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Abstract: Every year, tropical hurricanes affect North and Central American wildlife and people. The
ability to forecast hurricanes is essential in order to minimize the risks and vulnerabilities in North
and Central America. Machine learning is a newly tool that has been applied to make predictions
about different phenomena. We present an original framework utilizing Machine Learning with
the purpose of developing models that give insights into the complex relationship between the
land–atmosphere–ocean system and tropical hurricanes. We study the activity variations in each
Atlantic hurricane category as tabulated and classified by NOAA from 1950 to 2021. By applying
wavelet analysis, we find that category 2–4 hurricanes formed during the positive phase of the
quasi-quinquennial oscillation. In addition, our wavelet analyses show that super Atlantic hurricanes
of category 5 strength were formed only during the positive phase of the decadal oscillation. The
patterns obtained for each Atlantic hurricane category, clustered historical hurricane records in high
and null tropical hurricane activity seasons. Using the observational patterns obtained by wavelet
analysis, we created a long-term probabilistic Bayesian Machine Learning forecast for each of the
Atlantic hurricane categories. Our results imply that if all such natural activity patterns and the
tendencies for Atlantic hurricanes continue and persist, the next groups of hurricanes over the
Atlantic basin will begin between 2023 ± 1 and 2025 ± 1, 2023 ± 1 and 2025 ± 1, 2025 ± 1 and
2028 ± 1, 2026 ± 2 and 2031 ± 3, for hurricane strength categories 2 to 5, respectively. Our results
further point out that in the case of the super hurricanes of the Atlantic of category 5, they develop in
five geographic areas with hot deep waters that are rather very well defined: (I) the east coast of the
United States, (II) the Northeast of Mexico, (III) the Caribbean Sea, (IV) the Central American coast,
and (V) the north of the Greater Antilles.

Keywords: Atlantic hurricane; prediction; probablistic forecasting, wavelet; machine learning

1. Introduction

The word hurricane is of Mayan origin and it describes “one-legged” god that rep-
resents the god of lightning, wind, storm and fire. In Pre-Hispanic America, hurricanes
were considered both necessary and important because they were one of the largest water
suppliers. Water is indeed essential for life on our planet Earth. In contrast, nowadays hur-
ricanes are associated with danger, death, and economic losses in modern society. Currently,
both the United States and Mexico are registering significant droughts, and hurricanes are
possibly one of the solutions to this major societal problem. This is why understanding
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the evolution of hurricanes is so important to minimize economic losses and plan the
development of modern American-Mexican life.

The variability of tropical cyclonic activity has been ascribed to different factors, both
natural and anthropogenic in origin [1,2]. Hurricanes, as they are known in USA, Mexico
and the Caribbean areas, are events in which the presence of strong winds, rain, storm surge
and intense waves are combined. Indeed, the tropical and subtropical zones are affected by
severe storms of diverse magnitude and origin every year. These events generate significant
damage to society and coastal communities, particularly, so the study of their generation
and growth mechanisms is relevant for prevention and early warning of their occurrence.

Understanding how hurricanes are formed and vary over time and space has been a
long-running quest in meteorological and climatological sciences. For the Atlantic hurri-
canes, the early pioneering focus on seasonal forecasting was started by the late William
Gray and colleagues [3–8] and the works have been evolving since to cover decadal and
multidecadal variability [1,7].

According to their intensity, hurricanes are divided into different categories, and the
most generalized classification is the one proposed by Saffir-Simpson, [9]. On the Saffir-
Simpson scale, hurricanes are divided into five categories: wind speed, central pressure,
and potential damage. Ref. [10], calibrated and validated using a database of 23 years of
hurricanes with satellite altimetry measurements and oceanographic buoys, investigated
the impact of global climate variability relative to wind speed and wave height in oceanic
conditions. These authors affirm that there is a generalized global tendency to increase the
wind speed values and, to a lesser extent, also to the increase in the height of the waves.
As an element to highlight, these authors state that the estimated rate of increase is higher
for severe storms, such as hurricanes, concerning the most frequent conditions. However,
a 23-year database seems too short a time to make such claims. Recently, Refs. [11–13]
have presented an interesting hypothesis about the role of the sun’s internal cycles and the
variability of its radiation, in terms of the projected latitudinal insolation gradients, in the
planet’s climate during the late Holocene. This could partially justify the increase in storm
intensity as reported by [10].

Ref. [14], unlike or even contradicted what was stated by [10], found, analyzing a
database of the 20th and 21st centuries in the United States, that the changes in the frequency
with which favourable environments for severe storms occur are not statistically significant.
Nor did they find a robust trend for the occurrence and intensity of hurricanes and typhoons,
due to the heterogeneity of the data and poor quantification of the internal variability of
the phenomena. However, the occurrence of highly intense category hurricanes (4 and 5)
is closely linked to the presence of particular atmospheric and oceanic conditions. Sea
surface temperature and ocean heat content are some [15]. The ocean’s heat content is the
integration of all the thermal energy stored in the water column. A high heat content could
be favoring the occurrence of severe storms [16]. This parameter has been frequently used
successfully for forecasting the occurrence of severe hurricanes [17] and particularly those
of category 5 [18].

The data record of the heat content of the world ocean presented by [19] for the NOAA
in depth ranges of 0–700 m and 0–2000 m, indicates a clear trend of increase in recent
decades. Therefore, this could be favoring the occurrence of severe storms.

In Boyer’s measurements, there are differences between the amounts of heat in the
ocean for the depths of 0–700 m and 0–2000 m. The latter suggests the hypothesis that in
places with greater depth there would be favorable conditions to store a greater amount of
heat, which would allow the formation of hurricanes of greater intensity. Another relevant
element in Boyer’s results is the existence of a cyclical component in the ocean’s heat
content. This could indicate hurricane seasons where more extreme events occur than
others. Global climate patterns, especially El Niño-Southern Oscillation (ENSO) could be
some of the main modulating agents of the occurrence and intensity of hurricanes [20].
However, the scarcity of historical records of both hurricanes and the ENSO phenomenon
has generated uncertainty about this approach. This is due to the variability of these
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records in different geographical locations. Recently, Ref. [21] found that understanding
future changes in the location and the intensity and frequency of El Niño are relevant to
forecasting and projecting Atlantic hurricane activity. Ref. [22], based on the interrelation
between the Atlantic and Pacific basins that occur during the ENSO phenomenon and
using a statistical model, finds sound forecasts of above-average storm activity throughout
the hurricane season. It is model obtains the best certainty at the end of the season.

The influence of African dust on Atlantic hurricanes has long been proposed in [23].
The dust from North Africa, which is transported over the Atlantic Ocean by easterly
winds [15,24,25], contains high concentrations of small particles of the order of 10–100 g cm−3,
which, in their way, change the properties of clouds and the evolution and development
of precipitation [26,27]. It also modulates Caribbean storms [2] and modifies the climate
by absorbing and dispersing solar radiation. Together with other internal and external
factors of the ocean-atmosphere system, such as winds and clouds [28], African dust
provokes a decrease in the ocean surface temperature, affecting the genesis of Atlantic
tropical hurricanes [29] by inhibiting their formation [23]. Tons of dust from the desert
is transported by the winds over thousands of kilometers of the atmosphere. This dust
interacts chemically with the clouds and radiation to modify the climate, while acting
against global warming. The amount of dust increased considerably by the end of the 1960s
and beginning of the 1970s, when there was a severe drought in North Africa. Present
climatic models that include African dust have shown that the variability of African dust is
an important factor in predicting climatic change.

One of the most important factors associated with changes in the frequency of sea-
sonal hurricanes is the variability of the local vertical tropospheric wind shear [30]. In
addition, a relation has been found between Atlantic hurricane activity and West African
precipitation [4,31] and with the SST anomalies associated with El Niño [3].

The frequency and intensity of hurricanes have also been associated with other global
weather patterns, such as the Atlantic Multidecadal Oscillation (AMO) as described by [1].
In the studies by [8], it has been shown that the AMO has a significant impact on hurricane
activity in the Atlantic basin, essentially the product of changes in sea surface temperature.
A positive phase of the AMO can be associated with more active hurricane seasons.

There is no doubt that any improvements in our knowledge and ability to forecast
Atlantic hurricane activity will be of hugely significance for societal benefits see for example,
for a full review [32]. Machine Learning (ML) has recently been used as a tool to forecast
tropical cyclones and hurricanes see [33–35] and other natural phenomena, e.g., [36–39].
This is why we seek to explore this important question by adopting our methodology that
combined wavelet analysis and Bayesian Machine Learning algorithms for the problem
of predicting Atlantic hurricane activity from multi-annual to multidecadal timescales.
Other works like [34,35] have explored the strength in the Machine Learning method for
short-term pre-season ensemble forecasting of Atlantic hurricane and tropical cyclone
intensity and tracking, respectively.

In the present work, the information about the occurrence of hurricanes for the Atlantic
basin of the last 70 years has been analyzed and revealed. Applying spectral analysis tools
in combination with the creation of a Bayesian prediction model implemented based on
machine learning techniques, the cyclical behaviour of this process has been identified,
and a future forecast of its evolution is made here as testable consequences for the near-
term horizon.

2. Data and Methods

We use the NOAA (https://coast.noaa.gov/hurricanes/, accessed on 12 January 2022)
database to analyze any coherent underlying patterns of cyclone activity in the Atlantic
Ocean. To analyze the cyclonic activity in the Atlantic Ocean, it is necessary to have the time
series of the hurricanes for each category. In addition, classical spectral analyzes require that
the spacing between the data be equal. Because hurricanes do not form homogeneously,
a model is needed that meets these needs and spectral requirements. The temporary

https://coast.noaa.gov/hurricanes/
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resolution can be daily, monthly or annual. We have selected that the historical data of
the hurricanes be transformed into a unitary annual digital signal through the following
function (G):

G(t) =
{

1, if the hurricane is registered
0, no hurricane reported

(1)

The digital model of hurricanes (Equation (1)) can be modified by using the actual
count of total number of hurricanes per year. This modification, however, does not change
the periodicities of the spectral analysis but only changes the spectral power a little. The user
is free to select the type of digital model to analyze Atlantic hurricanes. With the digital
signal obtained, the data requirements for any spectral analysis are guaranteed.

2.1. Wavelet Spectral Analysis

We applied the classical wavelet transform WT, see [40] for more details about the
method, that is appropriate for studying non-stationary times series, as the hurricane
records because the wavelet spectra allows identification of intrinsic patterns of the phe-
nomenon and facilitates the discovery of the source characteristics of the phenomenon see,
e.g., [41]; for example, the cyclonic activity in Atlantic Ocean.

We use the Morlet wavelet mother in the WT because of its high precision in resolving
the patterns (periodicities) contained in the hurricane records and because it is a complex
function that allows us to deduce the information on phase of the dominant timescale of
the cyclonic patterns.

The wavelet transform of a discrete time series (e.g., the annual digital signal of
hurricanes for each category G) is defined by [42,43] as:

Wn(s) =
N−1

∑
n′=o

Gnψo ∗
(
(n′−n)

s δt
)

(2)

where variable s is the scale, n is the translation parameter (sliding in time) and the (*)
denotes complex conjugation.

2.2. Inverse Wavelet Spectral Analysis

The decomposition of G in any oscillation channels of the tropical cyclone activity
patterns (yn) can be obtained from the inverse wavelet [42] as:

yn =
δjδt1/2

Cδψo(0)

j2

∑
j=j1

Re(Wn(sj))

s1/2
j

(3)

where j1 and j2 define the scale range of the specified spectral bands, ψo(0) is an energy
normalization factor, Cδ is a reconstruction factor, and δj is a factor for scale averaging. For
the Morlet wavelet, δj = 0.6, Cδ = 0.776, and ψo(0) = π−1/4.

The input data in the Wn are the annual digital signal of hurricanes for each category
between 1950 and 2021. The Wn has two main outputs; the global spectrum, which shows
the periodicities existing in the seismic record with the 95% confidence level above the
red noise spectrum drawn as red dashed line (left panel) and the wavelet power spectral
density (PSD) that shows the evolution over time of these periodicities (central panel).

2.3. Machine Learning Algorithms for Forecasting Hurricane Activity
2.3.1. Non-Linear Autoregressive eXogenous (NARX) Model

The cyclonic state of the system in the Atlantic Ocean can describe the dynamics of
hurricane activity from its input (V)-output (Y) behavior, which describes its evolution
over time. Different models can approximate the cyclonic state of the system. We use the
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Non-linear Autoregressive eXogenous (NARX) [44] model in order to create forecasting
models of the Atlantic hurricane activity variation (Ŷ) that is defined as:

Ŷ[τ + 1] = Θ
(

Y[τ, P]
V[τ, Q]

)
= Θ[Y(τ − 1), · · · , Y(τ − P), V(τ − 1), · · · , V(τ −Q)] (4)

where Θ is a transfer function of the cyclonic state of the system at the moment τ to the
moment τ + 1, that depends intrinsically on the exogenous input (V) and output (Y) data.
Q and P are the delay times in the exogenous input and output data, respectively and Ŷ is
the estimated hurricane activity at a time τ + 1.

We used the Least-Squares Support-Vector Machines (LS-SVM) algorithms to estimate
the transfer function (Θ), a non-linear function [44] as:

Θ =
n

∑
τ=1

ωτ Dτ + B (5)

where D is training data, in our case the hurricane records. Furthermore, Dτ denotes the
input data, i.e., the hurricane records at time τ (discrete time index from τ = 1, · · · , n),
ωτ is the weighting factor which in turn has functional dependence on Vτ and B is the
bias term.

We use the Bayesian inference ML model [44] obtained from the hurricane records
to provide a probabilistic hurricane prediction of the variation in the hurricane activity.
Bayes’s theorem [45] is the basis of our ML model and can be expressed as follows:

p(Θ|D) =
p(D|Θ)

p(D)
p(Θ) (6)

where Θ is the Least-Squares Support-Vector Machines (Equation (5)) regression model.
Furthermore, Bayes’s theorem is used to deduce the optimal parameters in the LS-SVM

model (Equation (5)). In addition, we use the radial basis function (RBF) kernel in this
LS-SVM method. In this work, we have applied and modified the LS-SVM algorithms and
toolbox by [44].

2.3.2. Algorithms for the Estimation of the Following High or Active Phase of
Hurricane Activity

We apply the following iterative steps to forecast the next high Atlantic hurricane
activity episode:

I. Use wavelet transform (Equation (2)) to find the periodicities (hurricane activity
patterns) for each of the Atlantic hurricane categories analyzed.

II. The decomposition of the hurricane records in time series called “channels” with
the periodicities obtained in step (I) can next be obtained using the inverse wavelet
(Equation (3)).

III. Selection of lags Q and P in the exogenous input and output data, respectively.
IV. Use a Radial Basis Function (RBF) kernel. The RBF has various forms: (a) Gaus-

sian function, (b) logistic function (or reflected sigmoid function), and (c) inverse
quadratic function. We have selected the Gaussian function as RBF. The user may
select any of the radial functions and similar results will be obtained.

V. For training, validation, testing and deduction of the hyper-parameters of the
model. Use the K-fold cross-validation. Set aside 1/K of data. Train the model
with the remaining (K − 1)/K data. Measure the accuracy obtained on the 1/K
data that we had set aside. K independent training is therefore acquired. The final
accuracy will be the average of the previous K accuracies. Note that we are hiding
a 1/K part of the training set during each iteration. This is applied at the time of
training. After these K iterations, we obtain K accuracies that should be similar to
each other; this would be an indicator whether the model is working well or not.
In this work, we used K = 10, but it is possible to vary K between 5 and 10.
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VI. Determination of the weight and bias.
VII. Estimation of next high cycle of hurricane activity using Equation (5).
VIII. Computation of a cost function.
IX. Test of the accuracy of the estimate next high cycle of hurricane activity.
X. Test of the cost function. We have used the mean squared error (MSE). If this

function was small enough, stop and go to the next step. Otherwise, we change
one of the parameters P and/or Q and repeat from step (III) onwards.

XI. Use the wavelet transform to help determine if the periodicities of the estimated
high hurricane activity have the same periodicities obtained in step (I). If yes, then
with these new data (i.e., with the input data and these new hurricane cycles), go
to step (VII) to calculate the next hurricane cycles. Otherwise, repeat step (VI).

We have used and modified the LS-SVM algorithms and toolbox by [44] to forecasting
the next high or active period of hurricane activity

2.4. Geospatial Information Mapping

We used a geographic information system (GIS) to generate a spatial identifier in histor-
ical records of hurricanes in the Atlantic basin, acquired from the National Hurricane Center
and Central Pacific Hurricane Center-National Oceanic and Atmospheric Administration
(NOAA) [46] for viewing https://www.ncei.noaa.gov/access/metadata/landing-page/
bin/iso?id=gov.noaa.ncdc:C01552, accessed on 12 January 2022. We apply geo-processing
techniques and spatial filters to select and map hurricane information by category (2 to 5)
and wind speed. We aggregate data from the General Bathymetric Chart of the Oceans
(GEBCO, https://www.gebco.net/data_and_products/gridded_bathymetry_data/, ac-
cessed on 12 January 2022) model in a grid format with 15 arc-second intervals to represent
bathymetric information from the Atlantic Ocean. The integration of historical records
of hurricanes and oceanic relief in a GIS allows the identification of marine regions with
different depths and concentrations of hurricanes.

3. Results

Broadly speaking, Atlantic hurricanes result from dynamic interactions involving
various non-linear processes between the ocean-atmosphere system where factors internal
and external to this system intervene, such as El Niño, AMO, NAO, TSI, among other
factors e.g., [1,47,48]. We study and report the hurricane patterns for each category of
Atlantic hurricanes from 1950 to 2021, using time-frequency wavelet spectral analysis. After
finding the patterns in each hurricane category, the oscillation that groups the historical
data of each hurricane category into high and low cyclonic activity is obtained using the
inverse wavelet transform. Understanding and knowledge from each of these oscillations
analyzed is then applied to create a probabilistic long-term hurricane prediction model for
each hurricane category using the Bayesian machine learning method.

3.1. Category 5 Atlantic Hurricanes
3.1.1. Spectral Analysis

One of the difficulties in finding hurricane patterns is having a model of the historical
data for each hurricanes category. Classical spectral analyses require that the temporal
spacing be the same for each of the analyzed time-series data (for example, a day, a month,
a year). This requirement is clearly not met for the hurricane database (and many hydrome-
teorological phenomena). In these cases, the interpolation of the data cannot be applied.
A possible solution to this problem is to use the gapped wavelet see, e.g., [41] that allows
analysis of time series with data gaps. This innovative type of wavelets allows us to analyze
and find patterns in records of Atlantic hurricane activity.

In order to have a homogenized model and in order to create a probabilistic model,
we have used a unitary annual digital signal of the hurricanes; that is, if in a year there are
hurricanes for each one of the categories, then the model is equal to one and in otherwise it
is zero (see Methodology section). This classification is adopted regardless of how many

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01552
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01552
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
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hurricanes there were in a specific year for a category. It is possible to use a digital model
whose amplitude is equal to the number of hurricanes that occurred in a specific year.
However, we do not select this model in this first exploratory study.

Figure 1 shows the results of the wavelet time-frequency analysis for the annual digital
model of category 5 Atlantic hurricanes as black bars in the upper panel. The global
wavelet spectrum (left panel) shows periodicities (patterns) of 2.8, 4.9, 6.6, and 12.4 years.
The Power Spectral Density (PSD) wavelet displayed in the central panel shows that the
12.4-year periodicity is present throughout the whole time interval (1950–2021). The annual
digital model of category 5 hurricanes shows several years of no such hurricanes in the
Atlantic Ocean. In addition, the model shows that the groupings of category 5 hurricanes
are heterogeneous. Using the inverse wavelet transform for the chosen pattern of 12.4 years,
we have obtained an oscillation that will be used to group the cyclone activity of category
5 Atlantic hurricanes and then offers forecast of these hurricanes.

Figure 1. Time-frequency wavelet results of category 5 Atlantic hurricanes between 1950 and 2021.
The digital time series for category 5 Atlantic hurricanes is shown in the upper panel. The global
wavelet spectrum is shown in the left panel. The central panel shows the calculated wavelet Power
Spectral Density (PSD) in normalized units adopting the red-green-blue color scales. The Cone Of
Influence (COI, “U”-shaped curve with shaded outer zones) shows the possible edge effects in the
PSD. The time-frequency regions with wavelet spectral power detection above 95% confidence level
are marked with thin black contours.

The multi-year periodicities shown by the global wavelet spectrum will be analyzed
in other future works because the main objective of this work is to forecast the next high
season/episode of category 5 hurricanes.

3.1.2. Machine Learning Model of Category 5 Atlantic Hurricanes

Figure 2 shows the grouping in VIII clusters of historical category 5 hurricanes with
the Bayesian Machine Learning model of 12.4 years. It can be seen that these groupings
show both the high seasons (that is, when this category 5 hurricanes occur) and null seasons
of these hurricanes. Furthermore, it can be observed that category 5 hurricanes occur only
during the positive phase of the Bayesian model of 12.4 years. This important result allows
us to suggest that it is possible to make a forecast of the upcoming category 5 Atlantic
hurricane period.
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Figure 2. Probabilistic hindcasts and forecasts for the category 5 Atlantic hurricanes. Bayesian
inference of the LS-SVM model (blue line and shade) compared with the historical category 5 Atlantic
hurricanes (purple vertical bars) clustered in 8 groups (I–VIII). In addition, the probabilistic prediction
of category 5 Atlantic hurricane is shown for the following period (cluster IX). The blue shaded area
represents the 95% confidence intervals of the Bayesian model.

We want to note that clustering of historical hurricanes using the 12.4-year Bayesian
model shows that the category 5 hurricanes are heterogeneously distributed in each cluster.
This is most likely due to the complex relationship between the atmosphere-ocean system
and that under certain climatic, oceanographic, and atmospheric circumstances, category
5 hurricanes formed or did not manifested in the Atlantic Ocean.

The last group of category 5 hurricanes (cluster VIII), ended in 2021 ± 1, so it is
possible that in 2022 at least one new category 5 hurricane may occur in the Atlantic Ocean.
According to the 12.4-year cyclonic pattern of category 5 hurricanes, the Bayesian Machine
Learning model shows that the next period (cluster IX) will start in 2026 ± 2 and end
in 2031 ± 3 and between one and four category 5 Atlantic hurricanes are possible. Here
we further suggest that one promising progress to hurricane forecasting may consist of
changing the prediction paradigms from an exact approach to probabilistic forecasting of
future hurricane activity cycles.

3.2. Category 4 Atlantic Hurricanes
3.2.1. Spectral Analysis

Figure 3 shows the results of the wavelet analysis for the annual digital model of
category 4 hurricanes as black bars in the upper panel. The global wavelet spectrum (left
panel) shows periodicities (cyclonic patterns) of 3.3, 5.2 6.9, 13.1 and 20.8 years. The PSD
shows the evolution of each of the periodicities of the variation of the category 4 hurricanes.
One can observe the difference in the distribution over time of these hurricanes compared
to the category 5 hurricanes. In addition, we want to highlight the total absence of records
of category 4 Atlantic hurricanes around the 1970s.
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Figure 3. Time-frequency wavelet results of category 4 Atlantic hurricanes between 1950 and 2021.
The digital time series for category 4 Atlantic hurricanes is shown in the upper panel. The global
wavelet spectrum is shown in the left panel. The central panel shows the calculated wavelet Power
Spectral Density (PSD) in normalized units adopting the red-green-blue color scales. The Cone Of
Influence (COI, “U”-shaped curve with shaded outer zones) shows the possible edge effects in the
PSD. The time-frequency regions with wavelet spectral power detection above 95% confidence level
are marked with thin black contours.

Using the inverse wavelet transform for the pattern of 5.2 years, we have obtained an
oscillation that will be used to group the past activity of category 4 hurricanes and then
forecast these hurricanes. The result obtained is shown in Figure 4.

Figure 4. Probabilistic hindcasts and forecasts for the category 4 Atlantic hurricanes. Bayesian
inference of the LS-SVM model (blue line and shade) compared with the historical category 4 Atlantic
hurricanes (purple vertical bars) clustered in 15 groups (I–XV). In addition, the probabilistic prediction
for category 4 Atlantic hurricane is shown for the following period (cluster XVI). The blue shaded
area represents the 95% confidence intervals of the Bayesian model.
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3.2.2. Machine Learning Model of Category 4 Atlantic Hurricanes

The 5.2-year Bayesian model shows in Figure 4 that historical magnitude 4 hurricanes
can be grouped into fifteen groups (clusters 1–XV). All these hurricanes occur in the positive
phase of the 5.2-year oscillation, except for cluster V, where category 4 Atlantic hurricanes
were not reported. Cluster XV ends in 2022 ± 1, so it is possible that between 2022 and
2023 there could be at least one category 4 hurricane. The next category 4 hurricane season
(cluster XVI) will begin in 2025 ± 1 and end in 2028 ± 1. In addition, between one and at
least four category 4 hurricanes would be expected to occur in cluster XVI.

3.3. Category 3 Atlantic Hurricanes
3.3.1. Spectral Analysis

Figure 5 shows the result of the wavelet analysis for category 3 Atlantic hurricanes. It
can be seen in the upper panel that there is a higher number of category 3 hurricanes as well
as a different and heterogeneous distribution between 1950 and 2021, compared to category
4 hurricanes. The global wavelet spectrum shows the following patterns (periodicities),
which are 2.4, 3.2 and 5.2 years. Being this last periodicity is shown throughout the entire
time interval, 1950–2021. By applying the inverse transform to the periodicity of 5.2 years,
the oscillation will be used to create the Bayesian model of 5.2 years to group the historical
category 3 hurricanes. Later, this Bayesian model of 5.2 years will be used to make the
forecast, and the result is shown in Figure 6.

Figure 5. Time-frequency wavelet results of category 3 Atlantic hurricanes between 1950 and 2021.
The digital time series for category 3 Atlantic hurricanes is shown in the upper panel. The global
wavelet spectrum is shown in the left panel. The central panel shows the calculated wavelet Power
Spectral Density (PSD) in normalized units adopting the red-green-blue color scales. The Cone Of
Influence (COI, “U”-shaped curve with shaded outer zones) shows the possible edge effects in the
PSD. The time-frequency regions with wavelet spectral power detection above 95% confidence level
are marked with thin black contours.
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Figure 6. Probabilistic hindcasts and forecasts for the category 3 Atlantic hurricanes. Bayesian
inference of the LS-SVM model (blue line and shade) compared with the historical category 3 Atlantic
hurricanes (purple vertical bars) clustered in 16 groups (I–XVI). In addition, the probabilistic earth-
quake prediction is shown for the following period (cluster XVII). The blue shaded area represents
the 95% confidence intervals of the Bayesian model.

3.3.2. Machine Learning Model of Category 3 Atlantic Hurricanes

Figure 6 shows the sixteen groups (clusters I–XVI) that the 5.2-year Bayesian model
selected and fitted the historical data of category 3 Atlantic hurricanes quite well. This result
shows and confirms the capacity of the Bayesian model in grouping all the historical data
of these hurricanes. It can be seen that all category 3 hurricanes form in the positive phase
of the pattern of 5.2 years. We want to highlight clusters XII and XIII, where there is no
spacing between these two clusters and ending cluster XII immediately begins cluster XIII.

The XVI cluster ended in 2021 ± 1, so it is possible that during 2022 a category
3 hurricane could at least form in the Atlantic Ocean. According to the 5.2-year Bayesian
model, the next XVII cluster will start in 2023 ± 1 and end in 2025 ± 1, with a probability
that between one and four category 3 hurricanes could form in the Atlantic Ocean.

3.4. Category 2 Atlantic Hurricanes
3.4.1. Spectral Analysis

Figure 7 shows the dynamics of category 2 hurricanes in the Atlantic Ocean. The
digital time series (black bars) for these hurricanes is shown in the upper panel. The global
wavelet spectrum (left panel) shows that the periodicities are 2.4, 2.9, 4.9, 9.3, and 13.1 years.
The spectral evolution of the PSD is shown in the central panel, where it can be seen that the
4.9-year periodicity is practically present from 1950 to 2021. This periodicity will be studied
with the inverse wavelet transform to obtain the 4.9-year Bayesian model that groups all
the historical data of category 2 Atlantic hurricanes, and the result is shown in Figure 8.
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Figure 7. Time-frequency wavelet results of category 2 Atlantic hurricanes between 1950 and 2021.
The digital time series for category 2 Atlantic hurricanes is shown in the upper panel. The global
wavelet spectrum is shown in the left panel. The central panel shows the calculated wavelet Power
Spectral Density (PSD) in normalized units adopting the red-green-blue color scales. The Cone Of
Influence (COI, “U”-shaped curve with shaded outer zones) shows the possible edge effects in the
PSD. The time-frequency regions with wavelet spectral power detection above 95% confidence level
are marked with thin black contours.

Figure 8. Probabilistic hindcasts and forecasts for the category 2 Atlantic hurricane. Bayesian
inference of the LS-SVM model (blue line and shade) compared with the historical category 2 Atlantic
hurricanes (purple vertical bars) clustered in 18 groups (I–XVIII). In addition, the probabilistic
earthquake prediction is shown for the following period (cluster XIX). The blue shaded area represents
the 95% confidence intervals of the Bayesian model.

3.4.2. Machine Learning Model of Category 2 Atlantic Hurricanes

The historical data of category 2 hurricanes can be grouped into 19 clusters (I–XIX)
according to the Bayesian model of 4.9 years (Figure 8). It can be seen once again that all
these hurricanes formed during the positive phase of the 4.9-year oscillation. It is worth
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highlighting that the highly active tropical cyclone period in the 1990s and early 21st
century (clusters X–XIII). Where a group ended, and a new group began the following year.

The XVIII cluster ended in 2021 ± 1, so it is possible that during the year 2022,
a category 2 hurricane could form in the Atlantic Ocean. According to the 4.9-year Bayesian
model of category 2 hurricanes, the next cluster (XIX) will start in 2023 ± 1 and end in
2025 ± 1.

We want to note that the data on category 1 hurricanes from 1950 to 2021 show that
practically every year there is this type of hurricane, so probabilistically, each year category
1 hurricanes will be formed in the Atlantic Ocean basin, so we have not carried out the
analysis for these lowest intensity hurricanes.

3.5. Spatial Distribution of Atlantic Hurricanes

We use the NOAA database to further study the spatial patterns and origins of all
the Atlantic hurricanes (see Data and Methods). Figure 9 shows a map of the wind speed
distribution for each category of Atlantic hurricanes. In each of the panels of Figure 9, only
the speeds greater than or equal to which hurricanes obtain their classification in one of the
categories from 2 to 5 are shown.

Figure 9. Speed distribution map of Atlantic hurricanes for each of the categories: (a) Category 2;
(b) Category 3; (c) Category 4 where the main zone (marked by the rectangular box) of cyclogenesis
seems to fall outside the Gulf of Mexico. In addition, in panel (d) we show the region of cyclogenesis
for Category 5 Atlantic hurricanes that highlights five areas of concentration around (I) the east coast
of the United States, (II) the Northeast of Mexico, (III) the Caribbean Sea, (IV) the Central American
coast, and (V) the north of the Greater Antilles.

It can be seen that the speeds of category 2 and 3 hurricanes are rather uniformly
distributed or evenly populated throughout the Gulf of Mexico and the Atlantic Ocean. In
comparison, the speeds of category 4 hurricanes are preferably reached outside the Gulf
of Mexico (this area is shown inside a rectangle in Figure 9c) except for the southeastern
United States.

The speeds achieved for category 5 hurricanes (classified as super hurricanes) are
shown in Figure 9d. According to this speed distribution, the maximum speeds of category
5 hurricanes are found concentrated in five zones: (I) the east coast of the United States,
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(II) the Northeast of Mexico, (III) the Caribbean Sea, (IV) the Central American coast,
and (V) the north of the Greater Antilles.

In the areas around the tropics, the highest heat contents are recorded in the ocean,
which is a favourable condition for tropical cyclogenesis in these geographical areas,
hurricanes can reach the highest intensity and speed as high as categories 4 and 5.

In contrast, at higher latitudes, the ocean heat content is lower and more probably
below the thresholds needed for hurricanes to reach and support categories 4 and 5 wind
speed and intensity. These approximate criteria can be seen to roughly guide the spatial
distribution of these Atlantic hurricanes shown in Figure 9. We wish to further point out,
however obvious it may seems, that in the case of the super hurricanes of the Atlantic, they
mainly develop in hot deepwater areas rather than shallow ones.

Figure 10 shows the spatial clustering of the wind speed for each of the hurricane
categories. The probability distribution function (PDF) of the hurricane track coordinates,
i.e., latitude and longitude, are shown in the left (right) and top panels, respectively. It
can be seen that most of the PDFs are multimodal. The horizontal and vertical black lines
indicate the local maxima in the PDFs. It can be seen that the highest speed of each of
the hurricane categories are located around the intersection of the maximum PDFs. This
empirical result could indicate that in addition to the appropriate climatic conditions,
the development of the maximum speed of the hurricanes requires certain geographical
locations to fit as well. In particular, we want to highlight that for super hurricanes of
category 5 to develop, they historically developed in the following five geographical zones:
(I) the east coast of the United States, (II) the Northeast of Mexico, (III) the Caribbean Sea,
(IV) the Central American coast, and (V) the north of the Greater Antilles.

Figure 10. Probability distribution maps for the Atlantic hurricane wind speed for: (a) Category
2; (b) Category 3; (c) Category 4; (d) Category 5. The vertical and horizontal lines indicate the
local maxima for the longitudinal and latitudinal distributions, respectively. The main point of this
spatial clustering map is to indicate the possible connection between the climatic and geographical
conditions for the development of maximum speed of Atlantic hurricanes.
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The spatial distribution of the super hurricanes of category 5 in the Atlantic shows
that their formation indeed does not simply occur in just any area of the Atlantic Ocean,
but rather that they are very well defined geographically. We want to highlight that these
zones have 2 very peculiar characteristics: (1) they are within the warm currents of the
Gulf of Mexico and the Atlantic Ocean, and (2) they are deep water zones. These two
characteristics are essential for the genesis of the Atlantic super hurricanes because to reach
these high speeds; much thermal energy is needed since the shallow waters do not have
enough thermal energy to initiate and support/maintain the formation of these hurricanes.
An example of such a realistic scenario is Hurricane Wilma, the most powerful hurricane
recorded in the Caribbean Sea, with several records in terms of waves generated by its
winds [49], which occurred in October 2005 during a neutral ENSO period.

Figure 11 shows the evolution of the velocities (atmospheric pressure) reached by
Hurricane Wilma and the ocean’s depth in which the eye of Hurricane Wilma was located.
It can be seen that the maximum speed in Figure 11a (minimum atmospheric pressure in
Figure 11b) of Hurricane Wilma was obtained in the warm Caribbean current and that,
in addition, the eye of the hurricane was in one of the most profound areas of the Caribbean
Sea with water depth as deep as −4500 m. This result means that for the formation of
super hurricanes, the specific climatic conditions of the complex relationship of the ocean-
atmosphere system and geographical areas of the Atlantic with a warm current in deep
waters are two key necessary ingredients. We speculate that perhaps all Atlantic super-
hurricanes comply with this example sets out and shown in details by the 2006 Hurricane
Wilma in Figure 11.

Figure 11. Category-5 Hurricane Wilma (2006). (a) This is an example of the analysis of the category-5
hurricane Wilma wind speed and bathymetry. It reaches its maximum speed (black line) around the
greatest depth (−4500 m; dotted blue line). (b) It is also possible to analyze the atmospheric pressure
data for the same example of Wilma. It reaches its minimum pressure (black line) around the greatest
depth (−4500 m; dotted blue line).
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4. Discussion and Conclusions

This study has revealed the most important underlying patterns of Atlantic hurricane
activities covering intensity scales from category 2 to 5. We have carefully transformed the
available Atlantic hurricane events for all categories compiled by NOAA into unitary digital
signal annually. This important first step avoid the difficulties related to the quantification
of the intensity scale in hurricanes. Instead the digital signal allows the focus on the
question of the frequency of each event and recurrence of the events.

We have tested the practical utility of such in-depth wavelet analyses by applying the
key identified oscillations for both the problems of explaining past data and forecasting. We
found that the most important identified timescale for the Atlantic hurricanes of categories
2, 3 and 4 is the 5-year or quasi-quinquennial oscillation. For the strongest hurricane of
category 5, the deciding timescale is the decadal-scale oscillation that proves most useful in
grouping the category 5 events as well as offer a hint for the future active phases.

Our Bayesian Machine Learning models group the historical hurricanes in each one
of the category hurricanes. If hurricanes’ formation were truly random, it would not be
possible to group them. Therefore, the grouping of hurricane records would mean that the
hurricane variability from the point of view of Machine Learning is of natural origin since
there are no conceivable manner for human control in the exact manner of the grouping.
Furthermore, no cluster in all categories of hurricanes shows any unusual or persistent
increase in tropical cyclone activity in the Atlantic Ocean.

We speculate that the physical explanation for the quasi-quinquennial oscillation for
the categories 2, 3 and 4 hurricanes could be related to the well-known role of ENSO
oscillation that has the 2–7 year recurrence period that in turns has powerful control on the
vertical wind shear over the main development region in the tropical Atlantic between 9◦

and 21.5◦ N. The importance of the decadal oscillation for the category 5 Atlantic hurricane
may be related the external forcing factors like the Total Solar Irradiance (TSI) or even the
modulation of the Latitudinal Insolation Gradients as discussed in [11–13]. The increasing
recurrent time from about 5-year to about 12-year for the occurrence of the strong and
intense category 5 hurricanes relative to the lower category events may be simply related
to the relatively rarer opportunity for the right conditions to form the strongest super
hurricanes in the Atlantic basin.

The accuracy of any forecast with Machine Learning is limited by an uncertainty
principle (see [36]; this uncertainty principle could be generalized to a certain quantum
Machine Learning principle). Greater precision in the temporal forecast implies a significant
uncertainty in the forecast on spatial location (i.e., the hurricane tracks). We suggest that
one promising progress in tropical hurricanes forecasting may consist in changing the
prediction paradigms from an “exact or precise” approach to probabilistic forecasting
of future hurricane activity cycles. This is the reason why we focus on the problem of
temporal forecasting using the Bayesian Machine Learning in this work. Our forecast
is based on the natural patterns of multi-annual and decadal variations for each of the
hurricane categories analyzed rather than analyzing any pre-season weather and climatic
conditions and variables.

In our forecasting model, there is the clear absence of any a priori knowledge on
pre-season activity. From the point of view of signal theory, this means that such pre-
season information can be viewed as weather and climatic noise. Therefore, in order
to predict hurricanes in the long-term sense, we are not focusing on forecasting these
pre-season weather and climatic conditions. Because those weather and climatic noises
are highly variable and could be accordingly assumed as a stochastic process. Therefore,
without additional fine-grain information on pre-season activity, it is impossible to say
exactly the weather and climatic conditions will be for the following year. We note however
that for the study of hurricane trajectories that are preconditioned on the early season large-
scale climate state, the model, Cluster-Based Climate-Conditioned Hurricane Intensity and
Track Simulator (C3-HITS), can be used see [50,51]. Ultimately, our work highlights that
the multiannual and decadal variations (trends) of Atlantic hurricanes from categories 2 to
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5 are stable and consistent from 1950 to 2021 which can be assumed to be the result of the
more persistent and coherent interactions of the coupled atmosphere-ocean-geographical
system in affecting and modulating the tropical hurricanes. This notable property is indeed
a useful signal from the point of view of signal theory and proffers a probabilistic forecast
as we have performed in this study.

Our forecast is that no category 5 hurricanes will be formed in the Atlantic until the
next active decadal oscillation phase around 2026± 2 to 2031± 3. For category 4 hurricanes,
there could still be at least one event between 2022 and 2023. The next active category
4 hurricanes will begin in 2025± 1 and end 2028± 1. For category 3, it is expected that there
could still be on event in 2022 while the next activity phase will be around 2023 ± 1 and
2025 ± 1 where one can expect 1 to 4 category 3 Atlantic hurricanes. Finally, for category
2 hurricanes, our Bayesian Machine Learnind model hindcasted correctly the highly active
episodes around the 1990s and early 21st century (clusters X-XIII shown in Figure 8).
The next active phase of category 2 hurricanes will be around 2023 ± 1 and 2025 ± 1. All
these forecasts are within the testable realm in the very near future and they will be actively
pursue and follow by our continuing study of the subject.

Finally, we like to point out that in the case of the category 5 super hurricanes of
the Atlantic, they mainly develop in five hot deep water geographic areas that are very
well defined: (I) the east coast of the United States, (II) the Northeast of Mexico, (III) the
Caribbean Sea, (IV) the Central American coast, and (V) the north of the Greater Antilles.
The identification of such specific spatial distribution for the potentially most intense and
damaging super hurricanes, if proven correct, would certainly add to the practical toolbox
for real-time monitoring and hurricane preparedness.
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NARX Non-linear Autoregressive eXogenous
LS-SVM Least-Squares Support-Vector Machines
ML Machine Learning
RBF radial basis function
GIS geographic information system
GEBCO General Bathymetric Chart of the Oceans
NAO North Atlantic Oscillation
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