbonyl concentration (18.49 ± 5.61 ppbv) was obtained,
accompanied with the low relative humidity (15.75%) and the second-highest temperature
(27.06 ◦C). Although the proportion of formaldehyde fluctuated in subsequent episodes, a
high formaldehyde content was maintained at >53% in E4−E7. Then, the formaldehyde
proportion increased to 56% in E8 and E9.

3.3. Comparison with Carbonyls in Various Environments

Based on research in China and other countries, the carbonyl concentration and
the proportion of the three most abundant carbonyls (formaldehyde, acetaldehyde, and
acetone) in the Tazhong desert were compared with those in various atmospheres, as
shown in Figures 5 and 6. The data were from 35 urban, 7 suburban, 2 plateau, 3 ocean,



Atmosphere 2022, 13, 761 8 of 14

6 forest, 2 mountain, 3 arctic, 3 desert, and 1 oil field area. Note that, due to the limited
number of studies, the sampling season of each site is not all consistent. The sampling
time and other detailed information are shown in Table S3. Among the data collected,
the average concentrations of formaldehyde, acetaldehyde, and acetone in the various
environments were 6.16 ± 6.18, 2.90 ± 2.66, and 3.13 ± 3.31 ppbv, respectively, worldwide.
The highest concentrations of formaldehyde, acetaldehyde, and acetone were found in
the oil field. Carbonyl concentrations in Tazhong were higher than those of most remote
areas, which could have been the influence of oil exploitation around the sampling site.
Previous studies [43–46] found VOCs emitted from oil exploitation region were mainly
composed of alkanes, alkenes, and aromatic hydrocarbons, and played an important role
in photochemical reactions. So, carbonyls produced by photochemical reaction might
be an important source in this study and presented a higher concentration than in some
remote areas.

As shown in Figure 6a, the formaldehyde proportion in Tazhong (52%) was higher
than that in other sites (<50% at most sites), except in some urban cities. The acetaldehyde
ratio in Tazhong (14%) was quite low and was only higher than that of forest areas (12% on
average). The acetone ratio (21%) was also relatively low and was only higher than that of
urban areas (20% on average). As shown in Figure 6b, several cities in China, such as Hong
Kong and Hangzhou, had high formaldehyde ratios, indicating a more active oxidation
capacity of the atmosphere [47].

The C1/C2 ratio can effectively indicate the contribution of hydrocarbons emitted
by natural sources to carboxyl compounds in the atmosphere through photochemical
oxidation [40]. Because the photochemical oxidation of hydrocarbons emitted by natural
sources produces significantly more formaldehyde than acetaldehyde, C1/C2 ratios are
lower in urban areas than rural and remote areas [42]. C1/C2 ratios were reported to
vary from about 1–3 in urban areas [33,34,48–50] to 3–10 in rural and remote areas [32,42].
Additionally, the C2/C3 ratio is often used as an indicator of anthropogenic and natural
sources. It is generally believed that propionaldehyde in the atmosphere mainly comes
from anthropogenic sources, including direct emissions and oxidation of anthropogenic
precursors, while acetaldehyde has both anthropogenic and natural sources [42]. This
means that urban areas have lower C2/C3 ratios than rural and other remote areas.
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Figure 5. The average concentration of formaldehyde (a), acetaldehyde (b), and acetone (c) in various
environments. See Table S3 for detailed information.
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See Table S3 for detailed information.

The average C1/C2 ratios in different types of environments are 2.14 ± 1.34 (urban),
2.43 ± 0.64 (suburban), 1.29 ± 0.43 (plateau), 0.87 (ocean), 3.15 ± 2.19 (forest), 2.57 ± 0.25
(mountain), 5.56 (arctic), 3.74 (Tazhong desert), and 1.39 (oil field). The average C2/C3
values of different types of environments are 11.02 ± 8.63 (urban), 6.25 ± 1.44 (suburban),
5.73 (ocean), 5.90 ± 3.19 (forest), 9.46 ± 7.38 (arctic), 16.80 (Tazhong desert), and 8.50 (oil
field). See Table S3 for detailed information. In the Tazhong desert area, the C1/C2 and
C2/C3 ratios were both higher than the average urban level, which means that natural
sources are contributing more to Tazhong’s carbonyl concentrations than urban areas. It
can also be seen that the C1/C2 ratios of suburban, rural, plateau, forest, and other areas
do not all satisfy the ratio experience judgment, and the same is the case for C2/C3 ratios.
Therefore, although many studies use the species ratio method to explore the primary
sources of carbonyls, they provide only qualitative analysis, and there remains much
uncertainty in those ratio methods.

4. Conclusions

Ambient carbonyl compound samples were collected at Tazhong in the center of
the Taklamakan Desert from 16 May to 15 June 2018. The average concentration of to-
tal carbonyls was 11.79 ± 4.03 ppbv, ranging from 3.70 to 26.44 ppbv. Formaldehyde
(6.08 ± 2.37 ppbv), acetaldehyde (1.68 ± 0.78 ppbv), and acetone (2.52 ± 0.68 ppbv) were
the most abundant species, accounting for 87% of the total carbonyl compounds. Strong
correlations were found between formaldehyde and other carbonyls. Significant positive
correlations were also observed between glyoxal and methylglyoxal. Those suggest that
most of the carbonyls had the same or similar sources and sinks. Back trajectory analysis
showed that carbonyl concentration might vary depending on where the air mass has
passed. Weak positive correlations between carbonyl concentrations and meteorologi-
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cal factors indicated that meteorological conditions might have some effect on carbonyl
formation, but only minimal.

Based on carbonyl data from previous studies, including in urban, suburban, plateau,
ocean, forest, mountain, arctic, desert, and oil field areas, C1/C2 and C2/C3 ratios might
vary substantially within the same type of environment and do not satisfy the experienced
parameters. Relative to other environments, Tazhong’s total carbonyl levels (11.79 ± 4.03 ppbv)
were lower than the average of urban areas, but higher than most remote areas, suggesting
that local sources cannot be ignored.

Due to the limited sampling conditions at the center of the desert, this study was only
a preliminary study for carbonyls. More studies could be conducted in the future, including
the comprehensive monitoring of NMHCs, NOx, O3, and so forth. Relevant research will
benefit the knowledge of spatial and temporal distributions, sources, and carbonyl sinks in
desert areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13050761/s1, Table S1: Correlation coefficients between
carbonyls and meteorological factors in Tazhong in the summer of 2018; Table S2: The specific time
period corresponding to each episode; Table S3: Detailed data summary of field observation of
carbonyls related to areas or cities adopted in Figures 5 and 6. References [51–90] are cited in the
Supplementary Materials.
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