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Abstract: Drought is one of the major environmental stressors; drought is increasingly threatening
the living environment of mankind. The standardized precipitation evapotranspiration index (SPEI)
with a 12-month timescale was adopted to monitor dry–wet status over China from 1951 to 2021. The
modified Mann–Kendall (MMK) and Pettitt tests were used to assess the temporal trend and nonlinear
behavior of annual drought variability. The analysis focuses on the spatio-temporal structure of
the dry–wet transition and its general connections with climate change processes. In addition, the
seasonal autoregressive integrated moving average (SARIMA) model was applied to forecast the
dry–wet behavior in the next year (2022) at 160 stations, and the hotspot areas for extreme dryness–
wetness in China were identified in the near term. The results indicate that the dry–wet climate in
China overall exhibits interannual variability characterized by intensified drought. The climate in the
Northeast China (NEC), North China (NC), Northwest China (NWC), and Southwest China (SWC)
has experienced a significant (p < 0.05) drying trend; however, the dry–wet changes in the East China
(EC) and South Central China (SCC) are highly spatially heterogeneous. The significant uptrend in
precipitation is mainly concentrated to the west of 100° E; the rising magnitude of precipitation is
higher in Eastern China near 30° N, with a changing rate of 20–40 mm/decade. Each of the sub-regions
has experienced significant (p < 0.01) warming over the past 71 years. Geographically, the increase
in temperature north of 30° N is noticeably higher than that south of 30° N, with trend magnitudes
of 0.30–0.50 °C/decade and 0.15–0.30 °C/decade, respectively. The response of the northern part of
Eastern China to the warming trend had already emerged as early as the 1980s; these responses were
earlier and more intense than those south of 40° N latitude (1990s). The drying trends are statistically
significant in the northern and southern regions, bounded by 30° N, with trend magnitudes of
−0.30–−0.20/decade and −0.20–−0.10/decade, respectively. The northern and southwestern parts
of China have experienced a significant (p < 0.05) increase in the drought level since the 1950s, which
is closely related to significant warming in recent decades. This study reveals the consistency of the
spatial distribution of variations in precipitation and the SPEI along 30° N latitude. A weak uptrend
in the SPEI, i.e., an increase in wetness, is shown in Eastern China surrounding 30° N, with a changing
rate of 0.003–0.10/decade; this is closely associated with increasing precipitation in the area. Drought
forecasting indicates that recent drying areas are located in NWC, the western part of NC, the western
part of SWC, and the southern part of SCC. The climate is expected to show wetting characteristics
in NEC, the southeastern part of NC, and the eastern part of EC. The dry–wet conditions spanning
the area between 30–40° N and 100–110° E exhibit a greater spatial variability. The region between
20–50° N and 80–105° E will continue to face intense challenges from drought in the near future.
This study provides compelling evidence for the temporal variability of meteorological drought in
different sub-regions of China. The findings may contribute to understanding the spatio-temporal
effect of historical climate change on dry–wet variation in the region since the 1950s, particularly in
the context of global warming.

Keywords: dry–wet variation; meteorological drought; precipitation; temperature; SARIMA model;
drought forecasting; China
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1. Introduction

Climate change characterized by global warming has become an indisputable fact [1].
The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
stated that the global average surface temperature had increased by 0.85 °C from 1880
to 2012 and that global warming would continue in the future [2]. Changes in drought
risk and aridity in regions are among the primary effects anticipated under a warming
environment [3]. According to the statistics, the losses caused by meteorological disasters
account for about 85% and by drought for about 50% of meteorological disasters among
total losses caused by various natural disasters [4]. On a global scale, 22% of the economic
losses caused by natural disasters and 33% of the damage in terms of the number of persons
affected can be associated with drought [5]. According to Dai [6], the global percentage
of dry areas has increased by about 1.74% per decade from 1950 to 2008. Global climate
change has altered precipitation and temperature in different regions and affected the
entire hydrological system, thereby increasing the frequency and intensity of drought
events [7,8]. Increased drying linked with higher temperatures and decreased precipitation
has contributed to changes in drought [9]. Recent studies have documented that warming
trends are expected to continue into the future [10,11]. Given this context, changes in
spatial–temporal patterns of precipitation and temperatures are likely to make droughts
more recurrent [12]. With global warming, the assessment and forecasting of droughts have
become increasingly important issues for many countries [13]. The analysis of the temporal
and spatial evolution characteristics of drought plays an important role in drought disaster
prediction, early warning, and drought losses’ mitigation [14].

Located in East Asia, China has suffered long-lasting and severe droughts during the
second half of the Twentieth Century, which caused large economic and societal losses [15].
In China, the amount of loss caused by drought ranks first among all natural hazards [16].
As a typical large agricultural country, China accounts for the largest proportion of drought
disasters, accounting for about 55% of the total affected area [17]. From 1950 to 2000, the av-
erage disaster area in China was about 21.14 million hectares, accounting for 14.9 percent
of the country’s sown area with agricultural economic losses reaching CNY 6.64 billion [18].
The annual loss of grain production due to drought was 26 million tons, amounting to
around 5.2% of grain production in China [19]. In 2015, 10 million people were affected
by drought in China, resulting in economic losses of more than USD 7 billion [20]. The di-
rect economic loss is approximately 2.5–3.5% of the total Chinese GDP in a drought year.
Drought has become an important factor restricting the development of China’s national
economy [4]. A recent study has reported that the sensitivity of responses of arid/humid
patterns to climate change in China will intensify with accelerating global warming [21].
Under the influence of current and future climate change, China is likely to face a severe
drought risk [8]. It has been documented that drought is mainly caused by insufficient
rainfall and a sharp rise in temperature [22]. Drought characteristics in a certain region
and timescale can be evaluated according to the rainfall and temperature [18]. Temporal
variability in climate and dry–wet condition has significant consequences for regional water
resource management. In this respect, historical drought studies can provide a valuable
basis for explaining the current drought disaster behavior. Climate-change-induced inter-
annual fluctuations in climate and hydrological regimes pose severe challenges to China’s
disaster mitigation. Reliable drought disaster early warnings are vitally important for
developing plans to reduce the potential impact of drought disasters [23]. Consequently,
the analysis and forecasting of drought status are conducive to assess the variations of
various elements in climate change processes and reduce the impact of drought on the
overall development of the country [24].

Drought can be defined as the supply of moisture that fails to meet demand [25].
According to the impact on the availability of different water resources, droughts can
be categorized into meteorological (deficit in precipitation), hydrological (deficiency in
runoff), agricultural (low soil moisture), and socioeconomic (water supply cannot meet
water demand) droughts [26]. These differences emphasize the relative roles of precip-
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itation, evapotranspiration (ET), and runoff in drought caused by climatic factors [27].
Meteorological drought is defined as the water deficit caused by the imbalance between
total precipitation and surface evaporation in the study area over a certain period [28].
Meteorological droughts are generally regarded as advanced risk signals for agricultural,
and hydrological droughts are often accompanied by economic and social losses. It is
therefore of vital importance to understand variations in meteorological droughts and
forecast upcoming meteorological droughts [13].

Due to the diversity of drought definitions, spatio-temporal variability, complex physi-
cal processes, and non-structural effects, the identification and characterization of droughts
are challenging [29]. Drought indices are commonly used metrics to quantify and compare
different drought events [30]. As a starting point, such indices can offer the temporal
evolution of wet and dry episodes [31]. In this regard, the time series of a drought index
provides a framework for evaluating drought parameters of interest [32]. Precipitation is
the most important driver of meteorological droughts related to atmospheric water supply
and demand [30]. The commonly used meteorological drought indices include the stan-
dardized precipitation index (SPI) and standardized precipitation evapotranspiration index
(SPEI) [33]. The SPI captures only precipitation anomalies deviating from the long-term
mean [34]. However, drought conditions can be exacerbated by both high temperatures and
low precipitation, so a single meteorological parameter cannot be utilized to characterize
water stress adequately [35]. Thus, the objective representation of the drought and drying
trend should consider both impacts of precipitation and air temperature variation [36].
The SPI-based SPEI takes the potential evapotranspiration (PET) factors into considera-
tion that are influenced by temperature [37]. The SPEI is recognized as a robust index
for drought monitoring under climate change, since it indicates water stress conditions
induced by precipitation deficit and atmospheric evaporative demand [38]. The Palmer
drought severity index (PDSI) is a simplified soil water balance model incorporating both
precipitation and evaporative demand [39]. The limitation of the PDSI is due to the high
sensitivity to the region of parameters in the calculation [40], as well as its simplicity in
space, which cannot accurately describe large-scale drought variability [18]. The SPEI
combines the multi-scalar features and simple calculation of the SPI with the sensitivity
of the PDSI to changes in evaporation demand caused by temperature fluctuations and
trends [41]. Keyantash and Dracup [42] showed that indices indicative of drought must
be robust and easy to calculate statistically. It has been documented that the aridity index
(AI; the ratio of PET to precipitation) can reflect the actual conditions of dry–wet climate
change [43]. More importantly, the values of the SPEI are given in standardized units,
allowing for comparison amongst regions with different climate conditions [38]. Moreover,
Vicente-Serrano et al. [44,45] found that the SPEI has a better performance than the SPI
and PDSI under global warming by reflecting the increase in drought severity associated
with higher water demand due to ET. This implies that the SPEI is more robust in revealing
droughts caused by rising temperature in the context of global warming [39].

The SPEI measures drought conditions based on the water balance, i.e., the difference
between the atmospheric water supply (precipitation) and water demand (i.e., PET) [30].
The calculation procedure of the SPEI is similar to that of the SPI, and the difference is that
the SPEI uses climatic water balance (the difference between precipitation and PET) rather
than precipitation as an input [46,47]. The size of PET thus affects the calculation of the SPEI.
The Thornthwaite (Th) equation is a method estimating PET by temperature, but ET is also
affected by precipitation, wind speed, humidity, and other factors besides temperature [28].
As it is well known that evaporation is a function of more than just temperature, the
correct physics includes radiative and aerodynamic controls on evaporative demand [9].
Additionally, changing ET and PET have been detected in response to climate change
(e.g., temperature, wind speed, sunshine duration or net radiation, and relative humidity)
and thus impact drought [48]. In 1990, the Food and Agriculture Organization (FAO)
included the physically based Penman–Monteith (PM) equation as the standard calculation
for ET [28]. However, it needs a number of meteorological variables which may not be
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available everywhere. Since air temperature is a widely available variable, the Th formula
that uses only air temperature and latitude of the site to estimate PET is widely used in
the literature [4,13–15,18,19,49]. In this study, the Th method was used to follow the PET
temporal variations in view of the advantage that the method offers in calculating PET by
using temperature alone, which is the most commonly determined meteorological variable
in China [49]. It has been documented that temperature-based PET methods still perform
relatively well in climatic applications, since air temperature is correlated with net radiation
and humidity at weekly, monthly, and subannual timescales [9].

Knowledge concerning past climate can improve the understanding of natural climate
variability and help to address the question of whether modern climate change is unprece-
dented in a long-term context [50]. Such information may disclose the long-term trends
and multi-decadal and centennial scales climate variations influencing the occurrence of
extreme weather events. Further understanding of the processes or causes of these trends
and variations may help us to identify the ones that can be used to project the course of
future climate [51]. Since water availability is a trade-off among precipitation input and
water loss through evaporation, transpiration, and outflow, these processes may lead to
different environmental signatures of the wet and dry patterns over land [52]. Recent
research has demonstrated that approximately two-thirds of land on Earth will face a more
variable hydroclimate on daily to multiyear timescales, which means wider swings between
wet and dry extremes [53]. Thermodynamic effects linked to increased moisture avail-
ability increase precipitation variability uniformly everywhere. It is the dynamic effects
(negative) linked to weakened circulation variability that make precipitation variability
changes strongly regionally dependent. The increase in precipitation variability possibly
leads to rapid transitions between wet and dry conditions, exacerbating the risk of droughts
and/or floods, posing an additional challenge to the climate resilience of infrastructures
and human society [53].

Warming impacts on the forming and evolution of drought have been noticed by
researchers, and the facts of the increase in the drought intensity and drying trend due to
warming have been revealed at global and regional scales [3,17,54–57]. Hence, the analysis
based only precipitation variation cannot objectively depict the drought intensity and
drying trend under warming, especially in the background of both decreasing precipitation
and rising temperature. Warming has already become one of the important factors enhanc-
ing drought and drying trends [36]. Precipitation and air temperature are vital natural
variables affecting drought intensity [58]. The international perspective of the interaction
of land and atmosphere is such that the arid regions will be drier and the wetter regions
will be wetter under global warming [59]. However, a recent study found that there are still
uncertainties about the dry gets drier, wet gets wetter pattern; the drought/wetness trends
have been overestimated [60]. These contradicting studies indicate that there are obvious
regional differences in dry–wet change [61]. Aimed at this issue, negative precipitation
anomalies based on atmospheric dynamics provided helpful information to recognize the
drying conditions and the intensifying droughts [48]. However, the traditional univariate
risk assessments based on the precipitation condition may substantially underestimate
the risk of extreme events such as drought because they ignore the effects of tempera-
ture [62]. Shukla et al. [63] indicated that although a low degree of precipitation was the
main driver of the 2014 drought conditions in California, temperature played an important
role in exacerbating drought. A multivariate viewpoint that incorporates precipitation and
air temperature is therefore of vital importance for assessing the risk of extreme events,
especially in a warming climate [62].

The hydrological cycle intensifies in the context of global warming with precipitation
increasing [53]. As global temperature increased considerably over the 20th Century,
especially since the 1970s, it is reasonable to understand whether trends in hydrologic
variables and related indicators are consistent with an intensified water cycle during that
period. In this regard, consistency among indicator variables would greatly strengthen
our confidence in projections of the potential vulnerability of water resources that could
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be caused by future temperature increases [64]. Some aspects of an intensified water
cycle, such as the frequent occurrence of extreme events, are potential threats to at-risk
populations [64]. In addition, the climate system has both nonstationary and nonlinear
characteristics. The nonstationary processes such as climate change and human activities
have brought severe challenges to water resources, agriculture, and ecological systems in
various regions. It is of great practical significance to study the spatio-temporal variations
and nonstationary characteristics of drought to adopt countermeasures to adapt to climate
change [14].

Change-point analysis has been commonly used in hydroclimatic research to identify
the locations of points at which the statistical properties (mainly the average and standard
deviation) of the time series have significantly altered [65]. Defining the abrupt-change-
points in the climate variables controlling drought evolution (e.g., precipitation and air
temperature) can provide insights into the relative contribution of these variables in the
detected transition from one stable condition to another (e.g., wetness to dryness) [66].
Assessing breakpoints in the temporal evolution of the variables controlling drought
variability can give indications on the most significant variables (e.g., thermodynamic
versus aerodynamic variables) affecting drought and their dynamic effects over time.
Furthermore, these analyses can also indicate whether there is an agreement in the temporal
evolution between the different climatic variables forcing drought, which may hint at
significant signals of climate change in China over the past decades [38]. A preceding
study demonstrated that due to quasi-20-year and quasi-70-year oscillations existing in
rainfall records in China [67], an appropriate timescale for studying the extreme dry–wet
conditions should be able to resolve the decadal scale [68]. Having this in mind, the length
of time series is an important aspect in historical climate assessment [69]. This study
performs a relative long-term assessment of drought behavior based on a time window
of 71 years from 1951 to 2021, providing independent evidence for climate variations on
interannual to interdecadal scales in China. The statistical period of the datasets forms
a favorable foundation for trend and variability analysis [70]. This paper provides a
reference framework to the climatic attribution of dry–wet variation and plentiful evidence
for describing the spatio-temporal pattern of the drying–wetting transition. Our results
provide a useful implication for the understanding of interdecadal-scale drought variability
in China. Research concerning the changing trends of drought provides a helpful reference
for agricultural production and water resource management among related regions [29].
The findings have guiding significance for understanding the nonstationary characteristics
of the dry–wet condition (drought) and for further promoting the allocation of water
resources and the protection of the ecological environment [14].

This paper reviews the evidence from time series analysis of hydroclimate variables to
assess whether there have been systematic changes since the mid-20th Century. The research
on dry–wet climate variability, conducted using mainly precipitation and temperature, is
helpful in enhancing our understanding of the processes of climate change in China [71].
Due to the vast territory of China, the regional natural geographical environment is complex
and diverse, and temperature changes are spatially heterogeneous across different climate
conditions [72]. In addition, China’s climate data are highly correlated with data from
other land areas in the Northern Hemisphere [73]. Thus, it is possible that long-term
historical records in China could provide valuable indications about climatic fluctuations
over a large portion of the Northern Hemisphere [73]. The accurate assessment of drought
variability is of high concern for stakeholders and policy-makers [38]. This study could
provide meaningful conclusions and a basis for creating drought mitigation strategies at
the national and regional scales [38]. Furthermore, the long-term assessment of historical
drought over the whole country is quite limited [13]. Owing to the high spatial differences
of dry–wet variation in China, it is of vital significance to study drought variability across
the country.

The forecasting of drought and the estimation of its characteristics are of great im-
portance in water resource management [74]. In numerous long-term planning strategies,
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it is necessary to outline the future state of dry and wet periods for a specific region [74].
The significance of drought forecasting comes from effectively assisting local authorities
in mitigating the impact of future droughts and providing valuable information for the
reasonable use of water resources [32,46]. The historical drought variability is generally
analyzed by means of a technique such as trend detection, accompanied by the abrupt-
change test of the drought characteristics. The next steps should be aimed at developing a
drought monitoring system to create early warnings of emerging drought conditions [12].
One of the common methods in drought forecasting is time series analysis [74]. In a time
series model, the past observations are analyzed to formulate a model describing the inner
correlation among series. The time series is then extrapolated into the future according to
the model [32]. Several attempts have been made to apply statistical models in drought
forecasting based on time series methods, such as autoregressive integrated moving aver-
age (ARIMA) models, exponential smoothing, and neural networks [46]. ARIMA is one of
the famous linear statistical models for time series forecasting [75]. The wide application of
the ARIMA model is due to its flexibility and systematic search (identification, estimation,
and diagnostic check) for an appropriate model [16]. It has been documented that the
ARIMA model can outperform most statistical models, such as exponential smoothing and
neural networks, in hydrologic and meteorological time series [46,47].

The dependence relation of random series reflects the continuity of original data in
time, which have both the influence of external factors and their own change laws [76].
Some time series have seasonal trends in which variations are specific to a certain time
range [77]. ARIMA models effectively consider the serial linear correlation among obser-
vations, whereas seasonal autoregressive integrated moving average (SARIMA) models
can satisfactorily describe time series that exhibits nonstationarity both within and across
seasons [32]. It has been reported that SARIMA models describe the seasonality and
autocorrelation structure of series more complexly and appear to be more suitable for
assessing the relations within the series [32]. Data-driven forecasting models, including
linear and nonlinear models [77], aim to reveal the relationship between features or hid-
den information in the data using (mostly) only information from available data [75].
The traditional stochastic models (e.g., ARIMA) are linear methods implemented based
on regression coefficients between the predictable time lags of variables [78]. Over recent
years, the development of intelligent models such as artificial neural networks (ANNs),
which are able to estimate complex and nonlinear models, has expanded; however, mainly
for two reasons, the utilization of linear models in empirical work is still prevalent. First,
the linear approximation of nonlinear models is often simpler and often does not lose
much information. Second, it is highly difficult to determine the best nonlinear pattern,
and sometimes, using an inappropriate nonlinear pattern brings more unsatisfactory results
than the linear approximation of the process [74].

Forecasting future dry–wet patterns in a region is essential for supporting drought
risk assessments and sustainable strategies of water resource management [79,80]. There
is a crucial necessity to perform an accurate forecast of drought occurrence especially
for a longer timescale [81]. Using past data to predict future drought behavior, hidden
information can be disclosed that is of vital significance for mitigating the effects of droughts
on water resources [75,82]. This paper adopts the SPEI at a 12-month timescale as a drought
index to describe the annual dry–wet conditions in China. The SARIMA model is applied to
characterize and forecast SPEI time series. The forecasting results are in favor of agricultural
activities and water resource department effectively planning water resources in a specific
region [5,16]. It is hoped that the research results can provide a useful guideline for assisting
in developing measures to reduce the impacts of dryness–wetness and providing decision
support for local disaster prevention.

As one of the most sensitive areas to climate change, China is affected by warming
and drying significantly [83]. The spatial and temporal distribution of drought in China
has changed under global climate change [4]. Owing to the vast territory and complex
climate [15,61], the spatial–temporal pattern of droughts in China in the last few decades is
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far from fully understood [23]. Preceding studies focused on variations at the basin and local
scales after the 1950s [18,59,60,84–86], which poses a challenge to understanding the dry–
wet variation in each region of China over long time periods [87]. It should be mentioned
that in the published articles, the SPEI was not used as the drought index [21,43,73,87–89].
To fill the preceding gaps, this paper explores wetting and drying variations in China
over the last 71 years (1951–2021) by means of the SPEI. The spatio-temporal evolution
of precipitation and air temperature and their transitions in means (nonstationary and
nonlinear) are detected firstly. Based on the historical dry–wet shifts, we assessed the
possible forcing effects of climate factors on annual dry–wet (defined by the 12-month SPEI)
variations. This paper aims to understand the spatial structure and nonlinear behavior
of the drying–wetting trend at the interdecadal scale. The findings suggest the effects of
global warming on climate change processes, thereby improving the understanding of
climate-warming-induced drought variability.

The spatial information regarding vulnerable areas to droughts and the levels of
vulnerability are essential in preparing and implementing drought strategies. Drought
vulnerability mapping offers a framework for identifying relevant areas experiencing
dryness/wetness. The maps can help decision-makers visualize the location and intensity
of extreme droughts to establish measures that reduce potential drought-related losses [90].
One of the objectives of this study is to generate a disaster-vulnerability map combining the
dryness–wetness categories in a GIS environment and to assess the spatial pattern of recent
meteorological droughts in China. For this purpose, we mapped the geographical pattern
of recent dryness/wetness (in 2022) by means of the SARIMA models with a 12-month
forecast step. On the basis of the dry–wet status in the next year, the hotspots that are
vulnerable to extreme weather in China in the near future were identified. The results could
contribute to early drought warning and provide a basis for decision-making on reducing
drought risk under climate change.

The main goals of this study are: (i) to assess the spatio-temporal variability of meteo-
rological droughts in China since the 1950s; (ii) to detect significant breakpoints in historical
drought and to link these with variations in drought drivers (i.e., precipitation and air
temperature); and (iii) to identify drought/humid hot-spot areas that require targeted
interventions in the near term (2022). The present study can provide robust evidence
to understand the spatio-temporal variability of meteorological droughts with climate
change and contribute to improving drought monitoring and forecasting capability with
quantitative reference information. The findings of this study can also provide a certain
basis for the development of drought relief and disaster reduction in China.

2. Study Area and Data Sources
2.1. Study Domain

China is located on the northwest coast of Asia and the Pacific Ocean, spanning
latitude 3.51–53.34° N and longitude 73.29° E–135.04° E [89]. It is the third largest country
in the world, with a land area of approximately 9.6 million square kilometers [13,91]. China
has many different types of topography, with terrain that is higher in the west and lower
in the east, featuring a three ladder-like distribution [92]. The climate varies significantly
from region to region due to its vast territory and complicated terrain [15,61]. China
has a wide range of climatic regimes distributed from south to north, including tropical
monsoon, subtropical monsoon, temperate monsoon, temperate continental, and alpine
plateau climate [30,92]. Due to the conditions of water and heat in different regions varying
greatly [29], the country was divided into six climatic regions so as to investigate the
geographical variation of the dry–wet conditions. The six sub-regions include Northeast
China (NEC), North China (NC), Northwest China (NWC), East China (EC), South Central
China (SCC), and Southwest China (SWC). Overall, dry climate dominates the western and
northern parts, while semi-humid and humid climate conditions primarily dominate the
eastern part of China [15]. In terms of the eastern part of China, semi-arid or semi-humid
climate dominates the northern part of its territory with annual precipitation ranging



Atmosphere 2022, 13, 745 8 of 54

from 200 to 800 mm, while the southern part has a relatively wetter climate with annual
precipitation falling within 800 and 2000 mm [57].

The main climatic and environmental features over China are shown in Figure 1.
The annual temperature decreases from south to north, while the annual precipitation
decreases from southeast to northwest [92,93] (Figure 1a,b). Since it is characterized by a
broad geography and climate diversity, the drought level shows highly spatial variabil-
ity [57]. Figure 1c presents the latest (in 2021) spatial pattern of meteorological droughts
over China. The SPEI data are based on the calculation method of the drought index
proposed by Vicente-Serrano et al. (2010) [44]. The general calculation procedure for the
SPEI is given in Section 3.1. In general, dryness conditions dominated the western part,
while the wetting status occurred in the eastern part of China (Figure 1c). The types of land
use/cover change (LUCC) mainly include cropland (18% total area), forest (23% total area),
desert (14% total area), and grassland (32% total area) [8]. Cropland is mainly distributed in
the Northeastern Plain, Sichuan Basin, and North China Plain. Desert is mostly located in
Northwestern China; grassland is mainly distributed in the Inner Mongolia Plain and the
Qinghai Tibet Plateau (Figure 1d).

Figure 1. Main climatic and environmental characteristics in China: (a) mean annual precipitation,
(b) mean annual air temperature from 1951–2021, (c) the SPEI at a 12-month timescale in 2021,
and (d) land use/cover change (LUCC).

2.2. Data Sources

This paper focuses on monthly precipitation and mean air temperature from a total of
160 meteorological stations in the mainland of China and calculates the SPEI at a 12-month
timescale (SPEI-12). The climatic observations, i.e., monthly precipitation and air tempera-
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ture series, were derived from the National Climate Center of the China Meteorological
Administration (http://cmdp.ncc-cma.net/cn/ download.htm, accessed on 12 January
2022). The data sessions were from January 1951 to December 2021. The monitoring data
from 160 stations with no missing values were used to calculate the station-level drought
indices for the SPEI. The 12-month timescale SPEI can characterize the annual drought
in China [41]. Meteorological records from January 1951 to December 2021 with a total
time span of 71 years were used to generate 841 SPEI-12 values (data points). The lon-
gitude/latitude and climate descriptive statistics of selected sites are shown in Table A1
(Appendix A). The homogeneity and reliability of monthly meteorological data have been
checked and firmly controlled by the National Climate Center before their release. Owing
to harsh environmental conditions and steep topography, station distributions in Western
China are rather sparse [93]. It should be noted that among the selected stations, there are
few sites in mountainous areas and desert areas (mainly in the southern part of NWC).
In addition, due to a shortage of data in western Tibet (the western part of SWC), the time
series can only describe the drought variations of eastern Tibet [15].

3. Methodology
3.1. Standardized Precipitation Evapotranspiration Index

The SPEI is a drought index that reflects water deficit at different timescales [28],
which is suitable for drought monitoring and analysis in the context of climate change [56].
Based on climatic water balance, the SPEI considers the impact of water budget changes,
between precipitation and PET (i.e., amount of transpiration and evaporation under suffi-
cient water), on drought behavior [4,91]. The Th model [94] was used to account for the
PET effect in this study, due to the simplicity of the calculation process and the accessibility
of basic data. The SPEI combines the sensitivity of the PDSI to changes in ET demand
and the multi-scale nature of the SPI [95]. The World Meteorological Organization (WMO)
recommends the SPEI as the main meteorological drought index, which countries can use to
monitor and track drought conditions [96]. Since it considers the effect of the temperature
factor on droughts, the SPEI is one of the most widely used indices in monitoring and quan-
tifying droughts, especially under climate change [13], which has been used successfully
for drought monitoring in studies around the world [29,58,74,81,97].

The SPEI is based on the probability distribution of a long-term climatic water balance
time series [12], and the calculation procedure is as follows:

(1) Calculating monthly potential evapotranspiration (PET) applying the Thornthwaite
method [94].

PET = 16K
(

10T
I

)m
(1)

where T is the monthly mean temperature (°C); I is a heat index calculated for the whole
year; m is a coefficient depending on I; and K is a correction coefficient defined based on
the latitude and month.

(2) Estimating the monthly water deficit by the difference between precipitation (P)
and PET.

Di = Pi − PETi (2)

where Di refers to the amount of water deficit for the month i; Pi represents the precipitation
for the month i; and PETi represents the reference evaporation values for the month i.

(3) Constructing water profit and loss accumulation series at different timescales Xk
i,j.{

Xk
i,j = ∑12

l=13−k+j Di−1,l + ∑
j
l=1 Di,l(j < k)

Xk
i,j = ∑

j
l=i−k+1 Di,l(j ≥ k)

(3)

where Xk
i,j is the accumulated water deficit in the jth month of the ith year in the kth month

scale; and Di,l is the water deficit in the jth month of the ith year.

http://cmdp.ncc-cma.net/cn/download.htm
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(4) Normalizing the difference of the climatic water balance as a log-logistic probability
distribution. The probability density function can be expressed as follows:

f (x) =
β

α

(
x− γ

α

)[
1 +

(
x− γ

α

)]−2
(4)

where α, β, and γ are parameters representing scale, shape, and origin. The D values are
in the range of γ < D < ∞. Hence, the probability distribution function can be expressed
as follows:

F(X) =

[
1 +

(
α

X− γ

)β
]−1

(5)

where α, β, and γ can be obtained by the L-moment method as:

α =
(w0 − 2w1)β

Γ(1 + 1/β)Γ(1− 1/β)
(6)

β =
2w1 − w0

6w1 − w0 − 6w2
(7)

γ = w0 − αΓ(1 + 1/β)Γ(1− 1/β) (8)

where Γ() is the factorial function and w0, w1, w2 are the weighted matrix of the original
data series Di and can be computed as:

ws =
1
N

N

∑
i=1

(
1− i− 0.35

N

)s
Di (9)

where N denotes the number of months.
(5) The F(x) data sequence is subjected to a standardized normal distribution transfor-

mation to obtain the SPEI value at the corresponding timescale.

p = 1− F(x) (10)

If p ≤ 0.05, w =
√
−2ln(p),

SPEI = w− c0 + c1w + c2w2

1− d1w + d2w2 + d3w3 (11)

If p > 0.05, w =
√
−2ln(1− p),

SPEI =
c0 + c1w + c2w2

1− d1w + d2w2 + d3w3 − w (12)

where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308 [44].

The positive values of the SPEI indicate wet conditions, while negative values indicate
dry conditions. According to the Meteorological Drought Grades issued by the National
Climate Center of China in 2006, the SPEI value was divided into nine grades, as given by
Table 1.
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Table 1. The categorization of dryness–wetness grades based on the SPEI.

Categories SPEI Values

Extreme wetness >2.0
Severe wetness 1.5 to 2.0

Moderate wetness 1.0 to 1.5
Light wetness 0.5 to 1.0
Near normal −0.5 to 0.5

Light drought −1.0 to −0.5
Moderate drought −1.5 to −1.0

Severe drought −2.0 to −1.5
Extreme drought <−2.0

In terms of the multi-timescale characteristics of the SPEI, the SPEI on different
timescales can reflect changes in humidity and dryness in different periods; however,
the trend of SPEI values on different timescales is consistent overall [76]. The annual SPEI
value can reflect the annual variability of drought [98]. In this study, the 12-month SPEI
(SPEI-12) was used as the indicator of drought changes in China. Since the SPEI-12 is
strongly correlated with the SPEI with other scales, it is effective at detecting the country’s
historical drought records [12].

3.2. Modified Mann–Kendall Test

The Mann–Kendall (MK) test is a common non-parametric method in the trend test-
ing of time series [99,100]. However, the existence of a positive autocorrelation in time
series would overestimate the result of the MK test [101], and the serial effects should be
eliminated before analysis [14]. The modified Mann–Kendall (MMK) test based on the
effective or equivalent sample size (ESS) was proposed by Hamed and Rao to eliminate the
influence of autocorrelation on the MK test. In the MMK test, the modified variance of the
MK statistic is used to replace the original one if the lag-i autocorrelation coefficients are
significantly different from zero at the 5% significant level [102]. The MMK statistic limits
the possible influence of serial correlation on the significance of trends [38] and has been
widely used in hydroclimatic studies concerning trend detection (e.g., [14,17,38,70]). In this
study, the statistical significance of drought variations was tested using the MMK statistic
at the 95% confidence interval (p < 0.05).

The formula for calculating the MMK statistic (S) can be defined as follows:

S0 =
n−1

∑
i=1

n

∑
k=i+1

sgn(xk − xi), k > i (13)

where x denotes the time series; n denotes the series length; and k and i vary from 2 to n
and 1 to n− 1, respectively. The variance of S0 represents underestimated (overestimated)
when the data stand for positively (negatively) autocorrelated [17]. Thus, the modified
variance calculated for the MMK test is defined as follows:

Var(S0) =
n(n− 1)(2n + 5)

18
× n

n∗s
(14)

where Var(S0) stands for the modified variance and n
n∗s

stands for the correction factor
given by the following formula:

n
n∗s

= 1 +
2

n(n− 1)(n− 2)
×

n−1

∑
i=1

(n− i)× (n− i− 1)× (n− i− 2)× ρs(i) (15)

where ρs(i) stands for the autocorrelation function of the ranks of time series, with i
varying from 1 to n− 1; and n∗s refers to an effective number of time series to account for
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the autocorrelation in the rank [103]. The standard normal variable Z is computed when
the sample size n is greater than 10 as

Z =


(S0 − 1)/(Var(S0))

1/2, S0 > 0
0, S0 = 0
(S0 + 1)/(Var(S0))

1/2, S0 < 0

(16)

The MMK method was adopted to detect the significance of temporal trends in annual
dry–wet variation. A positive Z value indicates that the SPEI has an increasing trend
(i.e., wetting) during the record period, while a negative Z value represents a decreasing
trend (i.e., drying). When the absolute value of the Z statistic is greater than 1.96, the trend
is significant at the 95% confidence level [36].

3.3. Theil–Sen Median Method

The Theil–Sen median method [104] is a robust non-parametric trend calculation
method, which is not sensitive to measurement error and outlier data [18], and it has been
widely used in the trend analysis of hydrologic time series [10,11,31,41,105]. It allows
the data to have missing values and does not require the data to conform to a specific
probability distribution [13]. This method is considered as one of the most effective for
analyzing trends in long sequences of data [106]. Hence, the approach was used to identify
the trend magnitude in dry–wet variation over China during 1951–2021. The estimates of
the Sen slope can be given as

β = Median
( xi − xj

i− j

)
, ∀j < i (17)

where xi and xj denote time series data (1 < j < n); and β is the median over all combina-
tions of record pairs for the whole dataset. A positive value of β indicates an upward trend,
while a negative value of β indicates a downward trend.

3.4. Pettitt Test

The Pettitt test [107] was performed on annual climate factors and the SPEI to identify
any possibility of a significant shift. This method is a rank-based non-parametric statistical
test whose null hypothesis assumes no significant transition in meteorological time series
exists [70]. The alternative hypothesis is that there is a transition (i.e., change-point) in
meteorological time series [31]. The significance of the step change was tested at the
95% confident level (p < 0.05) in this study.

The order statistic for the Pettitt test is given by [108]:

Xm = 2
m

∑
i=1

ri −m(n + 1), m = 1, 2, ..., n (18)

where r1, r2, ..., rn are ranks of a given meteorological variable Wi. If intervention is sus-
pected to occur at year K, the plot of Xm against time will exhibit a minimum or maximum
at m = K and

XK = Max
1≤m≤n

|Xm| (19)

The significant values of XK are provided in tables as a function of the sample size at
the 0.05 significant level.

3.5. Autoregressive Integrated Moving Average Model

The main goal of modeling time series is to predict future values of the series [74].
The most famous model among stochastic sequential models is the autoregressive moving
average (ARMA) model. ARMA models are formed by autoregressive (AR) models coupled
with moving average (MA) models effectively [5,47], which can be used when the data are
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stationary. However, time series that reflect hydrologic aspects may be nonstationary over
any time interval considered [109]. The ARIMA model developed by Box–Jenkins [110]
allows an appropriate remedy for nonstationarity in historical time series [46]. The ARIMA
is a linear method, which means the future value of a variable to be forecast is assumed to
be a linear function of the past observations [77]. The model can capture complex patterns
and relationships as it can combine observations of lagged terms and white noise [111].
This approach has advantages compared with other stochastic models such as exponential
smoothing, including its greater forecasting capability and its ability to provide greater
information with respect to time-related changes [112].

ARIMA consists of three parts: autoregressive (AR), integration (I), moving average
(MA) [111]. AR denotes that the evolving variable of interest is regressed on its own lagged
(prior) values. MA indicates that the regression error is actually a linear combination of error
values that occurred contemporaneously. I indicates that the values have been replaced by
the difference between their values and their previous values [81]. ARIMAs are normally
divided into two categories of seasonal and nonseasonal [113]. A typical nonseasonal
ARIMA model is characterized by three parameters (p,d,q), where d represents the order
of the differences in time series and p and q represent the orders of the autoregressive
and moving averages, respectively [79]. The expression for the nonseasonal ARIMA(p,d,q)
model is given as follows:

φp(B)5d xt = θq(B)at (20)

SARIMA models are used to model seasonal time series in which the mean and other
statistics for a given season are not stationary across the years [109]. The general form of
the seasonal model SARIMA(p,d,q)(P,D,Q)s, where (p,d,q) is the nonseasonal part of the
model and (P,D,Q) is the seasonal part of the model, is given as follows:

φp(B)ΦP(Bs)5d5D
s xt = θq(B)ΘQ(Bs)at (21)

where {xt} denotes the nonstationary time series; {at} denotes the usual Gaussian white
noise process; φp(B) and θq(B) are nonseasonal AR and MA operators of orders p and q,
respectively; ΦP(Bs) and ΘQ(Bs) are seasonal AR and MA operators in B of orders P and Q,
respectively; p is the order of nonseasonal autoregression; d is the number of nonseasonal
differences; q is the order of the nonseasonal moving average; P is the order of seasonal
autoregression; D is the number of seasonal differences; Q is the order of the seasonal
moving average; S is the length of the season;5d and5D

s are nonseasonal and seasonal
difference operators; B is the backshift operator. The expressions are given as follows:

φp(B) =
(

1− φ1B− φ2B2 − ...− φpBp
)

(22)

ΦP(Bs) =
(

1−ΦsBs −Φ2sB2s − ...−ΦPsBPs
)

(23)

θq(B) =
(

1− θ1B− θ2B2 − ...− θqBq
)

(24)

ΘQ(Bs) =
(

1−ΘsBs −Θ2sB2s − ...−ΘQsBQs
)

(25)

Bkxt = xt−k (26)

5d = (1− B)d (27)

5D
s = (1− Bs)D (28)

SARIMA was applied to forecast future drought in this study since there is a seasonal
trend in the SPEI series. This paper establishes the SARIMA model for the SPEI at a
12-month timescale. Since the seasonal model requires periodicity, the seasonal cycle was
set as an integer equal to 12 (e.g., [46]).
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3.6. Autoregressive Integrated Moving Average Modeling Procedure
3.6.1. Model Identification

Identification, estimation, and diagnostic check constitute the three stages of time
series modeling with ARIMA [114]. The first step in developing the model is identifying
the possible ARIMA model representing the behavior of the time series [46]. ARIMA
needs to perform a stationarity check on given series data to check whether means and
autocorrelation patterns are constant over time [77]. To achieve this, the time series was
examined for stationarity using the augmented Dickey–Fuller (ADF) test. The formulation
of the ADF test is given by [82]:

4 y = α + βt + γyt−1 + δ14 yt−1 + ... + δp−14 yt−p+1 + εt (29)

where α is constant; β is the coefficient of the time trend; p is the lag order; and εt is the error
term. After selecting the appropriate lags of order p, the test is executed for the null hypoth-
esis of the presence of the unit root [38]. If the time series has nonstationarity, stationarity
can be achieved applying differencing method until the time series become stationary [77].

Once nonstationarity is removed, the correlation structure of the data is determined
by the autocorrelation (ACF) and partial autocorrelation functions (PACF) [5]. The ACF of
time series zt at lag k (φkk) is

ρk =
E[(zt − µ)(zt+k − µ)]√

E
[
(zt − µ)2

]
E
[
(zt+k − µ)2

] =
E[(zt − µ)(zt+k − µ)]

σ2
z

(30)

where µ is the mean value of the series, and the variance σ2
z of the stochastic process can be

estimated by σ2
z = 1

N ∑N
t=1(zt − µ)2.

The PACF of series zt at lag k (φkk) is

φkk =


ρ1, k = 1
ρk−∑k−1

j=1 ϕk−1,j×ρk−j

1−∑k−1
j=1 φk−1,j×ρk−j

, k = 2, 3, ...
(31)

where ϕk,j = ϕk−1,j − ϕkk × ϕk−1,k−j.
The final model was then selected using the statistical Akaike information criterion

(AIC). The AIC is an estimator of prediction error and thereby relative the quality of
statistical models for a given set of data [47]. This criterion help to rank models, with the
model that gives the minimum value of the criterion being the best-fit model [46,80].
The mathematical formulation for the AIC [115] is defined as:

AIC = −2ln
(

L
(

β̂
))

+ 2ω (32)

where ω = (p + q + P + Q) denotes the number of estimated parameters; and β̂ is the
maximum likelihood function values.

3.6.2. Parameter Estimation

After identifying the appropriate model as an essential step, the estimation of model
parameters was achieved. The model estimate values for AR and MA were calculated using
the procedure proposed by Box and Jenkins [110]. The parameters of AR and MA were
then tested to ascertain whether they were statistically significant at the 0.05 significance
level. In addition, the related parameters such as the standard error of estimates and their
linked t-values were determined to check the applicability of the fitted model (e.g., [46,47]).
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3.6.3. Diagnostic Checking

Diagnosing the ARIMA model is the final step of model development [46]. After fitting
the models, those with parameters significantly different from zero and also with indepen-
dent residuals are acceptable [76]. In terms of a good forecasting model, the residuals left
over after fitting the model should be white noise [116]. When the parameters are well
estimated, the tentative model accuracy is validated by examining the autocorrelations
of the residuals in order to simulate the white noise process [32]. If the validation fails to
satisfy the parameters of the best-fit model, the analysis is repeated for a different model
selection using appropriate lags [82]. Finally, the SPEI-based drought forecasting was
performed for the year 2022 with a forecast step of 12 months.

The forecast performance of the SARIMA(p,d,q)(P,D,Q)s model was evaluated by
the following metrics for the goodness-of-fit: mean absolute error (MAE), mean-squared
error (MSE), root-mean-squared error (RMSE), coefficient of determination (R2), and Nash–
Sutcliffe coefficient (NSE). The formulas of these performance metrics are given by:

MAE =
1
n

n

∑
i=1
|x(i)− x̂(i)| (33)

MSE =
1
n

n

∑
i=1

(x(i)− x̂(i))2 (34)

RMSE =

√
1
n

n

∑
i=1

(x(i)− x̂(i))2 (35)

R2 = 1− ∑n
i=1(x(i)− x̂(i))2

∑n
i=1(x̂(i)− x̄)2 (36)

NSE = 1− ∑n
i=1(x(i)− x̂(i))2

∑n
i=1(x(i)− x̄)2 (37)

where n, x(i), x̂(i), and x̄ represent the number of observations, the observed SPEI, the
predicted SPEI, and the mean of the observed SPEI, respectively.

4. Results
4.1. Temporal Trends in Regional Dry–Wet Variation over China

The SPEI considers the impacts of both precipitation change and air temperature
change on PET [44], since precipitation and PET are important variables for the surface
water budget, and the index has objective meaning in representing surface dry–wet varia-
tion [40]. Dry–wet changes at different timescales shared similar characteristics with the
evolution at the annual scale [92]. The SPEI evolution at the 12-month timescale is preferred
because of its lower frequency and distinct signals [31]. In order to understand interannual
dry–wet variation, this study used a 12-month time window to demonstrate the behavior
of these events. Figure 2 reflects the interdecadal characteristics of dry and wet variability
in the sub-regions since the 1950s, i.e., the evolution of both the dry (negative deviation)
and wet (positive deviation) phases. The black dashed line in Figure 2 indicates the linear
trend of the SPEI for the sub-regions from 1951 to 2021, and k indicates the trend slope
(units in month−1).

Overall, the six sub-regions in China have shown interdecadal drying trends in the
last 71 years (Figure 2). The drought status in NEC began in the late 1990s and persisted for
approximately 12 years (Figure 2a). The climate condition in the last 20 years has shown a
distinct alternation between wet and dry periods (Figure 2a). The NC region showed the
most pronounced interdecadal drying trend, with the SPEI declining at a negative relative
variability of −0.0151/month over the past 71 years (Figure 2b). This was followed by
NWC region, where the SPEI showed a decreasing trend at a linear rate of −0.0093/month
from 1951 to 2021 (Figure 2c). The drought trends in NC and NWC continued for more
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than two decades starting in the late 1990s (Figure 2b,c). It is noteworthy that the SPEI in
NC and NWC was a positive anomaly until the late 1990s, reflecting the wet period in both
regions, and the generally negative anomaly of the SPEI thereafter reflects the dry period
(Figure 2b,c). A preceding study has shown that warming beginning around the 1980s and
the obvious increase after the mid-1980s, which may be one of the important reasons for the
significant drying trend in Northern China during the latest two decades [40]. Compared to
the 1950s to 1980s, EC since the second half of the 20th Century has been characterized by
almost 40 years of cyclical wet and dry oscillations (Figure 2d). The interdecadal drought
trend in EC and SCC is weak, showing significant wet and dry fluctuations since the 1980s,
with a turning point of alternating wet and dry in the last decade (Figure 2d,e). The drought
status in SWC lasted for approximately 20 years starting in the mid-2000s, and extreme
drought events occurred in 2010–2013 (Figure 2f). Over the last 71 years, the positive SPEI
anomalies in SWC before 2003/2004 point to a relatively wet period, after which it shifted
to negative SPEI anomalies, showing a relatively dry period. The dry period was more
intense and longer in duration than the wet period (Figure 2f).

With the increasingly prominent nonstationary phenomenon of drought, trend analysis
and breakpoint detection have become the main means to judge the characteristics of
nonstationarity [117]. Trend analysis was performed over the period 1951 to 2021 using the
MMK test with the consideration of lag-1 autocorrelation [102]. Our aim was to provide
additional evidence to understand climate change associated with dry–wet conditions in
the study domain [31]. The monotonic trends of annual climate factors and the SPEI were
estimated using the MMK test combined with the Sen slope and the significance of observed
trends assessed at the 95% confidence level. The proportion of stations with significant
(p < 0.05) trends to the total number of stations in the region was calculated at the regional
scale, as shown in Figure 3a–c. Figure 3d–f indicates the average magnitude of trends
in climate parameters for sites with significant trends; Figure 3g–i indicates the average
magnitude of trends in climate parameters for all sites in the sub-regions. This paper aims
to further discuss the possible forcing role of regional climate change on the evolution
of meteorological drought based on the interannual variability of climate variables in
the sub-regions.

Since the 1950s, a significant trend of increasing precipitation has been observed
in parts of NWC and EC, although the trend is not widespread, accounting for only
22.58% of NWC and 9.38% of EC (Figure 3a,d,g). Precipitation showed a weak decreasing
trend (−2.17 mm/decade) over NEC, but it was not significant at the 95% confidence
level (Figure 3a,d,g). Over the last 71 years, precipitation in NC showed a similar weak
decreasing trend (−2.84 mm/decade), and the decreasing trend of precipitation at some
(4.55%) sites passed the significance test (p < 0.05) (Figure 3a,d,g). Figure 3g reflects the
general upward trend of precipitation in EC (8.86 mm/decade) and the overall downward
trend of precipitation in SWC (−4.94 mm/decade). Precipitation in SCC showed an overall
weak increasing trend (3.80 mm/decade); however, it was not significant at the 0.05 level
(Figure 3a,d,g).

In terms of the interannual variability of air temperature, a statistically significant
upward trend was observed for each sub-region over China (Figure 3b,e,h), accompanied
by a significant decrease at a minimal number of sites in NWC and SWC (Figure 3b).
Figure 3b,e,h provide evidence of the shift from negative to positive anomalies in mean air
temperature in China over the past 71 years. In view of the trend magnitude, NC had the
largest increase in air temperature, with an average magnitude of 0.334 °C/decade at the
sites considered (Figure 3h). The uptrend in NEC’s temperature was second only to NC and
passed the significance (p < 0.05) test at all sites (Figure 3b,e,h). The temperature at each
station in EC showed a significant upward trend with an average slope of 0.231 °C/decade
(Figure 3b,e,h). Compared to Northern China (NEC,NC and NWC), Southern China (SCC
and SWC) showed a lower increase in temperature with a trend slope of 0.161 °C/decade
and 0.146 °C/decade, respectively (Figure 3h).
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Figure 2. Temporal evolution of meteorological droughts based on the 12-month time window SPEI
for six sub-regions in China during the period 1951–2021: (a) Northeast China (NEC); (b) North China
(NC); (c) Northwest China (NWC); (d) East China (EC); (e) South Central China (SCC); (f) Southwest
China (SWC). Red refers to dryness (SPEI−); blue refers to wetness (SPEI+). The black dotted
line denotes the linear trend fit by the least-squares method; k denotes the trend slope (unit in
month−1). mu1 denotes pre-mutation (positive value), and mu2 denotes post-mutation (negative
value). Numbers in parentheses indicate the year of mutation (from the Pettitt test).

Figure 3c,f,i reflect the interannual variation characteristics of intensified meteo-
rological drought at the regional scale in China. Since the 1950s, the six sub-regions
have experienced a transition from positive SPEI anomalies to negative SPEI anomalies
(Figure 3c,f,i). Only a few sites of NWC (6.45%) had a significant (p < 0.05) upward trend
of the SPEI series (Figure 3c). The mean magnitude in the SPEI trend of the NC sites
was −0.149/decade (Figure 3i), with 68.18% of the NC sites passing the 0.05 significance
test (Figure 3c). Figure 3c shows a significant decreasing trend of the SPEI at a majority
of the NC (68.18%) sites, i.e., an increasing dryness. This region demonstrated the most
pronounced drought trend at the interannual scale (Figure 3c,f,i), which is consistent with
the preceding result (Figure 2b). Overall, the trend of intensified drought in China is in the
order of the NC, NWC, SWC, NEC, SCC, and EC regions from intense to weak (Figure 3i).



Atmosphere 2022, 13, 745 18 of 54

However, there was a large spatial heterogeneity in the trends of dry and wet variations in
EC and SCC (Figure 3f,i).

Figure 3. Percentage of stations with significant trends in the sub-regions to the total number of sta-
tions during 1951–2021: (a) precipitation; (b) temperature; and (c) the SPEI. Red indicates an upward
trend (above x-axis); blue indicates a downward trend (below x-axis). Average magnitude of changes
with significant trends in the sub-regions during 1951–2021: (d) precipitation; (e) temperature; and
(f) the SPEI. Average magnitude of trends for all sites in the sub-regions during 1951–2021: (g) precip-
itation; (h) temperature; and (i) the SPEI. Red (blue) denotes a positive (negative) trend magnitude.
Subfigures (d–f) consider statistically significant trends at the 95% confidence level;
Subfigures (g–i) consider trends for all stations in the sub-regions. The significance of the
changes was assessed with the two-sample t-test at the 0.05 significance level (same as below).

The deficiency of dry–wet variation is mainly manifested by precipitation, and other
environmental factors (e.g., temperature) also contribute importantly to the forming pro-
cesses of the drying trend. A previous study has documented that the emergence of drying
trends is associated with regional warming, where increasing temperatures lead to in-
creased evaporation from the surface, thus exacerbating the drought trends associated with
decreasing precipitation [40]. It can be found that the significant increase in NWC’s and
EC’s temperatures altered regional dry–wet characteristics in the context of a weak increase
in precipitation. The weak increase in atmospheric water supply is not sufficient to offset
the increase in ET demand caused by warming, resulting in significant drying trends in
the regions (Figure 3a–c). The light increase in precipitation in these areas is not sufficient
to change the temporal structure of the drought trends. Increased temperatures have
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contributed to the drought behavior in NWC and EC compared to precipitation anomalies
(Figure 3). In view of NC and SWC, a non-general significant decrease in precipitation
(negative relative variability) combined with a general significant increase in air temper-
ature (positive relative variability) acted on regional dry and wet variations, resulting in
significant drying trends in these areas (Figure 3a–c).

4.2. Abrupt Characteristic of Regional Dry–Wet Variation over China

To analyze the nonstationary characteristics of dry–wet change, this study examined
the abrupt-change behavior of drought in sub-regions since the 1950s using the Pettitt
test [107]. The significant changes in climate variables (precipitation and temperature)
controlling the drought evolution were identified, for the purpose of discussing the different
responses to dry–wet events that may result from regional climate change. The homogeneity
test (e.g., Pettitt test) defines the most significant change-point in the temporal structure
of data [38]. The findings may hint at the combined effect of climatic factors on the SPEI’s
evolution and the regional response of the study area to global warming. The step change
years of the meteorological time series are shown in Figure 4.

Figure 4. Number of stations with significant breaks among years during 1951–2021: (a) precipitation;
(b) temperature; and (c) the SPEI. Number of stations with significant breaks among eras from 1950s
to 2010s: (d) precipitation; (e) temperature; and (f) the SPEI. The numbers on the bars indicate the
total number of sites with significant breaks.

The observed precipitation at most of the sites considered did not show a significant
abrupt change since the 1950s (Figure 4a,d). However, means in annual precipitation in
parts of NWC experienced a long-term movement from negative to positive anomalies
(Figures 3a,d,g and 4a,d). A significant change-point in precipitation can be observed
in parts of SWC in the mid-1980s; thereafter, precipitation has experienced a shift from
positive to negative anomalies (Figure 3a,d,g). The homogeneity test indicated that 1994
was the breakpoint year from the cold period to the warm period in EC (Figure 4b).
Figure 4b,e identify the temporal pattern of significant abrupt changes in annual mean
temperature at the regional scale. The mean air temperature at nearly all sites experienced
a significant breakpoint around the 1980s/1990s (Figure 4e). On a regional scale, the mean
temperature in NEC and NC experienced an abrupt alternation from negative to positive
anomalies in the 1980s; SWC experienced a transition from negative to positive temperature
anomalies in the 1990s (Figure 4e). For most parts of NWC, EC, and SCC, a significant
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abrupt change in air temperature was observed in the 1990s and followed by the 1980s,
as evidenced by a positive movement in temperature means after the breakpoint relative
to that heretofore (Figure 4e). The abrupt increase in mean temperature in China since
the 1980s/1990s may suggest the regional response to global warming in the Northern
Hemisphere (Figures 3b,e,h and 4b,e). An observation from Figure 4b,e indicates that
surface air temperature in NEC has changed significantly since the late 1980s (1988). This
alteration corresponds to a significant increase in temperature (Figure 3b,e,h) that combined
with a non-significant decrease in precipitation (Figure 3a,d,g), resulting in an intensified
drought status in NEC over recent decades (since the 1990s) (Figure 3c,f,i). The dry–wet
transition in most parts of NWC occurred in 1996, which coincided with the abrupt change
in temperature behavior in 1997 in the area (Figure 4b,c). The SPEI-12 time series for
most of the NWC sites had a change-point in 1996, indicating a significant nonstationarity
of dry–wet variation in the region (Figure 4c). It is noteworthy that the breakpoints of
the SPEI in NWC had a high consistency and an SPEI shift from positive to negative
anomalies around 1996, indicating an inflection point in dryness and wetness patterns
(Figure 4c). Combined with the trend analysis of the SPEI (Figure 3c,f,i), most of the
NWC sites showed distinct drying trends after the mutation. The SPEI depends on two
meteorological factors (precipitation and temperature). The evolution of the SPEI showed a
heterogeneous pattern with unstable mutations compared to the variables controlling for
drought variability (Figure 4a–c,e). For most parts of NWC and NC, the SPEI-12 time series
had significant changes in the 1980s/1990s (Figure 4f). The SPEI in most of EC showed
significant mutations in the 1970s/1980s; the SPEI in most of SWC showed significant
breakpoints in the 1990s/2000s (Figure 4f). The SWC underwent an abrupt change in dry
and wet conditions since the 1990s/2000s, showing a transition from wetness to dryness
(Figure 3c,f,i). A significant break in temperature was observed in most of the EC sites in
1994 (Figure 4b), yet it appears that the SPEI in the region did not respond to the break in
temperature (Figure 4c,f). However, the abrupt behavior of the SPEI in most of the NC sites
in the 1990s (Figure 4f) may be an atmospheric thermodynamic response to the transition
in mean temperature to positive anomalies (Figure 3b,e,h) in the region in the mid- to late
1980s (Figure 4b,e).

Additionally, the characteristics of dry–wet abrupt change (difference between post-
and pre-mutation) at the regional scale in China were statistically examined to identify
whether the jump point was caused by an increase or decrease in the means of the vari-
able. Breakpoint detection allowed the investigation of any possible significant changes
in climate parameters since the 1950s. The results of the homogeneity test for climatic
variables are shown in Figure 5. Figure 5a–c display the proportion of sites where the
variable suddenly increased (red) and decreased (blue) after experiencing a significant
breakpoint. A non-significant change in precipitation (Figure 5a) and a significant posi-
tive change in temperature (Figure 5b) at all stations (100%) were observed in the NEC
region, resulting in a significant negative anomaly experienced by the SPEI over most of
NEC (58.82%) (Figure 5c). Precipitation shifted from negative anomalies (low degree) to
positive anomalies (high degree) in some parts of NWC (29.03%) at the 0.05 significance
level (Figure 5a). A majority of the NWC sites (96.77%) experienced a significant positive
step-change in surface air temperature (Figure 5b). The combined effect of significant posi-
tive anomalies in temperature (96.77%) and significant positive anomalies in precipitation
(29.03%) can explain the significant negative offset in the SPEI over most of the NWC
(64.52%) sites (Figure 5a–c). Figure 5d–f illustrate the average offset in the means after
the significant (p < 0.05) break of climate parameters compared to the means before the
break; Figure 5g,f,i illustrate the average offset in the means after the break (both significant
and non-significant) of climate parameters compared to the means before the break at
all sites in the regions. Overall, regional dry–wet climate change in China had a large
spatial variability, especially in EC and SCC (Figure 5c,f,i). Precipitation in the NC region in
general underwent a transition from positive anomalies to negative anomalies (Figure 5d,g).
The region also experienced a significant positive temperature anomaly, with the mean
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temperature after the mutation increasing by 1.416 °C before the mutation, making it the
sub-region with the highest mean temperature deviation in China (Figure 5e,h). The combi-
nation effect of decreasing precipitation and significantly increasing temperature resulted in
a significant transition from wetting to drying in most (86.36%) of the NC sites (Figure 5c),
and this significant change caused the means in the SPEI to experience a negative offset of
−0.799 (Figure 5f). EC precipitation experienced a positive anomaly in general (Figure 5d,g),
and air temperature also generally experienced an alternation from negative to positive
anomalies (Figure 5e,h). The increase in EC precipitation (21.59 mm; Figure 5g) combined
with a significant increase in temperature (1.028 °C; Figure 5h) led to an alternation in the
regional climate towards dryness (SPEI offset of−0.093; Figure 5i), which caused the spatial
heterogeneity in dry–wet variability (Figure 5c,f,i). The spatial heterogeneity of precipita-
tion variability in SCC can be observed from Figure 5a,d,g. A majority of the (93.33%) SCC
sites experienced a significant transition from negative anomaly to positive anomaly (mean
deviation of 0.809 °C; Figure 5b,e). Hence, the high variability of precipitation variation in
SCC may be the main reason for the spatial heterogeneity of regional dry–wet variability
(Figure 5c,f,i). In terms of the SWC region, a negative deviation in precipitation (−20.15 mm;
Figure 5g) combined with a significant positive deviation in mean air temperature (0.724 °C;
Figure 5h) resulted in an alternation from wetness to dryness for most (67.86%) of the SWC
sites (−0.390; Figure 5i). These results demonstrate that a shift in meteorological variables
has occurred in space and time, which could be attributed to climate variability and change,
which have caused perturbations in atmospheric air circulation [118]. Moreover, most
(55–90%) of the NC, NWC, NEC, and SWC sites experienced significant negative transitions
in the SPEI since the 1950s, with the mean offsets of around −0.80–−0.60 (Figure 5c,f).
This implies a significant tendency to drying in these areas and a serious drought-induced
environmental challenge.

4.3. Spatial Variations in Wetting and Drying Trends over Mainland China

This section demonstrates the geographic pattern of climate trends using meteorologi-
cal stations so as to describe the spatio-temporal variability of dry–wet regimes over the
country. The MMK test was used to determine the temporal trends of the climatic factors
(precipitation and temperature) controlling drought evolution and the SPEI. The Z-statistic
at the station level indicates the spatial pattern of drying and wetting trends (Figure 6a,c,e).
The spatial distribution of precipitation/temperature/SPEI variability was plotted to assess
the spatial dynamics of dry–wet climate in China since the 1950s (Figure 6b,d,f).

The overall trend of precipitation was non-significant (p > 0.05) over the last 71 years,
yet the spatial variation had obvious regional characteristics (Figure 6a,b). Figure 6a
identifies a significant upward trend in precipitation in most of NWC (p < 0.01); NC
and SWC precipitation predominantly experienced a non-significant downward trend
(p > 0.05). There was no significant trend in NEC precipitation (Figure 6a), which is con-
sistent with the preceding results (Figure 3a,d). The significant increasing trend of precip-
itation was mainly concentrated to the west of 100° E (Figure 6a); the rising magnitude
of precipitation was higher in Eastern China near 30° N, with a changing rate of around
20–40 mm/decade (Figure 6b). The high spatial heterogeneity of precipitation variability
in the SCC region can be observed from Figure 6b. The Sen slope indicates a trend magni-
tude of 0.15–0.50 °C/decade in mean air temperature over most of China since the 1950s
(Figure 6c,d). Each of these regions has experienced significant (p < 0.01) warming over
the past 71 years. In view of the geographical distribution, the increase in temperature to
the north of 30° N is noticeably higher than that to the south of 30° N, with a trend slope
of approximately 0.30–0.50 °C/decade and 0.15–0.30 °C/decade, respectively (Figure 6b).
This may imply a regional signal of the temperature response of the Northern Hemisphere
to global warming. The temperature trends over the study area are same as the global
warming levels, which shows that the highest rate of warming of the Earth occurred after
1960, attributed to warmer surrounding oceans [119].
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Figure 5. Percentage of stations with significant breakpoints to the total number of stations in
the sub-regions during 1951–2021: (a) precipitation; (b) temperature; and (c) the SPEI. Red refers
to an increase in means after a significant mutation (above x-axis); blue refers to a decrease in
means after a significant mutation (below x-axis). Average difference (jump of means) between
post- and pre-mutation for stations with significant breaks in the sub-regions: (d) precipitation;
(e) temperature; and (f) the SPEI. Average difference (jump of means) between post- and pre-mutation
for all stations in the sub-region: (g) precipitation; (h) temperature; and (i) the SPEI. Red (blue) denotes
an increase (a decrease) for post- compared to pre-mutation. Subfigures (d–f) consider statistically
significant breakpoints at the 95% confidence level; Subfigures (g–i) consider breakpoints for all
stations in the sub-regions.

In the past 71 years, the dry–wet climate in China has been characterized by pro-
nounced interdecadal variability. In general, the climate in most of Mainland China is
trending towards drought (Figure 6e,f). However, there are distinct regional differences in
wetting and drying climate changes. Figure 6e demonstrates that the climate in most parts
of the NC, NWC, and SWC regions had a significant drying trend at the 99% confidence
level. The EC and SCC areas surrounding 30° N experienced a non-significant (p > 0.05)
wetting trend during the record period (Figure 6e). Figure 6e,f provide evidence of a signif-
icant drought trend (p < 0.05) experienced over most of China during the historical period
(1951–2021). Geographically, the drought trends were statistically significant in the northern
and southern regions, bounded by 30° N, with trend magnitudes of −0.30–−0.20/decade
and −0.20–−0.10/decade, respectively (Figure 6e,f). However, a weak upward trend in
the SPEI, i.e., an increase in wetness, can be found in Eastern China surrounding 30° N,
with a changing rate of approximately 0.003–0.10/decade (Figure 6f). This can be explained
as a combined effect of the increasing trend in precipitation and the increasing trend in
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temperature (Figure 6b,d). The increase in precipitation (atmospheric water supply) offset
the increase in ET (atmospheric water demand) caused by the increasing temperature,
resulting in a weak wetting trend in the region (Figure 6f). In summary, the evolutionary
characteristics of historical droughts showed a large spatial variability among different sub-
regions. The climate in the NEC, NC, NWC, and SWC regions has experienced significant
(p < 0.05) drying trends, while the dry–wet changes in the EC and SCC regions were highly
spatially heterogeneous.

The overall drying trend in China since the 1950s is identified from Figure 6f. However,
the wetting or drying tendency shows different properties for specific regions and/or
for the specific parts of a region [19]. The drying trend shows more significance in
NC region (Figure 6f). This can be explained by the variations in precipitation and
temperature shown in Figure 6b,d. For the NWC region, it can be inferred that the
higher warming (0.30–0.50 °C/decade; Figure 6b) may have offset the increase in pre-
cipitation (0–10 mm/decade; Figure 6d), leading to an intensified drought condition
(−0.30–−0.10/decade; Figure 6f). A previous study reported that in the NWC region,
temperature is the determining factor and that increased temperature and its resulting
increase in ET have a significant impact on drought [13]. An opposite trend of wetting
and drying variations is observed in parts of EC and SCC, i.e., an increase in wetness
(shift from dry to wet; Figure 6f). This can be explained by the increase in precipitation in
these areas (Figure 6b); precipitation is considered to be a determining factor in drought
variations in the southern part of China [13]. This work reveals the consistency of the spatial
distribution of variations in precipitation and the SPEI along 30° N latitude (Figure 6b,f).
Huang et al. [19] indicated that due to increased precipitation, the regions with a wetting
tendency in China are mainly distributed in the Pearl River (south part of SCC) and the
lower reaches of the Yangtze River (central part of EC) south of 30° N. This is mainly due
to the enhanced Western North Pacific Subtropical High (WNPSH), which favors water
vapor fluxes in Southern China, thus increasing precipitation in Eastern China [120]. Since
the water vapor flux in Eastern China and in regions in the vicinity of Eastern China is in
close relation to the interannual variations of the WNPSH, these regions (EC and SCC) are
characterized by higher flood and drought risks.

4.4. Spatio-Temporal Structure of Dry–Wet Transition over Mainland China

Under the current warming context, regional wetting and drying variations are sen-
sitive to different aspects of climate. The potential impact of climate change and/or
variability on regional dry–wet change is mainly its sensitivity to precipitation and tem-
perature variability. In this regard, the abrupt-change detection of climate parameters
provides additional justification related to dry–wet transitions in order to describe the
drought variability in China. The nonstationary behaviors of China’s droughts and their
spatio-temporal relations with climate change processes were investigated for the sake
of revealing the spatial dynamics of wetting and drying transitions since the 1950s. Pre-
cipitation and temperature anomalies before and after the mutation were analyzed using
homogeneity tests and compared with the drought index. Figure 7 shows the spatial and
temporal structure of the significant (p < 0.05) jumps in climate parameters and the spatial
pattern of the variations in dry–wet periods in China over the past 71 years. These results
may improve the understanding of the impact of historical climate change on dry–wet
variation in China.
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Figure 6. Spatial distribution of the Z-statistic for the temporal trend based on the MMK test during
1951–2021: (a) precipitation; (c) temperature; and (e) the SPEI. A Z-statistic greater than 1.96 indicates
a significant trend at the 95% confidence level, and greater than 2.58 indicates a significant trend
at the 99% confidence level. Spatial distribution of the trend magnitude based on the Sen slope
during 1951–2021: (b) precipitation; (d) temperature; and (f) the SPEI. Red (blue) indicates an upward
(downward) trend.

Figure 7a identifies the spatial and temporal heterogeneity of precipitation variation
in Mainland China. Precipitation showed a significant jump from negative anomalies
to positive anomalies in parts of the NWC and EC regions (Figure 7b). Some sites in
the eastern part of SWC and the south-central part of SCC were observed to experience
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significant negative anomalies in precipitation with deviations of around −150–−100 mm
(Figure 7c). The analysis of local temperature anomalies may imply the possible impact
of climate change (i.e., global warming) and variability on local climate [31]. Figure 7d–f
illustrate the spatial structure of temperature anomalies in Mainland China since the 1950s.
Geographically, a significant mutation in temperature occurred in the 1980s in the 40–50° N
(NEC and northern NC) region of Eastern China; most of the area in 20–40° N (south of
40° N) showed a significant breakpoint in temperature in the 1990s (Figure 7d). These
variations correspond to the transition of the mean temperature from negative to positive
deviations, i.e., the shift from cold to warm periods (Figure 7e). The mean temperature offset
was approximately 0.50–1.5 °C in the SWC and SCC (south of 30° N, i.e., low latitudes);
temperature deviation reached 1.50–1.90 °C in most of NEC, NC, NWC, and EC (north
of 30° N, i.e., mid-latitudes) (Figure 7f). Over the NEC and NC regions, the annual mean
temperature after the 1980s was 1.50–1.90 °C above the long-term average value theretofore
(Figure 7d,f). This means that the response of the climate in these regions to the global
warming trend had already emerged as early as the 1980s. These responses were earlier
and more intense than those of most areas south of 40° N latitude (1990s) (Figure 7d,f).

The dramatic changes in the SPEI that began in the 1950s indicate an intense inter-
decadal variability characteristic of the last 71 years of drought (Figure 7g–i). Dry and
wet climate change in China has strong spatial and temporal variability at the local scale
(Figure 7g). In the last 71 years, the SPEI of most of NC, NEC and NWC showed a shift
from positive to negative anomalies in the 1990s; the long-term mean of the SPEI in the
SWC region showed a positive to negative transition in the 1990/2000s with an inflection
point in the dryness and wetness pattern (Figure 7g,h). Figure 7h,i provide compelling
evidence of intensifying meteorological drought conditions in China between 1951 and
2021. The tendency toward drying has dominated most of China since the 1950s (Figure 7h).
Step change analysis indicated that most areas north of 30° N (mid-latitudes) experienced a
transition from wet to dry periods in the 1990s; most areas south of 30° N (low latitudes)
experienced a change from a wetting to drying climate in the 2000s (Figure 7g–i). Figure 7h,i
show the intensification of drought conditions in Mainland China, especially in the NC,
NEC, NWC, and SWC regions. This implies a higher risk of drought events in these areas.

Despite the different wetting and/or drying trends in specific sub-regions, the ho-
mogeneity test (Figure 7h,i) further corroborated the result shown in Figure 6f, i.e., the
extensive drought trends in China. As shown in Figure 7h, the significant deviation in the
mean of the drought index indicates an increase in the drought level at almost all stations.
Examination of Figure 7i shows intense differences in drought variability between different
sites at the regional scale. The southern SCC and southern EC regions have experienced
intermittent wet and dry alternations in space since the 1950s. This may be partly attributed
to perturbations resulting from climate change and variability [31]. These results emphasize
the need to assess the variability of drought characteristics using more detailed spatial data
in order to capture these regional differences [38].

Due to the complex topographic features in China [15,61], the main climate factors,
precipitation and temperature, have an inherent spatial variability, which may result in
different reactions of wet and dry events [31]. Taking one of the most drought-prone
sub-regions, NWC [13], as an example, Figure 7b,c,e,f highlight the shift from warm–dry to
warm–wet climate in the area. However, the increase in NWC precipitation is not sufficient
to change the spatial and temporal structure of the drought trend [40]. The increase
in temperature has contributed to the drought behavior in the region compared to the
precipitation anomaly. Although rainfall is seen as one of the most critical meteorological
variables impacting drought, the effect of temperature rise on the enhancement of drought
frequency and severity is of particular importance, especially in arid and semi-arid regions
such as NWC [121]. Consequently, the increase of drought severity in NWC can partly be
linked to the strong positive feedback between drought and air temperature [38].
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Figure 7. Spatial pattern of the breakpoint year for stations with significant change during 1951–2021:
(a) precipitation; (d) temperature; and (g) the SPEI. Spatial pattern of the difference between post-
and pre-mutation for stations with significant change during 1951–2021: (b) precipitation (red/blue
means decrease/increase after mutation); (e) temperature (red/blue means increase/decrease after
mutation); and (h) the SPEI (red/blue means decrease/increase after mutation). mu1 denotes pre-
mutation; mu2 denotes post-mutation. The bar length indicates the variable’s magnitude. Spatial
pattern of the difference value between post- and pre-mutation for stations with significant change
during 1951–2021: (c) precipitation; (f) temperature; and (i) the SPEI. The meaning of the colors is the
same as (b,e,h), respectively.

Our results report a significant positive step-change in mean air temperature in Main-
land China (Figure 7d–f). A previous study indicated that global warming began around
the 1980s and increased obviously after the mid-1980s, which may be one of the important
reasons for the significant drying trend in Northern China over recent decades [40]. This
study concludes that a significant increase in temperature since 1980s/1990s could explain
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the significant increase in drought severity in NEC, NC, NWC, and SWC (Figure 7d–i). It
has been reported that dry and wet anomalies first appeared in the northern part of Eastern
China (NEC and NC) and then migrated southward to affect Southern China (SCC) [68].
This coincides with the findings of the current study (Figure 7g). The multi-decadal vari-
ations of the monsoon circulation in East Asia and the thermal contrast between inland
Asia and its surrounding oceans may contribute to the dry–wet phase alternation or the
migration of dry–wet anomalies [68]. Overall, the NEC, NC, NWC, and SWC regions have
experienced a significant (p < 0.05) increase in drought status during the record period,
which is closely related to the significant warming in recent decades [40]. Moreover, the wa-
ter shortage and uneven distribution in these sub-regions may even become worse in the
future [13]. The results of this study may provide a reference for the development and en-
hancement of drought adaptation measures among different sub-regions. The current work
suggests that the drying status in Northern China (NWC, NC and NEC) and Southwest
China (SWC) ought to receive more attention from researchers.

4.5. Forecasting of Recent Meteorological Droughts over China and Its Uncertainty

The SARIMA model is used to predict and describe the behavior of a time series. This
model uses the past values of the variables themselves for interpretation and is concerned
with the underlying correlations and the dynamic structure in time series. This study
investigated the changing relations between drought behavior over time using the SARIMA
model. The creation of the SARIMA model depends on the selection of suitable variables
(based on theory). In this regard, the objective is to select the most simplified model with
unautocorrelated residuals. The information criterion is an approach that trades off between
the model fit and the degree of model simplification. This study used the AIC to perform
hypothesis testing to select the best model for describing station-level drought evolution
since 1951. This criterion is based on a model likelihood function and uses the number
of parameters included in the model as a penalty factor. A more simplified model with a
smaller penalty factor identified by the AIC can be considered as the better selection for
two models with an equal fit (i.e., two models with the same likelihood value). In addition,
the estimation results of the regression model are highly robust when there is no serial
correlation in the residual terms. Hence, we performed a time series test on the residual
terms of the model so as to determine that the residuals at different lags are not serially
correlated. In this sense, the aim was to find the most simplified model under the premise
that the residuals have a white noise nature, so that the most simplified model is used to
explain as many dynamic relations as possible. If the test leads to the conclusion that the
residuals have a serial correlation, more lagged terms are added to the regression model,
thus ensuring robustness to the time series dynamic relationship setting.

The 12-month SPEI was used to characterize the annual dry–wet conditions in this
study. The selection of parameters for the SARIMA model followed the procedure described
below. The entire historical SPEI-12 time series (December 1951 to December 2021) was
used to build a SARIMA(p,d,q)(P,D,Q)s model for each station. The ADF test was applied
to examine the stationarity of time series, and the minimization of the AIC was used as
the objective function for the selection of the parameters. Consequently, the parameters
giving the lowest AIC were selected for the forecast model. Meanwhile, each parameter of
the model was ensured to be statistically significant within the 95% confidence interval,
and if not satisfied, then the parameter values were readjusted, combinations of parameters
were traversed again, and the combination with the lowest AIC was included in the model
until all model parameters passed the significance test (p < 0.05). In addition, the residuals
between the actual values of the SPEI-12 and the fitted values of the SARIMA model should
be unautocorrelated and conform to a normal distribution, which were taken into account
in the modeling process as well. Based on the preceding processes, the final SARIMA
models were established for the SPEI-12 at 160 meteorological stations in China.

The developed SARIMA(p,d,q)(P,D,Q)s model parameters and test statistics for the
SPEI-12 time series of 160 stations since the 1950s are shown in Table A2 (Appendix A).
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The modeling information about (partial) selected models (autocorrelation, partial auto-
correlation, residual distribution, etc.) are provided in Appendix A (Figures A1 and A2).
Based on SARIMA model forecasting for station-level drought behavior for the next 12 time
steps (months), the spatial pattern of recent dry–wet conditions and the vulnerability images
of meteorological drought (in 2022) were mapped over China (Figure 8a,b). The findings
could provide meaningful information to policy-makers and stakeholders on which areas
are vulnerable to severe drought/wetness in the near future. Figure 8 reflects the geo-
graphical distribution of dry–wet regimes over China in the year 2022. It provides a spatial
representation regarding recent meteorological drought pattern.

The results indicate that the high-sensitivity areas for drought events are distributed
in NWC, the western part of NC, the western part of SWC, and the southern part of SCC
(Figure 8a,b). The climate in the NEC region of China, the southeastern NC region, and
the eastern EC region is expected to exhibit wetting characteristics in the near future in the
context of intensified drought (Figure 8a,b). Comparative analysis with Figure 1c shows that
the susceptibility areas for extreme climatic events migrate to the northeast relative to the
spatial distribution of the dry–wet conditions in the past (2021) (Figure 8b). In terms of the
dry–wet patterns, the SPEI-indicated drought gravity center moves to the north (western
of NC region) in the near future, and the wetting gravity center moves northeastward
(30–40° N; 105–115° E). Compared to the historical period (2021), the drought severity
is likely to continue to increase over the next year in the NWC region and western NC.
However, the intensity of the recent drought in the western part of SWC and southern
part of SCC may be mitigated (Figures 1c and 8b). Meteorological drought will intensify
in the northern part of NWC in the near term; the risk of drought in the western NC will
increase, accompanied by northward migration (Figure 8b). The eastern part of the NWC
region (30–40° N; 100–110° E) exhibited greater spatial variability in dry–wet conditions
(Figure 8a,b). These drought movement tracks characterized by the SPEI are indicative
of natural and climatic changes at the local scale in Mainland China. The results indicate
that the NWC, western NC, and western SWC regions (20–50° N; 80–105° E) will continue
to face severe challenges from drought in the near future (Figure 8a,b). These results
could be a wake-up call for the areas prone to extreme dryness and wetness events in the
near future (2022). This information further contributes to the systematic consideration of
specific drought adaptation measures and water management strategies by stakeholders in
the face of climate change. Nevertheless, extreme weather assessment at a more detailed
regional scale would still be beneficial to draw more reliable and directed conclusions.
Furthermore, the inclusion of covariates in ARIMA/SARIMA models to improve the model
fit should be considered in the future in order to establish drought forecasting models
with influence factors (such as the autoregressive integrated moving average model with
exogenous input variables (ARIMAX)). This further implies the importance of drought
attribution analysis based on mathematics versus atmospheric dynamics, such as statistical-
and physical-based teleconnection.
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Figure 8. Spatial pattern of drought forecasting for the next year (2022) based on the SARIMA model
over China: (a) the SPEI value; (b) classification of dry and wet status. Red denotes dryness; blue
denotes wetness.

Model validation is an important step in forecasting. In this study, the whole available
historical time series of the SPEI-12 was used to verify the model results. The AIC, MAE,
MSE, RMSE, R2, and NSE were used to evaluate the goodness-of-fit of the developed
forecasting models. These indicators have been widely used to evaluate the performance of
different prediction models (e.g., [46,47,74,75,78–80,82,96,97]). To illustrate the uncertainty
of forecasting results in space, the geographical distribution of the performance metrics was
plotted, as shown in Figure 9, in which the blue (red) refers to the model error (accuracy)
indicator. A model with better performance is associated with a larger accuracy measure
and a smaller error measure.

Overall, the SARIMA model for the NWC region can better characterize the historical
behavior of drought in the area (Figure 9a). The established models for dry–wet forecasting
in the NWC region provide a good fit to the SPEI time series (Figure 9b–f). The developed
SARIMA model has the second-best ability to characterize the drought evolution in the NC
region (Figure 9a–f). Therefore, the forecasting of recent wetting and drying regimes for
these areas can be considered more credible. A latitudinal distribution of the prediction
errors based on the SARIMA model can be observed from Figure 9a–d. This distribution
corresponds to a general increase (decrease) in error values with decreasing (increasing)
latitude in the Northern Hemisphere. However, the accuracy metrics (R2 and NSE) of the
SARIMA models exhibit greater spatial heterogeneity at the regional scale (Figure 9e,f).
The uncertainty analysis on the drought forecast suggests that the forecasted dry and wet
status should be inferred with caution in those areas with lower model accuracy and/or a
higher error level (Figure 9).
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Figure 9. Spatial distribution of performance metrics for drought forecasting based on the SARIMA
model at 160 stations over China: (a) AIC; (b) MAE; (c) MSE; (d) RMSE; (e) R2; (f) NSE. Blue denotes
the error measure (the smaller value, the higher the accuracy); red denotes the accuracy measure (the
larger the value, the higher the accuracy).

5. Discussion
5.1. Influence of Drought Index Selection on Dry–Wet Variations

The definition of a drought index is the foundation of drought research [95]. Selecting
appropriate drought indices is crucial in analyzing representative droughts and provides
meaningful information for achieving regional drought mitigation strategies under cli-
mate warming impact [30]. Due to spatial comparability and rationality for monitoring
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dryness–wetness events, the PDSI and SPEI are the indices most widely used for drought
monitoring [122]. The PDSI is calculated from a water balance model that is forced by
monthly precipitation and temperature; however, it may give biased results in the context
of climate change [9]. In addition, the PDSI has a fixed timescale that cannot well represent
the accumulation effects of precipitation extremes [123]. The calculations of the SPI and
SPEI use a climatic balance equation based on precipitation and/or temperature as the
input data [44,122], which are suitable for meteorological drought caused by precipita-
tion deficit [34]. The temperature controls the water-holding capacity of the atmosphere,
and thus influences the atmospheric demand for moisture, which strongly influences
ET [27]. In this respect, the SPEI provides a more robust result for drought evaluation
compared to the SPI, since it takes ET into consideration [92]. The SPEI value is determined
by both precipitation and PET [37]. The concept of PET was initially explored by Thornth-
waite [94] and Penman [124]. PET reflects the atmospheric demand for moisture, which is
the maximum amount of water that can be lost to the air from a surface with an unlimited
supply of water under a given atmospheric condition [125]. Hence, the selection for the
calculation method of PET might affect the evaluation results of drought [24]. The PM
method accounts for changes in energy, humidity, and wind speed [24]. It is known that
the PM model excels in capturing the dynamics in evaporative demand and produces the
most reasonable estimation of PET among different formulas [92]. Unfortunately, these
data are not readily available in most global areas, and they generally suffer from temporal
and spatial inhomogeneities in the observations [27]. However, estimating PET using the
Th method based on monthly precipitation and temperature makes the SPEI overestimate
the impact of air temperature in areas of severe aridity [34]. In this sense, regional water
balance is important for the selection of drought indices [34]. A recent study has discussed
the applicability of the SPEI in China and found that it is better in humid and sub-humid
areas than in arid areas [85]. This is because the ratio of ET anomaly (caused by tempera-
ture variation) in the surface water balance is relatively large in arid and semiarid regions
with respect to humid regions [95]. For arid regions, PET (i.e., the evaporative demand
by the atmosphere, which represents the highest possible ET) generally far exceeds the
actual moisture supply, which may lead to the overestimation of the actual amount of
water transferred to the atmosphere [126]. This leads to the fact that the climate condi-
tion indicated by the SPEI may present a drying signal [127]. A drier result is therefore
commonly obtained when the Th method is used to estimate PET [95]. It has been re-
ported that different drought indices evaluate the drought strength at varying degrees
for specific regions in China, while they all well capture drought conditions through long
time series [92]. Another study has documented that there are differences in drought area
values in China as measured by several drought indices, while the interannual variability
and long-term trends of these indices are consistent [95]. In summary, different drought
indices share similar results no matter the entire country or certain regions to some extent,
illustrating that these indices are all extensively appropriate and practical on different
spatial scales [92]. With regard to the calculation of PET, some simpler formulations, which
can account for certain aspects of drought related to atmospheric demand for moisture
through temperature dependencies, still have merit provided their shortcomings are rec-
ognized [27]. Consequently, it is reasonable to suggest that the Th-equation-based SPEI
provides reliable results, although the increase in meteorological drought in response to
climate (natural and/or anthropogenic) warming in Northern China may be somewhat
overestimated [24]. However, further progress is necessary if we are to adequately depict
the changes in drought and water resource availability such as improving the modeling of
ET on large scales [27]. Additionally, reconciling different measures of aridity to address
various environmental issues is a crucial topic that needs to be addressed in future research,
particularly in a rapidly changing climate [125].



Atmosphere 2022, 13, 745 32 of 54

5.2. Climatological Attribution of Regional Dry–Wet Variations over China

The distribution of drought results from the dynamic interplay among climate vari-
ables [10]. Generally, precipitation and air temperature are considered the main impact
factors of dry–wet changes [60]. This study analyzed the spatio-temporal pattern of dry–
wet variation with a 12-month SPEI. The long-term trend of dry–wet change in China since
the 1950s was analyzed using the MMK test. The Z-statistic and change magnitude for
each station embody the spatial pattern of the dry–wet trend (Figure 6). The positive and
negative trends detected represent trends toward wetter and drier regimes, respectively. It
can be observed from Figure 6a,b that variation in annual precipitation shows a distinct
heterogeneity in space. The eastern part of the northern region (NC) shows a distinct
downward trend (dryness), while the western part (NWC) shows a distinct upward trend
(wetness). A preceding study has shown that precipitation increased in Northwestern
and Southeastern China, but decreased in the northeast [123]. Precipitation variability in
Eastern China has shown a positive, negative, and positive spatial structure from south to
north since 1990 [128]. These descriptions support the findings of this study (Figure 6a,b).
Figure 6c,d reflect the long-term trend and relative variability of annual mean temperature
in China during 1951–2021. It has been reported that the increasing rate of the tempera-
ture tended to increase with latitude across China in the past 70 years [57], which is in
accordance with the results of the present study (Figure 6d). The eastern region (east of
100° E) shows a temperature increase with latitude increase, i.e., the higher the latitude,
larger the warming magnitude [40] (Figure 6d). However, the attribution assessment for
the geographic pattern of anomalous warming requires caution. If the change in surface
air temperature is the result of urbanization (heat island effect), the warming increase
with higher latitude cannot be explained [40]. It has been documented that the spatial
structure of the change in temperature anomalies in Northern China in the latest 15 years
is possibly not only related to urbanization, but the large-scale forcing factor [40]. Never-
theless, this study could provide a useful implication for the geographic signatures of the
China/Northern Hemisphere climate response to global warming.

Trend analysis and mutation detection were used to analyze the changes in annual
drought from the perspective of the spatial characteristics of China. This paper attempted to
further explore the impact of climate change on the trend and nonlinear behavior of regional
drought [24]. Figure 6e,f provide the spatial representation for the trend of the SPEI-12.
The distinct regional characteristics of dry–wet change in China over the last 71 years were
identified. The positive trend was mainly concentrated in Southeastern China (EC and
SCC); the rest of the study area mainly showed a negative trend. The SPEI in Northern and
Southwestern China mainly showed a negative trend [31]. A recent study has shown that
in the past 20 years, the SPEI in China decreased at a rate of 0.008/a. Spatially, 39.92% of
China’s regional SPEI showed an upward trend, and 60.08% of its regional SPEI showed a
downward trend [91]. Our results indicate a distinct tendency toward drought in Northern
China (NEC, NC, and NWC) and Southwest China (SWC); the drying trend (p < 0.05) is
statistically significant (Figure 6e,f). The increase in drought severity is commonly due to
increased ET and decreased precipitation [20]. A previous study has indicated that varia-
tions in drought in Northern China are related to regional warming [40]. The temperature
increase in this region leads to a surface evaporation increase, which enhances the drying
trend caused by the decrease of precipitation. This finding is consistent with the findings
of Yao et al. [123], who detected that the droughts in arid and semiarid areas are strongly
affected by global warming. This is mainly because global warming leads to temporal
changes in regional precipitation levels and changing water flow dynamics, thus leading to
changing PET and aggravating drought [57]. Moreover, the El Niño–Southern Oscillation
(ENSO) and Pacific Decadal Oscillation (PDO) are considered important factors affecting
the changes in meteorological and agricultural droughts in NEC [33]. It has been reported
that NWC has been warming continuously since 1961 and has also became wetter since
the late 1990s [59]. This means that the increase in atmospheric water demand caused by
climate warming exceeds the increase in precipitation [21]. The increasing precipitation
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in NWC leads to a decrease in drought; the air temperature anomaly is also considered to
play an important role in drought occurrences, greatly amplifying the evaporative demand
and thereby increasing the drought intensity and impact [24]. The increase in ET due to
global warming in the future, coupled with the typical continental monsoon climate, will
play an important role in the intensified drought in the region [20,24].

Taking NC, a transition region sensitive to moisture variations [40], as an example, this
study showed that the region has experienced a highly significant (p < 0.01) drying trend
since the 1950s (Figure 6e,f). An earlier study has indicated a drying trend in Northern
China east of 100° E, and the trend appears to have increased since 1990, with slightly
increasing precipitation in parts of the area insufficient to change the spatio-temporal
structure of the drought trend [40]. Thus, it is reasonable to suggest that the significant
drying trend in NC is related to regional warming. The increasing temperature in the region
leads to an increase in surface evaporation, which exacerbates the trend of droughts caused
by decreased precipitation. This finding is consistent with Leng et al. [129], who found that
global warming is projected to increase the long-term trend of water deficit in these regions
(NC) [129,130]. A previous study has shown that there has been a significant drying trend
and jump variation from wet to dry periods in NC since the 1950s [36]. These changes are
related to that of SST over the central Pacific, northern Pacific and tropical Pacific, as well as
the climate shift over these areas [36]. Another study investigated the century-scale drought
variability in NC during 1900–2010 and detected a transition from significant wetting to
significant drying around 1959/60 [51]. A study also found that approximately 70% of the
drying trend during 1960–1990 originated from 50–70-yr multidecadal variability related to
the PDO phase changes [51]. The PDO− (PDO+) corresponds to drier (wetter) conditions
in NC. In addition, a weakened land–sea thermal contrast in East Asia from a negative to a
positive PDO phase also plays a role in the dry conditions in the region by weakening the
East Asian summer monsoon [51].

A recent study has indicated that the main reason for the variations in the frequency
distribution of droughts in SWC is the combined effect of changes in precipitation and ET [4].
The mutual reinforcement of these effects will promote the drought process in the area,
and thus change the regional arid/humid pattern [21]. It has been reported that although
decreasing precipitation has played an important role in the drying trend, recent warming
has increased subsequent atmospheric moisture demand through increased ET [15], leading
to drying over SWC (Figure 6a,c,e). This study showed a significant (p < 0.05) transition
from negative to positive temperature anomalies in SWC since the 1990s (Figure 7d),
and the effect is exacerbated by the significant decrease in precipitation in parts of the area
(Figure 6a). The combination of the two can explain the significant shift in dry–wet regimes
(from wet to dry) in SWC during 1990s/2000s (Figure 7g–i). In addition, the positive
temperature anomaly showed an upward trend in the 1980s and early 1990s and continues
to date (Figure 7d–f). In terms of the impact of the temperature factor on evaporation,
warming will lead to a PET increase, unfavorable for surface water maintenance, which
will become an important factor inducing and enhancing drought and drying trends [44].
However, from the perspective of large-scale change, warming is advantageous to the
increase in precipitation in some areas of the globe [40]. Given this context, considering
the impact of temperature on dry–wet variation needs to incorporate the variation in each
component of the surface water budget, e.g., the simultaneous increase of precipitation and
evaporation [40]. An important fact to notice is that the spatial structure of the dry–wet
transition in Eastern China has been missing in the last 71 years (Figure 7h,i), while the
SPEI exhibited a large area of positive variability in these areas (Figure 6e,f). The positive
relative variability of precipitation in Southeastern China (around 30° N east of 105° E)
shown in Figure 6a,b reflects the trend of increasing precipitation in the last 71 years. Hence,
it can be concluded that precipitation is an essential factor causing the dry–wet change in
the central part of EC. This reflects the complex interactions between the dry–wet condition
and environmental factors (e.g., precipitation and temperature) among different regions in
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China, which requires a deeper understanding of their formation mechanisms from the
perspective of climate dynamics.

Overall, climate in China is evolving toward dryness (Figures 6e,f and 7h,i). This
conclusion is supported by several recent studies [13,17,91,105]. This drought variability
appears to be associated with changes in high temperature events (Figures 6c,d and 7e,f).
The consistency in the spatial patterns of temperature and drought trends suggests that
temperature has a crucial effect on dry–wet climate change [44]. One explanation for
this is that global temperatures are projected to increase gradually in response to climate
change, leading to clear increases in ET and frequent and long-duration drought events [40].
The warming is the main reason for the discrepancy [40]. A recent study reported that heat
and drought events in China have been increasing since the late 1990s, possibly due to the
combined effects of the long-term trend of global warming and multi-decadal/multi-annual
variability, such as the ENSO, PDO, and Atlantic Multidecadal Oscillation (AMO) [131]. An-
other study suggested that with increases in greenhouse gas concentrations, the droughts in
Central and Western China will become more severe, and drought will spread to the eastern
parts of China [24]. Consequently, drought conditions tend to increase in space (expansion)
and time (intensification) [131]. Climate descriptions regarding dry–wet variability are
of great value for studying climate fluctuations [73]. The spatio-temporal structure of
the dry–wet transition contributes to deepening the understanding of historical dry–wet
evolution and its connection with local climate change processes, which could serve as
quantitative evidence of the intensification in meteorological droughts over China since
the 1950s.

5.3. Development of Drought Forecasting Models

Natural calamities such as drought have taken a huge toll on human life and re-
sources [81]. Early indication of possible drought can help to set out drought mitigation
strategies and measures in advance [80]. Drought forecasting can effectively reduce the
risk of drought [96] and has a key role in risk management and drought readiness and
alleviation [112]. Given this, efficient mitigation plans must rely on precise modeling
and forecasting of the phenomenon [79]. A key challenge is developing accurate drought
forecast model and understanding a model’s capability to examine different drought char-
acteristics [97]. The SPEI has been proven to be an ideal tool for use in characterizing
drought severity [132], and the 12-month SPEI adequately reflects the interannual drought
pattern when used as the drought forecast index [58]. In this study, the SARIMA model was
used to forecast the dry–wet behavior in China for the next year. The SPEI at a 12-month
timescale was used as a drought quantifying parameter. The forecast results of the final
selected models were assessed using six performance measures (AIC, MAE, MSE, RMSE,
R2, and NSE). The results of the assessment confirmed the capability of the developed
models to fit historical drought evolution with reasonable accuracy, implying the appropri-
ateness of these models as tools for drought warning systems. Hence, this study considers
the SARIMA model as a valuable tool for drought forecasting, which may contribute to
developing a feasible forecasting approach. The key to understanding the dry–wet dif-
ference is to depict the spatial variability of the index value and the drought category
it represents [97]. The differences need to be understood and incorporated in drought
monitoring and warning systems and preparedness plans [133]. Drought forecasting also
plays an important role in the planning and management of water resource systems by
reducing drought-related impact significantly [80].

However, the limitations of this study should be acknowledged. The hydrological time
series consists of nonlinear characteristics and various timescales [112]. This means that a
(hydrological) time series often includes both linear and nonlinear correlation structures [75].
The ARIMA model, as one of the linear statistical methods [75], has been identified as
commonly being limited in the forecasting for nonstationary and nonlinear drought [5]. A
previous study demonstrated that the SARIMA model can be used for drought forecasting;
however, the absolute errors of the model are still large and challenging [32]. Over recent
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decades, machine learning (ML) methods have greatly contributed to the advancement
of data-driven forecasting systems that provide cost-effective solutions and better perfor-
mance [75]. The ANN models have been a famous black box model for forecasting hydro-
logical series in recent decades [134]. Although linear models such as ARIMA give better
forecasting accuracy with stationary time series data, nonlinear methods such as the ANN
are more appropriate for nonstationary datasets [77]. The studies in the literature mainly
focus on linear or nonlinear modelings individually [46,47,74,76,78,80–82,97,113,134,135]
or a combination of them [75,77,79,96,111,112,136]. The combination of linear and nonlinear
models exploits the advantages of each individual model type (i.e., linear and nonlinear)
and complexity levels (i.e., single or hybrid) in time series forecasting [75]. Given this,
future research is recommended to perform multi-scale forecasting of drought indices using
hybrid linear and nonlinear models (e.g., [79,96]).

The ARIMA model demonstrates better capability in short-term forecasting compared
to long-term forecasting [16]. Increases in lead times decrease the forecasting accuracy for
both qualitative and quantitative forecasting [113]. However, increases in SPEI timescales
provide more accurate results [113]. This may be attributed to the fact that the increase in
the length of the timescale effectively reduces the noise of the SPEI series [16]. A preceding
study has reported that long short-term memory (LSTM) in recurrent neural networks
can be used to predict the drought indices, which can handle the real-time nonlinear
data well [81]. A recent study has suggested that the hybrid ARIMA-LSTM model has
higher prediction accuracy than the independent model, indicating that the hybrid model
contributes to improving the prediction accuracy and is more suitable for long-term-scale
meteorological droughts in China [96]. Hence, future work should also look towards
involving the dry–wet regime to forecast using deep learning techniques [97].

In terms of meteorological droughts, this study relied on limited meteorological
stations that are not capable of covering the entire study area, while stations that cover the
whole domain could provide a better outcome. High-spatial-resolution maps can contribute
to the accuracy and visualization of the results; hence, the study will benefit from high-
resolution datasets [90]. The parameters of the SARIMA models among different stations
have regional heterogeneity (Table A2), which depend on the natural conditions such as
the underlying surface, geographical location, and climatic characteristics [76]. However,
it is difficult to accurately measure drought processes using only meteorological data.
By comprehensively considering the factors such as precipitation, temperature, vegetation
growth, and so on, drought can be monitored and forecast more accurately [76]. In this
sense, future research will consider forecasting models driven by combined meteorological
and remote sensing data for drought monitoring. In addition to this, studies can also
consider climatic and environmental change factors that influence each type of drought [90],
especially considering the possible nonlinear effects of certain climate drivers on drought
events [12], such as the El Niño phenomenon [81].

6. Conclusions and Recommendations
6.1. Conclusions

The annual dry–wet regime was described by the SPEI by a 12-month time window.
The statistically significant temporal variability of drought was identified using trend and
homogeneity tests. The similarities and differences in droughts during dry–wet periods
and their dynamic links to climate change processes were discussed through the analysis of
climate breakpoints and dry–wet variability in the study domain. In addition, the SARIMA
model was applied to fit and forecast the station-level drought behavior in the last 71 years.
On this basis, the spatial pattern of dryness–wetness hotspots in China for the next year was
mapped in a warming environment. The main conclusions can be summarized as follows:

(i) The MMK test showed the interannual variation characteristics of intensified mete-
orological droughts in China. The SPEI showed an alternation from positive to negative
anomalies since the 1950s, indicating that the six regions have experienced drying trends
during the last 71 years, among which the NC region showed the most pronounced in-
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terdecadal drying trend, with a significant (p < 0.05) decreasing trend of the SPEI at the
majority (68.18%) of the NC sites, i.e., an increase in dryness. In general, the intensified
trend of the drying level in China from intense to weak was in the order of NC, NWC, SWC,
NEC, SCC, and EC.

(ii) The annual precipitation in most of China did not show significant abrupt changes
since the 1950s, except for precipitation means in parts of NWC showing a movement from
negative to positive anomalies. The mean air temperature at nearly all sites experienced a
significant change-point during the 1980s/1990s, showing an abrupt alternation from cold
to warm periods. The air temperature in NEC changed significantly in the late 1980s (1988);
the breakpoint in air temperature at most of the NWC sites occurred in 1997; the year 1994
was the break year from the cold period to the warm period in EC. The break pattern of the
SPEI showed a large temporal heterogeneity compared to the climate factors controlling
for dry–wet variability (precipitation and temperature). The SPEI in NWC experienced a
shift from positive to negative anomalies around 1996, indicating an inflection point in the
dryness–wetness pattern.

(iii) A non-significant step-change in precipitation and a significant positive jump
in temperature at all stations (100%) in NEC resulted in a significant negative anomaly
experienced by the SPEI over most (58.82%) of the NEC sites. The combined effect of
decreasing precipitation (−29.03 mm) and significantly increasing temperature (1.416 °C)
in NC resulted in a significant shift from wet to dry in most (86.36%) of the NC sites,
causing the SPEI means to experience a negative offset of −0.799. The combined effect of
significant positive anomalies in temperature (96.77%) and significant positive anomalies
in precipitation (29.03%) can explain the significant negative offset in the SPEI means
over most (64.52%) of NWC. The dry–wet change at the regional scale showed a high
spatial heterogeneity, especially for EC and SCC. The weak increase in EC precipitation
(21.59 mm) combined with a significant increase in EC temperature (1.028 °C) led to an
alternation in the climate towards dryness (SPEI offset of −0.093) and spatial variability in
regional dry–wet variation. A majority (93.33%) of the SCC sites experienced a significant
transition from negative to positive temperature anomalies (0.809 °C); the precipitation
variability in SCC had spatial heterogeneity, which may be the main reason for the spatial
heterogeneity of the dry–wet change in the region. For SWC, the combination of an overall
negative deviation in precipitation (−20.15 mm) and a significant positive deviation in
air temperature (0.724 °C) resulted in a climate shift from wetness to dryness over most
(67.86%) of the SWC sites (SPEI offset of −0.390). Overall, the SPEI at most sites (55–90%)
in NC, NWC, NEC, and SWC experienced significant negative alternations since the 1950s,
with mean offsets of approximately −0.80–−0.60, implying a significant drying tendency
in these regions and a serious drought-induced environmental challenge.

(iv) The general trend of annual precipitation was non-significant in China, yet the
spatial variation had obvious regional characteristics. A significant (p < 0.01) upward trend
was exhibited in precipitation in most of NWC; the precipitation in NC and SWC mainly
showed a non-significant downward trend; there was no significant trend in NEC precip-
itation. The significant uptrend of precipitation was mainly concentrated to the west of
100° E; the rising magnitude of precipitation was higher in Eastern China near 30° N, with a
changing rate of 20–40 mm/decade. The trend magnitude of 0.15–0.50 °C/decade in mean
annual temperature was shown in most of China. Each of these regions has experienced a
significant (p < 0.01) warming since the 1950s. The upward magnitude in temperature in
the northern part of 30° N was noticeably higher than that in the southern part of 30° N,
with trend slopes of 0.30–0.50 °C/decade and 0.15–0.30 °C/decade, respectively. A latitu-
dinal distribution exists in the China/Northern Hemisphere air temperature response to
climate warming, with a higher upward magnitude shown in temperature at high latitudes.

(v) The climate in China is tending towards a drying regime; however, the drought
evolution has a large spatial variability at the regional scale. The climate in NEC, NC, NWC,
and SWC experienced a significant (p < 0.05) drying trend, while the dry–wet change in EC
and SCC showed high spatial heterogeneity. EC and SCC surrounding 30° N have experi-
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enced a non-significant (p > 0.05) wetting trend since the 1950s. Geographically, the drought
trends were statistically significant in Northern and Southern China, bounded by 30° N,
with changing rates of −0.30–−0.20/decade and −0.20–−0.10/decade, respectively. This
study reported the consistency of the spatial distribution of variations in precipitation and
the SPEI along 30° N latitude. A weak upward trend in the SPEI, i.e., an increase in wetness,
was shown in Eastern China surrounding 30° N, with a trend slope of 0.003–0.10/decade.
This is closely related to the increase in precipitation in these areas (mainly in EC and SCC).

(vi) Precipitation in parts of NWC and EC had a significant shift from negative anoma-
lies to positive anomalies, and that in the eastern part of SWC and the south-central part
of SCC experienced significant negative anomalies. The significant change-point in tem-
perature occurred across 40–50° N (NEC and northern NC) of Eastern China in the 1980s;
the area spanning 20–40° N (south of 40° N) showed a significant break in temperature
in the 1990s. The temperature means’ offset was approximately 0.50–1.5 °C in SWC and
SCC (south of 30° N), while that reached 1.50–1.90 °C in NEC, NC, NWC, and EC (north
of 30° N). On average, the response of the climate in Northern China (mainly in NEC and
NC) to climate warming had already emerged as early as the 1980s. These responses were
earlier and more intense than those south of 40° N latitude (in the 1990s).

(vii) The homogeneity test further corroborated the extensive drying tendency in
China. The movement of the SPEI means indicated that the drought level is increasing
at almost sites except for a part of Southeastern China (EC and SCC). The areas north
and south of 30° N experienced a climate shift from wet to dry in the 1990s and 2000s,
respectively. The dry–wet anomalies first appeared in the northern part of Eastern China
(NEC and NC) and then migrated southward to affect Southern China (SCC). In terms
of climate change, a significant positive anomaly in air temperature was experienced by
almost sites in China. The significant increase in the mean temperature since 1980s/1990s
may highly explain the significantly intensified drought status in NEC, NC, NWC, and
SWC. Northern and Southwestern China experienced a significant (p < 0.05) increase in the
drought level since the 1950s, which is strongly associated with significant warming over
recent decades.

(viii) Drought forecasting indicates that severe drought areas are distributed in NWC,
the western part of NC, the western part of SWC, and the southern part of SCC in the near
future. The climate is expected to show a wetness status in NEC, the southeastern part of
NC, and the eastern part of EC. The susceptible areas for extreme weather events migrated
to the northeast relative to the dry–wet condition in the past (2021). In view of the dry–wet
pattern, the SPEI-indicated drought gravity center moved northward (western part of NC),
and the wetness gravity center moved northeastward (30–40° N; 105–115° E). Compared
to 2021, the drought severity will continue to increase in the next year in NWC and the
western part of NC. The intensity of recent droughts in the western part of SWC and the
southern part of SCC may be mitigated to some degree. Overall, NWC, the western part
of NC, and the western part of SWC (20–50° N; 80–105° E) will continue to face severe
challenges from droughts in the near term.

(ix) The SARIMA models for NWC can better characterize the drought behavior in
the area. The developed SARIMA models have the second-best capability to describe the
drought evolution in NC. The forecasting of dry–wet conditions for the northern part of
China can be considered more robust. The error metrics of the forecasting model showed
a latitudinal distribution; this distribution corresponds to a general increase (decrease)
in errors with decreasing (increasing) latitude in the Northern Hemisphere. This means
that the SARIMA model may have a better ability to forecast the dry–wet variation at
high-latitude than at low-latitude areas.

6.2. Limitations and Recommendations

Drought is defined as a natural phenomenon in which the natural amount of water
in an area is lower than the normal level [13]. This has negative impacts on production in
numerous industries and people’s lives, especially in the context of climate change. China
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is an important importer and exporter of agricultural products in the world [23]. Due to
its high-frequency, long-duration, wide impact range, and large delayed impact, drought
has become the most serious meteorological disaster affecting my country’s agricultural
production [89]. This study attempted to understand the spatio-temporal variability and
nonlinear behavior of the dry–wet regime at the interdecadal scale in China since the 1950s.
Preceding studies have mainly focused on specific types or regions of drought, and few
have examined the temporal and spatial structure of the dry–wet condition related to
climate change. In this regard, the pattern of dry–wet variability presented by differences
in spatial and temporal structure provides additional interpretations for drought-related
climate change processes during the historical period. Climate and dry–wet status have
obvious characteristics of decadal trends and jump changes [36]. These results may be
helpful in exploring the spatial heterogeneity in dry–wet trends and for supplementing
the study of the meteorological drought pattern in China in a changing environment.
On the other hand, severe drought and wetness have serious impacts on human society
and the natural environment [137]. This study provided the spatial pattern of the dry–
wet status for the next year forecasted by the SARIMA model. The result contributes a
reference for quantitatively evaluating the dry–wet regime in the near term, especially for
regions with extreme dryness/wetness. The identified spatial types and dry–wet signals
expand the basis for the decision-making of drought management. This could be useful for
instructing local governments to take precautions to mitigate the potential impacts of severe
drought or wetness [137]. From a national-scale perspective, the study results provide a
spatial representation of recent meteorological droughts, which has certain implications for
drought prevention and mitigation strategies in the context of global warming [127].

The third National Assessment report of China on Climate Change indicates that
one of the reasons for uncertainty is a lack of information [24]. Investigating the spatio-
temporal distribution of droughts using lower-spatial-resolution station data or grid point
data can introduce some uncertainty in the study results, especially for areas with sparse
stations/grids [138]. It should be mentioned that relatively sparse station data were
used in this study, in addition to the vast area of China and the significant elevation
differences between the eastern and western regions [138], which may not be sufficient
for detailed monitoring of drought status. Due to the few observation stations in Western
China (especially in the Qinghai Tibet Plateau located in the western part of SWC) and
the lack of hydrology meteorological observation information, climate evaluation results
lack accuracy [24]. Further studies involving high-resolution climate data are needed to
shed more light on the long-term changes in the region [139]. Secondly, uncertainties
in meteorological data may be attributed to different data sources, which may induce a
misrepresentation of the rainfall rate distribution and/or biases in rainfall climatology
and variability [38]. It is necessary to collect additional proxy evidence covering wider
spatial areas, which will provide a valuable complement for climate change assessments.
Given this, the drought assessment methods based on remote sensing data have gained
attention due to their large coverage and high temporal resolution [89]. Furthermore, this
paper judged the presence of drought only by the magnitude of the index, and it did not
analyze the drought characteristics such as intensity and duration. However, the frequency,
intensity, and duration of droughts are important evaluation factors of regional drought
evolution [14]. The selection of the drought index can affect the accuracy of a drought
assessment [24]. Different input factors can also introduce biases in drought indices and lead
to different conclusions from wet and dry analysis [140]. As for the selected drought index,
each index considers different factors, which may lead to varying results. These factors
depend on the differing PET models used to calculate the SPEI [20]. It should be mentioned
that the SPEI cannot reflect the variation in water availability, which is of great concern to
water resource management, particularly during drought episodes [13]. The decrease in
regional precipitation, the increase in ET, and the decrease in underground runoff input
will all lead to a decrease in water resources, which will lead to drought [89]. How to use
the effective drought index to characterize the drought in China is the direction of future
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research [29]. Given the limitations derived from the SPEI-12, it would be advisable to
consider additional timescales in future studies to gain further insights into the temporal
patterns of multi-scale drought in each region [12]. In this study, we limited our objective
to the average dry–wet patterns on an annual scale; however, the meteorological drought
conditions may differ among seasons. When the duration of a drought is short, an annual
drought index would exhibit its inherent limitations [87]. These descriptions illustrate
the importance of seasonal analysis, in particular for agro-ecosystems that depend on
timely rainfall during different growing seasons [85]. The importance of assessing and
forecasting seasonal dry–wet variability and changes in other hydroclimate properties
should be emphasized to provide more targeted information for the development of water
resource management and drought mitigation strategies [141].

To better understand climate change and extreme events, further studies on the physi-
cal mechanism, especially attribution analyses at a regional scale, are urgently needed [131].
Natural variations in climate patterns and the influence of human activities have the
potential to alter regional drought variability [85]. China has a large area and complex
terrain [15,61], and the natural environment of the basins is also different in different admin-
istrative divisions [4]. How to quantitatively analyze the impact of the natural environment
and human activities on drought deserves further study [4]. In addition, understanding
the dynamic mechanisms of climate change [125] will contribute to understanding the
difference of atmospheric physical processes that dominate regional drought variability [85].
Future studies on trend analysis could consider nonlinear models [39] that are predictive
and also include the physical detail necessary to explain the processes behind the dry–wet
variation (teleconnection) associations. Given this context, it should be emphasized that a
longer temporal span of data is desired to provide a more robust assessment of drought
variability in China, which allows for verifying whether the detected changes reveal real
trends or merely a part of interannual to multi-decadal dry–wet cycles that can be induced
by the multi-decadal variability of teleconnection signals (e.g., ENSO, PDO, AMO, and
so on) [38]. Additionally, understanding the influences and mechanisms of the internal
variability of climate systems can also contribute to improving the accuracy of drought
forecasts [125]. In the context of global warming, evaluating the correlation between
drought evolution and the climate index can assist in elucidating the response of drought
to climate change and variability. These climate indices can be used in forecasting models
as predictors of drought in a region. In this way, a forecasting model could be employed to
infer the probability and/or intensity of drought events in the short-term future, relying
on past values of the climate indices, and allowing actions to be implemented when a
drought is expected [12]. The relevant attribution analysis could be also a scientific issue
that needs to be studied deeply in exploring the decadal dry–wet climate change in the
future, and the understanding of that will be helpful to forecast decadal dry–wet change in
a given region [36].

The current study provides a starting point for understanding the relations between
regional dry–wet variability and climate change in China. These findings help explain the
different aspects of the SPEI (based on temperature) changes in China and the impact of
climate change on meteorological drought dynamics, especially in the context of global
warming. This study provides robust evidence of the spatial and temporal variations of
meteorological droughts in China since the 1950s. The results would be useful for the
management of agricultural irrigation and water resources across China under a changing
environment [19]. This paper also explored the possible impact of climate warming on the
dry–wet pattern in China, providing inspiration for successful climate change adaptation
in the future. These findings further contribute to the understanding of the sensitivity
of regional warming to the spatio-temporal structure of the dry–wet transition on a 10-
to 100-year scale from a climatological perspective [50]. On the other hand, this study
provides a basis for recent drought risk assessment, which can guide policies for disaster
prevention and mitigation [20]. The relevant findings could be helpful in developing
strategies for coping with future drought risk and water resource management in the
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context of global warming [13]. Although these results should be taken with caution due to
the complexity of the climate system, they highlight the necessity for the development of
drought forecasting tools and more specific and in-depth studies on drought variability in
homogeneous regions [12]. Our study cannot directly explain the trends detected; however,
our results are consistent with the dry and wet processes recorded in the literature of these
regions [4,18,36,37,40,59,106]. In the era of global warming, the results could be of particular
concern for local agricultural and water resource managers in China, providing helpful
guidance on making operational decisions and planning for different sectors (e.g., water
resources, ecology, and food security) in the country [38].
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Appendix A

Table A1. The longitude/latitude and climatic descriptive statistics of 160 meteorological stations
over China.

Number Station ID Longitude (° E) Latitude (° N) Precip (mm) Temp (°C) Region

1 Changchun 54161 125.22 43.90 598.01 5.689 NEC
2 Chaoyang 54324 120.45 41.55 477.28 9.095 NEC
3 Dalian 54662 121.63 38.90 624.54 10.906 NEC
4 Dandong 54497 124.33 40.05 997.15 8.962 NEC
5 Funjin 50788 131.98 47.23 529.65 3.027 NEC
6 Harbin 50953 126.77 45.75 539.54 4.376 NEC
7 Hailun 50756 126.97 47.43 561.56 1.976 NEC
8 Huma 50353 126.65 51.72 476.00 −1.084 NEC
9 Jiamusi 50873 130.17 46.49 556.73 3.567 NEC

10 Jixi 50978 130.95 45.28 554.08 4.179 NEC
11 Mudanjiang 54094 129.60 44.57 555.92 4.243 NEC
12 Nenjiang 50557 125.23 49.17 492.37 0.408 NEC
13 Qiqihar 50745 123.92 47.38 443.94 3.923 NEC
14 Shenyang 54342 123.43 41.77 706.45 8.280 NEC

http://cmdp.ncc-cma.net/cn/download.htm
http://cmdp.ncc-cma.net/cn/download.htm
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Table A1. Cont.

Number Station ID Longitude (° E) Latitude (° N) Precip (mm) Temp (°C) Region

15 Tonghua 54363 125.90 41.68 879.73 5.621 NEC
16 Yanji 54292 129.47 42.88 533.75 5.454 NEC
17 Yingkou 54471 122.20 40.67 650.96 9.491 NEC

18 Baotou 53446 109.85 40.66 303.32 7.233 NC
19 Beijing 54511 116.28 39.93 587.59 12.421 NC
20 Boketu 50632 121.92 48.77 484.06 −0.399 NC
21 Changzhi 53882 113.04 36.03 587.06 9.720 NC
22 Chengde 54423 117.93 40.97 534.04 8.979 NC
23 Chifeng 54218 118.97 42.27 366.34 7.353 NC
24 Duolun 54208 116.47 42.18 382.52 2.367 NC
25 Hailar 50527 119.75 49.22 351.59 −1.101 NC
26 Hohhot 53463 111.68 40.82 409.03 6.690 NC
27 Lindong 54027 119.40 43.98 376.04 5.566 NC
28 Linfen 53868 111.32 36.05 486.85 12.874 NC
29 Shanba 53420 107.10 40.58 136.86 7.613 NC
30 Shijiazhuang 53698 114.42 38.03 546.08 13.562 NC
31 Taiyuan 53772 112.55 37.78 442.18 10.127 NC
32 Tianjin 54527 117.17 39.10 547.85 12.746 NC
33 Tongliao 54135 122.27 43.60 388.54 6.752 NC
34 Tulihe 50434 121.70 50.45 452.06 −4.445 NC
35 Ulanhot 50838 122.05 46.08 428.00 5.051 NC
36 Xilinhot 54102 116.07 43.95 282.97 2.536 NC
37 Xingtai 53798 114.50 37.07 538.79 13.840 NC
38 Zhangjiakou 54401 114.88 40.78 406.28 8.559 NC
39 Zhurihe 53276 112.90 42.40 215.27 5.117 NC

40 Altay 51076 88.08 47.73 200.99 4.492 NWC
41 Ankang 57245 109.03 32.72 825.44 15.835 NWC
42 Dunhuang 52418 94.68 40.15 40.00 9.823 NWC
43 Hami 52203 93.52 42.82 39.21 10.153 NWC
44 Hanzhong 57127 107.03 33.07 871.83 14.691 NWC
45 Hotan 51828 79.93 37.13 41.07 12.832 NWC
46 Jiuquan 52533 98.48 39.77 90.11 7.665 NWC
47 Jumo 51855 85.55 38.15 24.76 10.659 NWC
48 Kashgar 51709 75.98 39.47 73.38 12.093 NWC
49 Kuqa 51644 82.95 41.72 72.99 11.261 NWC
50 Lanzhou 52889 103.88 36.05 315.27 9.949 NWC
51 Linxia 52984 103.18 35.58 505.08 7.234 NWC
52 Maduo 56033 98.22 34.92 328.01 −3.500 NWC
53 Minxian 56093 104.01 34.43 582.44 6.087 NWC
54 Ruoqiang 51777 88.17 39.03 28.30 11.771 NWC
55 Tacheng 51133 83.00 46.73 294.25 7.044 NWC
56 Tianshui 57006 105.75 34.58 520.15 11.194 NWC
57 Turpan 51573 89.20 42.93 16.56 14.826 NWC
58 Urumqi 51463 87.62 43.78 273.37 7.092 NWC
59 Wusu 51346 84.66 44.43 173.49 8.037 NWC
60 Wuwei 52679 102.55 38.05 168.63 8.271 NWC
61 Xi’an 57036 108.93 34.30 585.27 13.828 NWC
62 Xifengzhen 53923 107.63 35.73 556.55 8.983 NWC
63 Xining 52866 101.77 36.62 394.39 5.905 NWC
64 Yan’an 56287 103.00 29.98 1716.06 16.387 NWC
65 Yinchuan 53614 106.22 38.48 195.03 9.273 NWC
66 Yining 51431 81.33 43.95 281.58 9.170 NWC
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Table A1. Cont.

Number Station ID Longitude (° E) Latitude (° N) Precip (mm) Temp (°C) Region

67 Yulin 53646 109.70 38.23 416.76 8.592 NWC
68 Yushu 56029 97.02 33.02 487.38 3.356 NWC
69 Zhangye 52652 100.43 38.93 129.49 7.565 NWC
70 Zhongning 53905 105.67 37.48 212.44 9.798 NWC

71 Anqing 58424 117.05 30.53 1441.04 16.883 EC
72 Dezhou 54714 116.22 37.29 562.48 13.402 EC
73 Dongtai 58251 120.32 32.87 1073.08 14.887 EC
74 Fenggu 58221 117.37 32.95 936.25 15.509 EC
75 Fuyang 58203 115.83 32.93 922.32 15.295 EC
76 Fuzhou 58847 119.28 26.08 1394.79 20.054 EC
77 Ganzhou 57993 114.95 25.85 1439.06 19.597 EC
78 Guangchang 58813 116.33 26.85 1734.93 18.391 EC
79 Guixi 58626 117.21 28.30 1885.21 18.482 EC
80 Hangzhou 58457 120.17 30.23 1457.10 16.767 EC
81 Hefei 58321 117.23 31.87 1018.25 16.044 EC
82 Heze 54906 115.26 35.15 653.66 14.077 EC
83 Ji’an 57799 114.97 27.12 1534.61 18.640 EC
84 Ji’nan 54823 116.98 36.68 674.93 14.116 EC
85 Jiujiang 58502 115.59 29.45 1439.21 17.294 EC
86 Linxi 54938 118.35 35.05 861.83 13.716 EC
87 Nanchang 58606 115.92 28.60 1627.59 17.934 EC
88 Nanjing 58238 118.80 32.00 1082.52 15.773 EC
89 Ningbo 58562 121.56 29.86 1455.87 16.863 EC
90 Pucheng 58731 118.53 27.92 1770.87 17.631 EC
91 Qingdao 54857 120.33 36.07 709.93 12.660 EC
92 Qingjiang 58144 119.03 33.60 956.24 14.508 EC
93 Shanghai 58367 121.46 31.41 1186.32 16.434 EC
94 Tunxi 58531 118.28 29.71 1733.85 16.630 EC
95 Weifang 54843 119.08 36.70 622.58 12.750 EC
96 Wenzhou 58659 120.67 28.02 1740.76 18.344 EC
97 Xiamen 59134 118.08 24.48 1227.10 20.880 EC
98 Xinpu 58044 119.10 34.36 908.61 14.315 EC
99 Xuzhou 58028 117.22 34.19 853.83 14.602 EC

100 Yantai 54765 121.26 37.36 664.92 12.750 EC
101 Yaxian 58633 118.87 28.97 1695.83 17.560 EC
102 Yongan 58921 117.35 25.97 1556.41 19.545 EC

103 Anyang 53898 114.37 36.12 592.06 13.995 SCC
104 Baise 59211 106.60 23.90 1091.86 22.173 SCC
105 Beihai 59644 109.10 21.48 1739.30 22.888 SCC
106 Binxian 57980 112.59 25.45 1509.89 17.939 SCC
107 Changde 57662 111.68 29.05 1353.52 17.075 SCC
108 Changsha 57679 113.04 28.12 1436.25 17.456 SCC
109 Enshi 57447 109.47 30.28 1436.99 16.412 SCC
110 Guangzhou 59288 113.19 23.08 1697.06 22.373 SCC
111 Guilin 57957 110.30 25.33 1906.61 19.122 SCC
112 Haikou 59758 110.35 20.03 1729.58 24.201 SCC
113 Hankou 57494 114.13 30.62 1271.56 16.776 SCC
114 Hengyang 57872 112.60 26.90 1326.32 18.273 SCC
115 Heyuan 59293 114.68 23.73 1905.24 21.568 SCC
116 Lingling 57865 111.36 26.14 1347.94 18.107 SCC
117 Liuzhou 59044 109.23 24.22 1453.90 20.359 SCC
118 Meixian 59117 116.12 24.30 1473.32 21.499 SCC
119 Nanning 59431 108.35 22.82 1295.65 21.736 SCC
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Table A1. Cont.

Number Station ID Longitude (° E) Latitude (° N) Precip (mm) Temp (°C) Region

120 Nanyang 57178 112.58 33.03 797.66 15.113 SCC
121 Qujiang 59082 113.58 24.80 1594.82 20.427 SCC
122 Shantou 59316 116.68 23.40 1560.61 21.876 SCC
123 Wuzhou 59266 111.18 23.29 1461.49 21.420 SCC
124 Xinyang 57297 114.05 32.13 1099.06 15.473 SCC
125 Yangjiang 59663 111.97 21.87 2331.82 22.553 SCC
126 Yichang 57461 111.30 30.70 1157.32 16.951 SCC
127 Yueyang 57584 113.08 29.38 1336.52 17.334 SCC
128 Yunxian 57253 110.49 32.51 807.30 15.787 SCC
129 Zhengzhou 57083 113.65 34.72 650.75 14.733 SCC
130 Zhenjiang 59658 110.40 21.22 1628.90 23.307 SCC
131 Zhijiang 57745 109.68 27.45 1262.01 16.689 SCC
132 Zhongxiang 57378 112.57 31.17 971.28 16.301 SCC

133 Baoshan 56748 99.22 25.13 968.48 16.172 SWC
134 Bijie 57707 105.23 27.30 913.80 13.007 SWC
135 Changdu 56137 97.17 31.15 482.00 7.763 SWC
136 Chengdu 56294 104.02 30.67 920.37 16.310 SWC
137 Chongqing 57516 106.48 29.52 1113.27 18.368 SWC
138 Dali 56751 100.18 25.70 1044.01 15.165 SWC
139 Daxian 57328 107.50 31.20 1195.92 17.356 SWC
140 Deqin 56444 98.90 28.50 641.92 5.618 SWC
141 Ganzi 56146 100.00 31.62 653.25 5.932 SWC
142 Guiyang 57816 106.72 26.58 1139.85 15.069 SWC
143 Huili 56671 102.25 26.65 1136.38 15.391 SWC
144 Jinghong 56959 100.80 22.02 1163.76 22.361 SWC
145 Kangding 56374 101.97 30.05 837.37 7.301 SWC
146 Kunming 56778 102.68 25.02 992.92 15.256 SWC
147 Lhasa 55591 91.13 29.67 452.63 8.235 SWC
148 Lijiang 56651 100.47 26.83 961.82 12.962 SWC
149 Lincang 56951 100.22 23.95 1140.59 17.602 SWC
150 Mengzi 56985 103.38 23.38 828.93 18.914 SWC
151 Mianyang 56196 104.68 31.47 915.82 16.578 SWC
152 Nanchong 57411 106.08 30.80 1025.30 17.548 SWC
153 Neijiang 57504 105.05 29.58 1019.54 17.660 SWC
154 Rongjiang 57932 108.53 25.97 1214.32 18.372 SWC
155 Xichang 56571 102.27 27.90 1013.48 17.172 SWC
156 Xingren 57902 105.18 25.43 1300.31 15.463 SWC
157 Ya’an 53845 109.50 36.60 550.54 9.906 SWC
158 Yibin 56492 104.60 28.80 1099.62 18.039 SWC
159 Youyang 57633 108.77 28.83 1365.54 14.888 SWC
160 Zunyi 57713 106.88 27.70 1115.94 15.136 SWC

Table A2. The final SARIMA(p,d,q)(P,D,Q)s model parameters and test statistics for SPEI-12 time
series of 160 meteorological stations over China

Number Station Model AIC BIC HQIC Ljung-Box (Q) Region

1 Changchun SARIMA (1,0,1)(2,1,2)12 621.981 655.023 634.653 29.10 NEC
2 Chaoyang SARIMA (1,0,0)(2,1,2)12 431.521 459.842 442.383 29.96 NEC
3 Dalian SARIMA (1,0,1)(2,1,2)12 456.720 489.761 469.391 27.38 NEC
4 Dandong SARIMA (1,0,0)(1,1,2)12 547.965 571.566 557.016 31.37 NEC
5 Funjin SARIMA (2,0,0)(0,1,2)12 169.358 192.959 178.409 22.51 NEC
6 Harbin SARIMA (0,1,1)(1,1,2)12 533.707 557.302 542.756 22.24 NEC
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Number Station Model AIC BIC HQIC Ljung-Box (Q) Region

7 Hailun SARIMA (1,0,0)(2,1,2)12 597.840 626.161 608.701 25.09 NEC
8 Huma SARIMA (2,0,0)(2,1,2)12 440.195 473.237 452.867 37.77 NEC
9 Jiamusi SARIMA (1,0,0)(2,1,2)12 435.626 463.947 446.488 14.71 NEC

10 Jixi SARIMA (1,0,0)(0,1,2)12 477.986 496.867 485.227 33.91 NEC
11 Mudanjiang SARIMA (1,0,1)(2,1,2)12 587.223 620.265 599.895 38.37 NEC
12 Nenjiang SARIMA (1,0,0)(0,1,2)12 535.165 554.046 542.406 47.51 NEC
13 Qiqihar SARIMA (2,0,0)(2,1,2)12 520.517 553.559 533.189 25.79 NEC
14 Shenyang SARIMA (0,1,0)(1,1,2)12 449.001 467.877 456.241 46.02 NEC
15 Tonghua SARIMA (1,0,0)(2,1,2)12 473.205 501.527 484.067 27.16 NEC
16 Yanji SARIMA (2,0,0)(1,1,2)12 549.178 577.499 560.039 23.06 NEC
17 Yingkou SARIMA (0,1,0)(1,1,2)12 435.780 454.656 443.020 19.06 NEC

18 Baotou SARIMA (1,1,0)(2,1,2)12 292.482 320.797 303.342 61.91 NC
19 Beijing SARIMA (0,1,0)(2,1,2)12 129.048 152.643 138.098 46.06 NC
20 Boketu SARIMA (1,0,1)(1,1,2)12 644.768 673.089 655.629 16.74 NC
21 Changzhi SARIMA (1,1,1)(0,1,2)12 600.729 624.325 609.779 26.18 NC
22 Chengde SARIMA (1,0,0)(0,1,2)12 433.676 452.557 440.917 35.16 NC
23 Chifeng SARIMA (1,0,1)(1,1,2)12 400.237 428.558 411.098 35.78 NC
24 Duolun SARIMA (0,1,0)(1,1,2)12 532.723 551.599 539.963 32.74 NC
25 Hailar SARIMA (0,1,2)(2,0,2)12 165.695 198.829 178.394 46.54 NC
26 Hohhot SARIMA (2,0,0)(0,1,2)12 211.490 235.091 220.542 46.25 NC
27 Lindong SARIMA (0,1,1)(2,1,2)12 359.136 387.450 369.995 36.64 NC
28 Linfen SARIMA (1,1,2)(0,1,2)12 424.671 452.985 435.530 25.23 NC
29 Shanba SARIMA (0,1,1)(2,1,2)12 335.478 363.792 346.337 27.82 NC
30 Shijiazhuang SARIMA (1,1,1)(1,1,2)12 323.969 352.283 334.828 35.18 NC
31 Taiyuan SARIMA (0,1,0)(0,1,2)12 472.380 486.537 477.810 42.60 NC
32 Tianjin SARIMA (1,1,0)(0,1,2)12 356.438 375.314 363.677 20.98 NC
33 Tongliao SARIMA (1,0,0)(0,1,2)12 402.889 421.770 410.130 23.42 NC
34 Tulihe SARIMA (1,0,0)(0,1,2)12 355.057 373.938 362.298 50.08 NC
35 Ulanhot SARIMA (1,0,1)(1,1,2)12 306.226 334.547 317.087 42.50 NC
36 Xilinhot SARIMA (0,1,1)(1,1,2)12 188.149 211.744 197.199 44.12 NC
37 Xingtai SARIMA (0,1,0)(1,1,2)12 217.899 236.775 225.139 33.94 NC
38 Zhangjiakou SARIMA (1,0,0)(2,1,2)12 297.810 326.132 308.672 36.88 NC
39 Zhurihe SARIMA (1,1,0)(0,1,2)12 127.377 146.253 134.616 61.00 NC

40 Altay SARIMA (2,0,0)(0,1,2)12 18.939 42.540 27.990 36.80 NWC
41 Ankang SARIMA (1,0,1)(0,0,2)12 528.951 552.624 538.023 23.41 NWC
42 Dunhuang SARIMA (1,1,0)(0,1,2)12 −83.947 −65.071 −76.708 28.67 NWC
43 Hami SARIMA (0,1,2)(0,1,2)12 −148.044 −124.449 −138.995 33.85 NWC
44 Hanzhong SARIMA (0,1,0)(0,1,2)12 472.149 486.307 477.579 48.34 NWC
45 Hotan SARIMA (1,1,1)(1,1,2)12 −221.809 −193.495 −210.950 47.15 NWC
46 Jiuquan SARIMA (0,1,0)(0,1,2)12 351.778 365.935 357.208 42.35 NWC
47 Jumo SARIMA (2,1,1)(0,1,2)12 −125.400 −97.086 −114.541 35.50 NWC
48 Kashgar SARIMA (2,0,2)(0,1,2)12 135.528 168.570 148.200 38.31 NWC
49 Kuqa SARIMA (0,1,0)(1,1,2)12 231.600 250.476 238.839 30.86 NWC
50 Lanzhou SARIMA (1,1,0)(2,1,2)12 221.810 250.124 232.670 21.70 NWC
51 Linxia SARIMA (2,0,0)(1,1,2)12 449.237 477.559 460.099 32.39 NWC
52 Maduo SARIMA (1,0,0)(1,1,2)12 373.421 397.022 382.472 34.58 NWC
53 Minxian SARIMA (1,0,1)(0,1,2)12 379.968 403.569 389.019 51.76 NWC
54 Ruoqiang SARIMA (1,0,0)(0,1,2)12 380.921 399.802 388.162 34.80 NWC
55 Tacheng SARIMA (1,1,0)(2,1,2)12 −14.007 14.307 −3.147 35.18 NWC
56 Tianshui SARIMA (0,1,2)(0,1,2)12 302.799 326.394 311.849 30.16 NWC
57 Turpan SARIMA (1,1,2)(1,1,2)12 −785.200 −752.167 −772.531 24.32 NWC
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58 Urumqi SARIMA (1,0,2)(1,1,2)12 −43.637 −10.595 −30.965 30.70 NWC
59 Wusu SARIMA (1,0,2)(0,1,2)12 69.821 98.142 80.683 31.68 NWC
60 Wuwei SARIMA (1,0,0)(1,1,2)12 235.515 259.116 244.566 22.44 NWC
61 Xi’an SARIMA (1,1,1)(1,1,2)12 573.485 601.799 584.344 30.98 NWC
62 Xifengzhen SARIMA (2,1,2)(1,1,2)12 530.024 567.776 544.503 25.61 NWC
63 Xining SARIMA (1,2,1)(0,1,2)12 408.636 432.225 417.683 48.23 NWC
64 Yan’an SARIMA (1,1,1)(0,1,2)12 518.387 541.982 527.437 32.82 NWC
65 Yinchuan SARIMA (1,1,2)(2,1,2)12 246.672 284.424 261.151 30.92 NWC
66 Yining SARIMA (1,1,0)(0,0,1)12 −31.523 −17.322 −26.080 55.93 NWC
67 Yulin SARIMA (1,0,1)(1,1,2)12 401.833 430.154 412.694 16.50 NWC
68 Yushu SARIMA (1,0,0)(1,1,2)12 341.645 365.246 350.696 31.00 NWC
69 Zhangye SARIMA (0,1,0)(0,1,2)12 55.954 70.111 61.384 39.29 NWC
70 Zhongning SARIMA (2,1,0)(1,1,2)12 256.604 284.918 267.463 35.41 NWC

71 Anqing SARIMA (2,0,0)(1,0,2)12 381.552 409.960 392.439 47.86 EC
72 Dezhou SARIMA (1,0,1)(0,1,2)12 294.138 317.739 303.190 28.28 EC
73 Dongtai SARIMA (2,0,1)(2,1,2)12 451.032 488.794 465.514 22.89 EC
74 Fenggu SARIMA (1,0,0)(0,1,2)12 434.095 452.976 441.336 40.50 EC
75 Fuyang SARIMA (1,0,1)(0,0,1)12 250.557 269.495 257.815 57.59 EC
76 Fuzhou SARIMA (1,0,0)(0,1,2)12 521.341 540.222 528.582 26.87 EC
77 Ganzhou SARIMA (1,1,0)(0,1,2)12 238.008 256.884 245.247 31.20 EC
78 Guangchang SARIMA (2,0,1)(0,1,2)12 210.874 239.196 221.736 40.06 EC
79 Guixi SARIMA (0,1,1)(2,1,2)12 336.065 364.379 346.924 41.50 EC
80 Hangzhou SARIMA (1,0,0)(1,0,2)12 358.610 382.283 367.682 29.26 EC
81 Hefei SARIMA (1,0,1)(0,0,1)12 523.982 542.920 531.240 35.99 EC
82 Heze SARIMA (1,1,0)(0,1,2)12 677.309 696.185 684.548 50.37 EC
83 Ji’an SARIMA (1,1,1)(0,1,2)12 289.690 313.285 298.740 24.96 EC
84 Ji’nan SARIMA (1,0,0)(0,1,2)12 433.945 452.826 441.186 22.42 EC
85 Jiujiang SARIMA (1,0,0)(0,1,2)12 327.546 346.427 334.787 40.33 EC
86 Linxi SARIMA (0,1,1)(0,1,2)12 613.011 631.887 620.250 27.73 EC
87 Nanchang SARIMA (1,0,2)(2,1,2)12 361.770 399.532 376.252 41.89 EC
88 Nanjing SARIMA (1,0,0)(0,0,1)12 352.993 367.197 358.437 40.91 EC
89 Ningbo SARIMA (1,0,0)(0,1,2)12 531.752 550.633 538.993 44.13 EC
90 Pucheng SARIMA (1,0,1)(0,1,2)12 397.672 421.273 406.723 45.44 EC
91 Qingdao SARIMA (2,0,0)(0,1,2)12 251.286 274.887 260.337 33.87 EC
92 Qingjiang SARIMA (1,0,0)(0,1,2)12 547.982 566.863 555.223 26.45 EC
93 Shanghai SARIMA (1,0,0)(0,1,2)12 503.774 522.655 511.015 26.40 EC
94 Tunxi SARIMA (2,0,0)(1,1,2)12 347.367 375.688 358.228 38.50 EC
95 Weifang SARIMA (2,1,1)(0,1,2)12 336.918 365.232 347.777 45.70 EC
96 Wenzhou SARIMA (1,0,0)(0,0,1)12 310.587 324.791 316.030 57.19 EC
97 Xiamen SARIMA (0,1,1)(0,1,2)12 367.123 385.999 374.363 43.67 EC
98 Xinpu SARIMA (1,0,2)(0,1,2)12 434.893 463.214 445.755 34.05 EC
99 Xuzhou SARIMA (0,1,0)(0,1,2)12 566.490 580.647 571.919 43.21 EC
100 Yantai SARIMA (0,1,0)(0,1,2)12 425.135 439.292 430.564 44.50 EC
101 Yaxian SARIMA (2,0,1)(1,0,2)12 80.523 113.665 93.224 38.11 EC
102 Yongan SARIMA (0,1,0)(0,1,2)12 514.180 528.337 519.609 37.92 EC

103 Anyang SARIMA (1,0,0)(0,1,2)12 505.245 524.126 512.486 23.25 SCC
104 Baise SARIMA (2,0,0)(0,1,2)12 466.903 490.504 475.955 43.50 SCC
105 Beihai SARIMA (1,0,0)(2,1,2)12 533.819 562.140 544.680 43.04 SCC
106 Binxian SARIMA (2,0,1)(0,0,1)12 251.754 275.427 260.827 32.04 SCC
107 Changde SARIMA (2,0,0)(0,1,2)12 461.957 485.558 471.008 24.01 SCC
108 Changsha SARIMA (1,0,0)(0,0,1)12 380.536 394.740 385.980 35.08 SCC
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109 Enshi SARIMA (1,0,0)(0,1,2)12 619.585 638.466 626.826 32.11 SCC
110 Guangzhou SARIMA (1,0,0)(0,1,2)12 597.991 616.872 605.232 60.92 SCC
111 Guilin SARIMA (1,0,0)(2,0,1)12 403.833 427.506 412.905 41.76 SCC
112 Haikou SARIMA (0,1,2)(2,1,2)12 384.154 417.187 396.823 21.97 SCC
113 Hankou SARIMA (1,0,1)(0,1,2)12 485.309 508.910 494.360 28.26 SCC
114 Hengyang SARIMA (1,1,1)(2,0,1)12 404.758 433.158 415.643 33.29 SCC
115 Heyuan SARIMA (1,0,0)(2,0,1)12 319.169 342.842 328.242 39.49 SCC
116 Lingling SARIMA (1,1,0)(2,1,2)12 348.345 376.659 359.204 36.59 SCC
117 Liuzhou SARIMA (1,0,1)(1,1,2)12 540.351 568.672 551.212 39.28 SCC
118 Meixian SARIMA (1,0,1)(0,1,2)12 329.355 352.956 338.407 36.77 SCC
119 Nanning SARIMA (1,0,0)(0,1,2)12 628.703 647.584 635.944 40.12 SCC
120 Nanyang SARIMA (2,0,0)(0,1,2)12 510.283 533.884 519.334 25.41 SCC
121 Qujiang SARIMA (1,0,0)(0,1,2)12 473.493 492.374 480.734 45.92 SCC
122 Shantou SARIMA (2,1,2)(0,1,2)12 403.601 436.634 416.270 28.63 SCC
123 Wuzhou SARIMA (0,1,0)(2,1,2)12 559.181 582.776 568.231 30.61 SCC
124 Xinyang SARIMA (1,1,2)(1,1,2)12 583.954 616.987 596.623 43.47 SCC
125 Yangjiang SARIMA (2,0,0)(0,1,2)12 505.848 529.449 514.899 43.64 SCC
126 Yichang SARIMA (1,0,1)(0,1,2)12 561.646 585.247 570.697 44.96 SCC
127 Yueyang SARIMA (0,1,1)(2,0,2)12 332.295 360.695 343.180 44.49 SCC
128 Yunxian SARIMA (1,0,0)(1,1,2)12 507.678 531.279 516.729 37.92 SCC
129 Zhengzhou SARIMA (2,0,1)(1,1,2)12 646.528 679.570 659.200 27.79 SCC
130 Zhenjiang SARIMA (2,0,0)(0,1,2)12 510.773 534.374 519.825 43.15 SCC
131 Zhijiang SARIMA (1,0,0)(2,1,2)12 592.453 620.775 603.315 36.94 SCC
132 Zhongxiang SARIMA (1,0,1)(0,1,2)12 544.817 568.418 553.868 58.24 SCC

133 Baoshan SARIMA (1,1,1)(0,1,2)12 500.516 524.111 509.566 38.74 SWC
134 Bijie SARIMA (0,1,1)(2,1,2)12 548.958 577.273 559.818 20.34 SWC
135 Changdu SARIMA (1,0,0)(0,1,2)12 428.642 447.522 435.883 24.17 SWC
136 Chengdu SARIMA (1,1,1)(1,1,2)12 570.504 598.818 581.363 26.30 SWC
137 Chongqing SARIMA (1,0,0)(1,0,2)12 648.385 672.058 657.457 30.98 SWC
138 Dali SARIMA (1,0,0)(2,1,2)12 401.758 430.080 412.620 52.59 SWC
139 Daxian SARIMA (1,0,1)(0,0,1)12 587.484 606.423 594.742 37.64 SWC
140 Deqin SARIMA (0,1,2)(1,1,2)12 345.613 373.927 356.472 32.60 SWC
141 Ganzi SARIMA (1,0,0)(0,1,2)12 521.426 540.306 528.667 48.80 SWC
142 Guiyang SARIMA (1,0,0)(0,0,1)12 497.552 511.756 502.995 33.84 SWC
143 Huili SARIMA (1,0,1)(0,1,2)12 393.877 417.478 402.928 27.77 SWC
144 Jinghong SARIMA (1,1,1)(0,1,2)12 351.273 374.868 360.322 30.18 SWC
145 Kangding SARIMA (1,0,0)(2,1,2)12 705.131 733.453 715.993 44.52 SWC
146 Kunming SARIMA (1,0,2)(0,1,2)12 359.973 388.294 370.834 41.78 SWC
147 Lhasa SARIMA (0,1,1)(0,1,2)12 397.194 416.070 404.433 34.73 SWC
148 Lijiang SARIMA (1,0,2)(2,1,2)12 632.539 670.301 647.021 44.20 SWC
149 Lincang SARIMA (0,1,0)(1,1,2)12 423.164 442.040 430.404 42.62 SWC
150 Mengzi SARIMA (0,1,0)(0,1,2)12 386.124 400.281 391.554 45.43 SWC
151 Mianyang SARIMA (0,1,0)(0,1,2)12 516.308 530.465 521.738 44.81 SWC
152 Nanchong SARIMA (1,0,1)(1,1,2)12 603.111 631.432 613.972 30.48 SWC
153 Neijiang SARIMA (1,0,0)(2,1,2)12 476.277 504.599 487.139 33.89 SWC
154 Rongjiang SARIMA (1,0,2)(0,0,1)12 322.928 346.601 332.001 34.70 SWC
155 Xichang SARIMA (1,0,0)(1,1,2)12 511.369 534.970 520.420 35.36 SWC
156 Xingren SARIMA (1,0,0)(0,1,2)12 431.222 450.103 438.463 36.26 SWC
157 Ya’an SARIMA (0,1,0)(0,1,2)12 485.979 500.136 491.408 29.07 SWC
158 Yibin SARIMA (1,1,0)(2,1,2)12 238.126 266.440 248.985 25.18 SWC
159 Youyang SARIMA (1,0,0)(0,1,2)12 627.975 646.856 635.216 32.45 SWC
160 Zunyi SARIMA (2,1,2)(0,0,1)12 447.909 476.310 458.794 22.18 SWC
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Figure A1. ACF and PACF plots of SPEI-12 at the stations: (a) Harbin (NEC), (b) Boketu (NC),
(c) Maduo (NWC), (d) Guixi (EC), (e) Hankou (SCC), and (f) Lhasa (SWC). The ACF and PACF plots
indicate that the time series are stationary.

Figure A2. Cont.



Atmosphere 2022, 13, 745 49 of 54

Figure A2. ACF plots (left column) and statistical histograms (right column) of the residuals between
the SPEI-12 and model fit value at the stations: (a) Harbin (NEC), (b) Boketu (NC), (c) Maduo (NWC),
(d) Guixi (EC), (e) Hankou (SCC), and (f) Lhasa (SWC). The ACF plots indicate that the residuals are
unautocorrelated; the histograms indicate that the residuals conform to a normal distribution.
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