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1. Deep Learning Model Architecture 
The implemented deep learning model (introduced in the ‘Methodology’ section) 

contains three blocks of two consecutive convolutional layers followed by a Max Pooling 
layer. The three blocks are followed by a block of three convolutional layers and a batch 
normalization layer. Finally, a series of data flattening, dense layer, batch normalization, 
and two dense layers will route the feature data into continuous PM2.5 and NO2 levels 
(Figure S1). Adapted from VGG16, we used rectified linear unit (ReLU) activations for all 
the convolutional and dense layers except the last dense layer. The chosen optimizer for 
training was Adam [1] with a 0.001 and 0.9 learning rate and momentum, respectively. 
Sufficient number of epochs have been used for training the model, and we ensured that 
the model converges without overfitting. The model was implemented in Python using 
Keras (https://keras.io/, accessed on 2 March 2022) and Tensorflow (https://tensor-
flow.org/, accessed on 2 March 2022) libraries. 

 
Figure S1. Deep Learning Model Architecture The proposed model used for estimating PM2.5 and 
NO2 annual concentrations The model is a modified version of VGG16 and contains 4 blocks of 
convolutional layers (color-coded from top block to the fourth block), and a block of dense layers 
following the convolutional blocks to estimate the air quality values. For the convolutional layers, 
the kernel sizes are indicated first, following by the number of features. The reported numbers for 
Max Pooling and dense layers are the pool size and number of hidden nodes, respectively. Inputs 
of this model are the visual bands from WorldView satellites at 100 m and 200 m resolutions for 
PM2.5 and NO2, respectively. The outputs are the corresponding concentrations for PM2.5 and NO2. 

2. Variables Used in Land Use Regression (LUR) Models 
The following table lists the major variables used to develop LUR models with a  Eu-

ropean LUR model as an example [2]: 
  



2 
 

Table S1. Common variables used in LUR models. 

(1) Air pollution monitoring data 
• ESCAPE annual mean concentrations for 2009-2010 for NO2 and PM2.5.  
• Annual mean concentrations for PM2.5 and NO2 for 2010 were also derived from the AIRBASE v8 dataset. 

(2) Satellite derived air pollution estimates 
• Satellite derived (SAT) estimates of PM2.5 extracted from the global datasets reported in [3] at 10km resolu-

tion. 
• For NO2, SAT estimates were obtained from the tropospheric NO2 columns measured with the OMI (Ozone 

Monitoring Instrument) on board the Aura satellite and were related to ground-level concentrations using 
global GEOS-Chem model, producing an annual gridded NO2 surface for the year 2010 at a 10km resolution. 

(3) Chemical transport model estimates 
• Long range chemical transport model (CTM) estimates for PM2.5 and NO2 were derived from the MACC-II 

ENSEMBLE model, for the year 2010 at 0.1° x 0.1° (~10km) resolution. 
(4) GIS predictor variables 

• A spatial moving window summation function (focalsum in ArcGIS10) was used to calculate the local pre-
dictor variables (e.g., length of road and areas of different land covers) for selected distances. 

o Road data originated from the 1:10,000 EuroStreets digital road network (version 3.1, based on TeleAtlas 
MultiNet TM for year-2008).  

o Corine Land Use 
o Elevation data from SRTM Digital Elevation Database version 4.1.  

3. Visible Infrared Imaging Radiometer Suite (VIIRS) Night-Time Light Imagery 

 
Figure S2. VIIRS Night-Time Light over Manhattan. Night-time light data highlights areas of high 
urban activity, like the ones around Central Park (Reproduced from ESRI (2018) [4]. © Open-
StreetMap contributors). 
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