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Abstract: To alleviate the urban heat island effect and reduce the consumption of electricity and
expenditure caused by active cooling devices on hot days, many cities in tropical and subtropical
areas emphasize the utilization of urban greening areas in current and future urban planning. We
utilized the weather research and forecasting model (WRF) to simulate and study the impact of
different greening area rates on the urban microclimate in business, residential, and industrial areas
in Wuhan city. Meanwhile, we proposed two efficiency coefficients to evaluate the variable cooling
benefit of the improvement of the greening area. The results show that greening areas and water
bodies are the cooling sources of cities and that industrial areas benefit the most from improvements
in the greening rate, with the average temperature declining by 1.06 ◦C with a 20% increase in the
greening rate, while the corresponding values of residential and industrial areas were 0.98 ◦C and
0.92 ◦C, respectively. This research provides a reference for the future planning of tropical and
subtropical areas to help improve the urban microclimate, thermal environment, and environmental
comfort on hot days.

Keywords: heat island effect; urban planning; greening rate; WRF model; hot summer; cold winter
region

1. Introduction

Since the 1950s, the temperature increase rate in East Asian megacities such as Tokyo,
Shanghai, and Wuhan has been higher than the global average. Factors such as urban
extension, the release of anthropogenic heat, and the degradation of green coverage due to
urbanization have significantly changed the microclimate of cities and have caused diverse
environmental problems [1–7]. The overall result of these variations is the enhanced urban
heat island effect (UHIE) in urban areas [3,8–13].

Owing to the additional electricity consumption and burden on the power system
caused by UHIE, urban heat islands (UHIs) have been extensively investigated in cities in
different areas [14–21]. Some researchers have focused on the influence of urbanization on
the urban microclimate and regional meteorological processes [22–24], contributions of ur-
ban temperature rising to global warming [25–28], variations in urban precipitation [29–33],
and air moisture and water evaporation in cities [34–37]. Meanwhile, the synthetic impact
of greening areas and water bodies has largely been ignored due to the complexity and
difficulty of considering so many parameters during on-site measurements. Based on these
concerns, the weather research and forecasting (WRF) model can be used as a convenient
and effective tool to study UHI while considering both the greening areas and water bod-
ies [38–43]. Kitao et al. [44] described the influence of urbanization on UHIs in the Osaka
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region considering land use in the past and present using a mesoscale meteorological
WRF model. The results showed good compatibility of the measured and simulated data.
Hara et al. [45] investigated the increase in the urban island effect intensity (UHII) in the
Tokyo metropolitan area caused by global climate change. A high-resolution numerical
climate model was utilized to study the present and future UHII in this research. A 20%
increase in UHII was found during the night, which was attributed to global warming.
The daytime surface air temperature rose more slowly in urban areas than in rural areas
because of the better capacity for heat storage in urban regions. Using the regional at-
mospheric model and pseudo-global warming method, Iizuka et al. [46,47] studied the
urban thermal environment during summers in the Nagoya metropolitan area in the 2070s.
The results demonstrated that the air temperature in this area would increase more than
was expected by the Intergovernmental Panel on Climate Change (IPCC) in the future.
Giridharan et al. [48] conducted a six-month investigation including three seasons at seven
sites within the coastal area in Hong Kong. A UHII from −1.3 ◦C to 3.4 ◦C was observed in
this study, and a more considerable impact of the season switch than geographical factors
on the UHI was identified. Wong et al. [49] studied the UHI at different locations consid-
ering multiple parameters within Hong Kong using mathematic analysis. The impacts of
air pollution, green space, anthropogenic heat, building density, building height, and air
temperature on UHI were compared by correlation analysis to determine the contribution
of each factor to the overall UHI. Zhang et al. [50] compared ambient temperature variations
in urban areas and irrigated cropland in the Yangtze River Delta to investigate the effect
of urbanization on UHI. The results showed that the mean near-surface temperature in
urbanized areas increases by 0.45 ± 0.43 ◦C in winter and by 1.9 ± 0.55 ◦C in summer.
Du et al. [51] took Shanghai City as an example and conducted a multiple-principle analysis
to realize the retrieval of remote sensing data in order to study the impacts of construction
land, bare land, green land, agricultural land, and water bodies on the urban thermal
environment. Construction land was found to contribute most to the local UHI. Using
a grid-based model and normalized difference vegetation index (NDVI), Wu et al. [52]
analyzed the cooling potential of water bodies and vegetarian cover and discussed the
feasibility of urban planning to mitigate UHI. Lin et al. [53] used an innovative mesoscale
WRF model coupled with a Noah land surface model and an urban canopy model to study
the UHI impact on boundary-layer development and land–sea circulation in northern
Taiwan. The robustness of the WRF model and related simulation tools are validated in
urban microclimate research. However, the integrated impact of greening areas and water
bodies has rarely been discussed in simulations when researchers have talked about future
urban planning.

With the deepening of the urbanization process, cities in the hot summer and cold
winter (HSCW) area are becoming some of the most developed and densely populated
parts of China. These areas possess rich greening and water resources. Urbanization is
accompanied by large-scale urban planning and construction, while appropriate planning
could effectively limit the increase in urban temperature, alleviate UHIE, and reduce the
electricity consumption of refrigeration and active cooling on hot days. A comprehensive
investigation considering the local conditions (green/water resources) and future planning
would prove to be a useful reference for urban construction. In this study, a numerical
simulation in Wuhan City was conducted to classify the impacts of the greening area rate on
urban climate for consideration in future urban planning. The results of this study can be
utilized to instruct prospective urban planning in cities with similar climatic/environmental
conditions to Wuhan City.

2. Materials and Methods
2.1. Site Selection

The selected area in this study is situated in Wuhan City. The area is a typical example
of a region affected by UHI. Wuhan is located at 113◦41′–115◦05′ East, 29◦58′–31◦22′ North,
and it lies to the east of the Jianghan Plain at the intersection of the middle reaches of
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the Yangtze River and Hanjiang River (Figure 1). Over the past four decades, the air
temperature has increased by 3 ◦C at a height of about 1.5 m in Wuhan City due to
urbanization and city expansion [54].
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Figure 1. Selected research location (https://en.tianditu.gov.cn/ (accessed on 14 March 2021)).

Wuhan City (30◦31” N, 114◦18” E, in central China) has a population of more than
10 million and is the biggest city in China by area. The Yangtze River, the longest in China,
flows through the city, which experiences a mostly subtropical monsoon climate with hot
summers and abundant rainfall. The average annual temperature in Wuhan ranges from
16.5 to 18.5 °C, but temperatures can exceed 40 ◦C at times (Figure 2) [55].
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2.2. Numerical Model

In the present study, the Advanced Research WRF dynamical solver, together with
other components of the WRF system that are compatible with that solver, was used to
produce a simulation. Three-stage nests were configured in the WRF model. Figure 3
shows the domains for the calculation.

https://en.tianditu.gov.cn/
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Figure 3. Computational domains and locations.

Domain 3 included the entire area of the built-up zone of Wuhan City centered at
114.30◦ E, 30.50◦ N. Further details on the computational domains and grid arrangements
are listed in Table 1 [56]. The resolution of the horizontal grid of domain 3 was 0.5 km. The
vertical dimension was non-uniform and divided into 35 layers from the ground surface
up to an altitude of approximately 20 km. Domain 1 runs downscale along the NCEP
reanalysis meteorology field and supplies the initial and lateral boundary conditions for
domain 2 every 6 h. Domain 2 is also supplies domain 3 in the same manner.

Table 1. Computational domains and grid arrangements [56].

Domain X (km) × Y (km) Grid Number (X × Y × Z) Grid Size (km)

D1 225 × 225 50 × 50 × 35 4.5

D2 150 × 150 100 × 100 × 35 1.5

D3 50 × 50 100 × 100 × 35 0.5

The parameterization schemes used in our simulation are listed in Table 2 [56]. In this
study, we chose a single-layer urban canopy model (UCM) in the WRF model [57,58]. The
urban canopy layer is the closest layer to the land surface below the top of the buildings.
The WRF/UCM can calculate the following influencing factors: (1) blocking effect of air-
flow on buildings and vegetation; (2) turbulence effects around buildings and vegetation;
and (3) shading effect of vegetation. These are very important factors when discussing the
effect of the green rate on the urban heat island.

From weather data representative of a typical year in Wuhan, the highest temperatures
are observed in July, with values above 32 ◦C from 23 to 31 July. Therefore, the simulation
time was set from 08:00 local standard time (LST) on the 21st of July to 08:00 LST on the
1st of August 2020. The model output was generated every hour. National Centers for
Environmental Prediction (NCEP) Final Operational Global Analysis data with a horizontal
resolution of 1◦ × 1◦ in the year 2020 were used to provide the initial and boundary
conditions. Twenty-four categories of land use and land cover data provided by the US
Geological Survey (USGS) were applied as geographic data in this study.
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Table 2. WRF configurations.

Time 8:00 am, 21 June 2020 to 8:00 am, 1 August 2020

Meteorological data Operational global analysis data
(National Centers for Environmental Prediction)

Geographic data US Geological Survey

Long-wave radiation Rapid and Accurate Radiative Transfer Model (RRTM)
longwave radiation scheme

Surface layer Monin Obukhov scheme

Land surface Noah land surface model and Single layer urban
canopy model (UCM)

Cumulus Kain–Fritsch (new Eta) scheme
Short-wave radiation Dudhia scheme

Micro-physics WRF Single-Moment 6-class
Boundary layer Yonsei University (YSU) PBL

2.3. Case Design

As shown in Figure 4, Wuhan City is divided into three zones: the business area
(Zone 1), the residential area (Zone 2), and the industrial area (Zone 3). According to
the comprehensive planning of Wuhan City from 2020 to 2030, five cases were designed
(Table 3). From case 1 to case 5, the building density is 40% in Zone 1, 35% in Zone 2, 30%
in Zone 3; the greening area rate is increased gradually from 20% to 40% in Zone 1, from
25% to 45% in Zone 2, and from 30% to 50% in Zone 3. The land utilization types in the
three zones are as follows: building, greening, and roads.

Table 3. Parameters of case design.

Variables Case 1 Case 2 Case 3 Case 4 Case 5
Zone1 40 40 40 40 40
Zone2 35 35 35 35 35Building density

(%)
Zone3 30 30 30 30 30
Zone1 20 25 30 35 40
Zone2 25 30 35 40 45Greening rate (%)
Zone3 30 35 40 45 50
Zone1 45 45 45 45 45
Zone2 40 40 40 40 40Roof_width (m)
Zone3 35 35 35 35 35
Zone1 10 10 10 10 10
Zone2 10 10 10 10 10Road_width (m)
Zone3 10 10 10 10 10
Zone1 0.8 0.75 0.7 0.65 0.6
Zone2 0.75 0.7 0.65 0.6 0.55Frc_urb (fraction)
Zone3 0.7 0.65 0.6 0.55 0.5

In this paper, we compare the data at five points as shown in Figure 3 (Zone 1: BR1,
BR2; Zone 2: RA1, RA2; Zone 3: IA1).
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2.4. Efficiency of Cooling Effect of Greening Area

Generally, greening area and green land are considered to have the capacity to cool
adjacent areas in hot seasons. This capacity is called the cooling effect of the greening
area/land (CEGA) [59–61]. In previous studies, CEGA has been widely and deeply re-
searched using various methods, including on-site investigations, numerical simulations,
and remote sensing. However, research on the efficiency of this effect and methods to
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estimate its efficiency is limited. In this study, we propose a difference coefficient to identify
the change in cooling efficiency when the greening area rate is changed (Ecc).

Ecc.s2−s1 =
1

Cs2 − Cs1

(Ts1 − Ts2) (1)

where CSi is the greening area rate of each area, TSi is the average air temperature at the
corresponding greening rate (i = 1,2), and Ecc.s2-s1 represents the cooling efficiency when
the cooling area rate of each area changes from CS1 to CS2 . The higher the value of Ecc, the
better the benefit of cooling brought about by increasing the greening rate. For realistic
comparisons, we kept the difference in the greening rate at 20%; that is, CS2 − CS1 = 20%.

3. Results and Discussion
3.1. Overall Regional Temperature Distribution

Figure 4 shows the air temperature at a 2 m height in domain 3 at 4:00 (LST), 12:00
(LST), 15:00 (LST), 17:00 (LST), and 22:00 (LST) on 31 July in Case 3 (2020). The maximum
temperature in this section was clearly observed at 15:00. The hottest region was found in
the industrial zone (IA1), where the maximum air temperature exceeded 37 ◦C. Meanwhile,
there are always low-temperature circles at the edges of the water bodies in Figure 5. This
means that regions surrounded by water bodies were colder than other areas, and then the
water body inside the urban area acted as a cold source for the entire region.
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3.2. Impact of Greening Area on the Regional Air Temperature

Figure 5 shows the distribution of air temperature in three kinds of areas under various
greening area rates. In general, regional air temperature decreases with an increase in the
greening area rate. The daily average air temperature in the industrial area is the highest,
followed by the business area, and the average daily temperature in the residential area is
the lowest. The range of daily temperature change in the business area is small, while that
in the residential and industrial areas is relatively large. At the same time, the changing
intensity of the cooling effect is different at different times of the day.

Figure 6 shows the daily air temperature variation of five cases in the business area,
residential area, and industrial area. In each zone, air temperature decreases with an
increase in greening area rate at all times. However, the impact of the green rate on air
temperature is different at different times of the day.
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In the business area, the daily minimum temperature occurs at 6:00 and the daily
maximum temperature occurs at 15:00. During 0:00–7:00, the CEGA is steady, while every
5% increment in the greening area rate brings a temperature decline of about 0.25 ◦C.
During 7:00–11:00 and 16:00–18:00, the cooling effect of the greening area is limited. During
11:00–16:00 and 18:00–23:00, the cooling effect of the greening area is relatively complex.
The duration of 9:00–13:00 is a special duration; the air temperatures of Case 3 (30% of
green rate) and Case 4 (35% of green rate) are almost the same at that time.

In the residential area, the daily minimum temperature occurs at 6:00 and the daily
maximum temperature occurs at 14:00. During 0:00–6:00, the cooling effect of the greening
area is relatively steady, with slight destabilization. During 6:00–11:00, every 5% incre-
ment in the greening area rate brings a temperature decline slightly over 0.25 ◦C. During
14:00–16:00, the cooling effect of the greening area is enhanced. During 16:00–19:00 and
18:00–23:00, the cooling effect of the greening area is relatively complex and disordered. Af-
ter 19:00, the impact of the greening area on air temperature changes to the same condition
as 0:00–6:00.

In the industrial area, the daily minimum temperature occurs at 6:00 and the daily
maximum temperature occurs at 15:00. During 0:00–7:00, the CEGA is steady; however, the
decline in air temperature is nonlinear with the increase in the greening area rate. During
7:00–12:00, CEGA is limited and steady, while every 5% increment in the greening area
rate brings a temperature decline slightly below 0.25 ◦C. During 14:00–19:00, the CEGA is
complex with irregular destabilization. The impact of the greening area at 19:00–23:00 is
similar to that at 0:00–7:00.

Considering the actual situation of the diurnal variation in the hot season in Wuhan
City, and combining the analysis from Figure 6, we selected four time nodes in a day in
each area to analyze the change in the benefit from the greening area. Table 4 compares the
Ecc of different areas at 4:00, 10:00, 16:00, and 22:00.

Table 4. Ecc of four times in different areas.

Time Cs2 Cs1 Ts1 Ts2 Ecc.s2-s1
Variables

h % % ◦C ◦C ◦C
04:00 40 20 27.08 26.20 4.42
10:00 40 20 30.42 29.35 5.36
16:00 40 20 33.58 32.71 5.13

Business

22:00 40 20 29.02 28.08 4.71
04:00 45 25 26.43 25.48 4.76
10:00 45 25 30.85 29.90 4.74
16:00 45 25 33.54 32.67 4.36

Residential

22:00 45 25 28.25 27.31 4.69
04:00 50 30 26.92 25.90 5.48
10:00 50 30 31.09 30.02 5.37
16:00 50 30 33.87 32.76 5.53

Industrial

22:00 50 30 28.69 27.72 4.86

As shown in Table 4, the cooling benefit from the greening area is different in different
areas at different times, and the descending order is industrial area, business area, and
residential area. In the business area, the cooling benefit from the greening area during
the daytime is better than that at nighttime. In the residential area, the cooling effect of
the greening area is relatively steady all day, with a slight decline at 16:00–19:00. For the
industrial area, the cooling effect and the benefit of the greening area are obvious and
largest, and a 20% improvement in the greening rate decreases the average temperature by
1.06 ◦C.
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3.3. Impact of Greening Area Rate on the Regional Wind Velocity

Figure 7 shows the daily wind velocity range of the five cases in the business, residen-
tial, and industrial areas at a height of 10 m. The average wind speed in the industrial area
is the highest, followed by that in the residential area, and the average wind speed in the
business area is the lowest. The effect of greening rate change on wind speed is not obvious.
For the business area, the fluctuation range of daily wind speed is the largest when the
greening rate is 40%, and the fluctuation range of daily wind speed is the smallest when
the greening rate is 35%. For the residential area, the fluctuation range of daily wind speed
is the largest when the greening rate is 35%, and the fluctuation range of daily wind speed
is the smallest when the greening rate is 35%. For the industrial area, the fluctuation range
of daily wind speed is the largest when the greening rate is 35%, and the fluctuation range
of daily wind speed is the smallest when the greening rate is 20%.
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rial areas.

Figure 8 shows the wind velocity in different areas at a height of 10 m. In the business
area, the impact of the different greening rates on regional wind velocity is complex. The
minimum wind velocity is about 1.3 m/s at 22:00 when the greening rate is 40%, and
the maximum wind velocity is about 4.6 m/s at 17:00 when the greening rate is 30%. At
9:00–14:00, the impact of the greening area on wind velocity is clearly limited.

In the residential area, the greening area has a limited impact on regional wind velocity.
The minimum wind velocity is about 2.1 m/s at 0:00 when the greening rate is 20%, and
the maximum wind velocity is about 4.3 m/s at 17:00 when the greening rate is 40%. At the
duration of 0:00–15:00, greening land has little impact on regional wind velocity.

In the industrial area, the fluctuation range of wind velocity is larger than that of the
residential area but smaller than that of the business area. After 11:00, the wind velocity
increases rapidly and falls rapidly after reaching its peak at 14:00, and it reaches its valley at
22:00, with the maximum value being about 4.1 m/s and the minimum value being about
1.3 m/s.
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3.4. Limitations of this Study

There are some limitations to this study. Theoretically, the urban microclimate is
a multifactor system that is not only affected by greening areas and water bodies, and
the exact contribution of these factors to microclimate change has not been established.
Secondly, the distribution of greening areas and water bodies is at the horizontal profile,
while the vertical geometry of cities (building façade, height, and agglomeration) has a
considerable impact on the evolution of the urban microclimate. In addition, in the UCM
model used in this study, the anthropogenic heat is not considered due to its large statistics
and different regions.

4. Conclusions

In this study, the effect of greening areas on urban climate was examined in Wuhan
City for the purposes of prospective urban planning. The following conclusions can
be drawn:

(1) Greening areas and water bodies both have the capacity to cool adjacent areas in
hot seasons. The cooling effect of greening areas varies in different areas and at
different times.

(2) The industrial areas benefitted the most from the improvement in the greening rate.
The average temperature in the area can be reduced by 1.06 ◦C with a 20% increase
in the greening rate. In the business area, the cooling benefit of a 20% increase in the
greening rate increase was 0.98 ◦C, while that of the residential area was 0.92 ◦C.

(3) The impact of greening areas and greening rate on regional wind speed is not obvious.
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