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Abstract: With the intensification of global warming and economic development in China, the near-
surface ozone (O3) concentration has been increasing recently, especially in the Beijing-Tianjin-Hebei
(BTH) region, which is the political and economic center of China. However, O3 has been measured in
real time only over the past few years, and the observational records are discontinuous. Therefore, we
propose a new method (WRFC-XGB) to establish a near-surface O3 concentration dataset in the BTH
region by integrating the Weather Research and Forecasting with Chemistry (WRF-Chem) model
with the extreme gradient boosting (XGBoost) algorithm. Based on this method, the 8-h maximum
daily average (MDA8) O3 concentrations are obtained with full spatiotemporal coverage at a spatial
resolution of 0.1◦ × 0.1◦ across the BTH region in 2018. Two evaluation methods, sample- and
station-based 10-fold cross-validation (10-CV), are used to assess our method. The sample-based
(station-based) 10-CV evaluation results indicate that WRFC-XGB can achieve excellent accuracy
with a high coefficient of determination (R2) of 0.95 (0.91), low root mean square error (RMSE) of
13.50 (17.70) µg m−3, and mean absolute error (MAE) of 9.60 (12.89) µg m−3. In addition, superb
spatiotemporal consistencies are confirmed for this model, including the estimation of high O3

concentrations, and our WRFC-XGB model outperforms traditional models and previous studies
in data mining. In addition, the proposed model can be applied to estimate the O3 concentration
when it has not been measured. Furthermore, the spatial distribution analysis of the MDA8 O3 in
2018 reveals that O3 pollution in the BTH region exhibits significant seasonality. Heavy O3 pollution
episodes mainly occur in summer, and the high O3 loading is distributed mainly in the southern BTH
areas, which will pose challenges to atmospheric environmental governance for local governments.

Keywords: ozone; WRFC-XGB model; BTH; WRF-Chem; XGBoost

1. Introduction

Near-surface ozone (O3), a secondary air pollutant, is produced primarily by pho-
tochemical reactions of volatile organic compounds (VOCs), nitrogen oxides (NOx), and
carbon monoxide (CO) under solar radiation [1]. Epidemiological studies have demon-
strated that human long-term exposure to high levels of O3 could cause asthma, lung
cancer, and cardiovascular diseases [2]. In addition, high O3 concentrations inhibit vegeta-
tion growth, reduce the primary productivity of vegetation, and diminish crop yields [3].
Moreover, as a greenhouse gas, O3 can change the global climate by affecting the radiative
energy budget of the Earth-atmosphere system [4]. Since the beginning of the 21st century,
China has experienced rapid urbanization and industrialization; meanwhile, the emissions
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of O3 precursors, i.e., NOx and VOCs, have increased dramatically, resulting in serious
O3 pollution episodes throughout China [5]. Consequently, to improve air quality, the
Clean Air Action Plan (CAAP) was implemented in 2013 by the Chinese government.
O3 was first monitored nationwide in 2013 by the Ministry of Environmental Protection;
by 2018, a total of 1605 monitoring stations had been established [6], mainly in urban
areas. Nevertheless, although the aerosol concentration subsequently decreased rapidly
in China, the O3 pollution control measures were less effective [7,8]. Among all the re-
gions in China, the Beijing-Tianjin-Hebei (BTH) agglomeration has suffered the worst O3
pollution to date; from 2013 to 2017, the O3 concentration in the BTH region increased
from 155 µg m−3 to 193 µg m−3 [9]. Unfortunately, satellites currently observe O3 column
concentrations, and nearly 90% of O3 is distributed in the stratosphere, with tropospheric
O3 accounting for only a small proportion. This makes it impossible to accurately obtain
the near-surface O3 concentration, which seriously hinders the research and analysis of
near-surface O3 pollution.

Three methods, namely, chemistry transport models (CTMs), statistical models, and
machine learning algorithms, are widely used in most studies to estimate the spatial distri-
bution of the near-surface O3 concentration over time. Among these approaches, CTMs
involve complicated physicochemical reactions and require emission inventories and me-
teorological conditions as input data to simulate the concentrations of pollutants. Some
of the more common models employed in recent studies include the Weather Research
and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ), Goddard Earth Ob-
serving System with Chemistry (GEOS-Chem), and WRF with Chemistry (WRF-Chem)
models [10–12]. For example, Mathur et al. [13] applied a WRF-CMAQ coupled model
system to calculate the ground O3 concentration throughout the Northern Hemisphere
and the continental United States from 1990 to 2010. Lu et al. [14] adopted GEOS-Chem
to reproduce the spatial distribution of the 8-h maximum daily average (MDA8) O3 in
the warm season (May–August) of 2016–2017 in China. However, the O3 concentrations
simulated by CTMs and the measured concentrations often exhibit large deviations, mainly
due to the uncertainties in emission inventories and their coarse horizontal resolution [15].
As an alternative to CTMs, traditional statistical methods have been proposed to estimate
near-surface O3 levels to leverage their simplicity and time efficiency. In early works,
researchers selected kriging and inverse distance interpolation to predict O3 concentra-
tions, but these methods cannot evaluate the rapid changes in O3 concentrations [16–18].
Subsequent studies attempted to add meteorological parameters, environmental parame-
ters, and land use information to establish models with better estimation performances,
such as the multiple linear regression (MLR) model [19,20], land use regression (LUR)
model [16,21], and geographically weighted regression (GWR) model [22]. However, the
estimation accuracy and temporal resolution of these methods are generally very low.
Accordingly, machine learning algorithms were developed based on traditional statistical
models; owing to their powerful computing and excellent prediction abilities, machine
learning algorithms have been widely used to estimate pollutant concentrations in recent
years. Zhan et al. [23] used a random forest (RF) model to estimate O3 concentrations
and obtained a cross-validation (CV) coefficient of determination (R2) of 0.69. To improve
the surface O3 estimation accuracy, Chen et al. [24] adopted the iterative RF model and
high-resolution meteorological data in China and obtained a sample-based CV R2 of 0.84.

Although numerous studies have applied machine learning algorithms to estimate the
spatial concentration distributions of pollutants such as PM2.5 [25], PM10 [26], and NO2 [27]
throughout China, only using machine learning algorithms lacks the support of physical
and chemical mechanisms. In addition, CTMs exhibit poor performance in estimating air
pollutants’ concentrations, so these two methods can be fused to improve the credibility
and accuracy of air pollutants inversion results. Geng et al. [28] also used this idea when
estimating PM2.5 concentration and obtained an out-of-bag cross-validation R2 of 0.83.

Therefore, this study attempts to use WRF-Chem with physical and chemical mech-
anisms and the extreme gradient boosting (XGBoost) machine learning algorithm; the
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resulting model is named WRFC-XGB. In combination with European Centre for Medium-
Range Weather Forecasts (ECMWF) Fifth-Generation Reanalysis (ERA5) data, satellite
data, and WRF-Chem output data, the MDA8 O3 concentrations in the BTH region in 2018
were estimated. Section 2 introduces the establishment of the WRFC-XGB model and the
10-fold CV (10-CV) method. In Section 3, we evaluate the performance of the WRFC-XGB
model from different perspectives and compare the results of the model with those of
traditional models and existing O3 studies. Finally, we summarize some of our conclusions
in Section 4.

2. Study Area, Datasets, and Methodology
2.1. Study Area

The BTH region, which includes two municipalities (Beijing and Tianjin) and eleven
prefecture-level cities in Hebei Province (Figure 1), is one of the three major areas in
China characterized by air pollution. Approximately 136 million people live in an area
of ~248,000 km2 [29]. Unfortunately, many residents are exposed to high aerosol and O3
loadings. According to the National Urban Air Quality Report in July 2018, most cities in
this region, especially those located in the southern BTH region, placed low in the MDA8
O3 ranking among all the cities in China [30].

Figure 1. Distribution of O3 monitoring stations in the BTH region atop a digital elevation model
(DEM) of the region.



Atmosphere 2022, 13, 632 4 of 16

2.2. Datasets
2.2.1. Near-Surface O3 Monitoring Data

The hourly surface O3 concentration records of 75 monitoring sites in the BTH region
were collected from the China Environmental Monitoring Centre (CEMC). The distribution
of these sites is shown in Figure 1. To reduce the uncertainty in this dataset, we removed
hourly data with less than 8 h of daily monitoring data, and the MDA8 O3 concentration
of each station from 1 January 2018, to 31 December 2018, was calculated to construct the
model and estimate the near-surface O3 concentration. The O3 dataset used in this study is
available at http://113.108.142.147:20035/ (accessed on 25 March 2021).

2.2.2. WRF-Chem Simulation of O3

In this study, the WRF-Chem 3.9.1 was used to simulate the hourly O3 concentration
in the BTH region with a spatial resolution of 9 km. WRF-Chem is a fully coupled online
atmospheric chemistry model [31] that is generally driven by meteorological and emission
data. The meteorological driving datasets were sourced from the National Centers for
Environmental Prediction (NCEP) Final Operational Global Analysis with temporal and
spatial resolutions of 6 h and 1◦ × 1◦, respectively. The initial field and boundary conditions
of the proposed model were built on the basis of these datasets. Emission data are also
essential. The emission data were divided into anthropogenic and biogenic emissions. The
anthropogenic emission inventory data were obtained from the China Multiresolution
Emission Inventory (MEIC) with a 0.25◦ × 0.25◦ spatial resolution, and the monthly emis-
sion data were converted into hourly emissions. Moreover, the MEIC mainly includes five
anthropogenic emission sources, including industrial, power plants, residential, vehicular,
and agricultural emissions, and covers 10 major air pollutants and greenhouse gases [32–36].
The biogenic emissions were obtained from the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) [37].

2.2.3. Other Auxiliary Data

Meteorological factors can also affect air pollution [38]. Eight meteorological variables
were selected to establish the model in this paper: the 2-m temperature (TEM), relative
humidity (RH), boundary layer height (BLH), evaporation (ET), surface pressure (SP), wind
direction (WD), wind speed (WS), and surface solar radiation downwards (SSRD). All
the above parameters were collected from the ERA5 product with spatial and temporal
resolutions of 0.25◦ × 0.25◦ and 1 h, respectively. In addition, vegetation can also release
VOCs; hence, monthly normalized difference vegetation index (NDVI) data collected from
the Resource and Environment Data Cloud Platform were also used as input data with a
spatial resolution of 1 km. Furthermore, to ensure spatial consistency among the datasets,
the spatial resolution of all input data was interpolated to 0.1◦ × 0.1◦ by the bilinear
interpolation method.

2.3. Methodology
2.3.1. WRFC-XGB Model

In this study, we combined the WRF-Chem model with the XGBoost algorithm to
propose a new two-stage method called WRFC-XGB. In the first stage, to map the full-
coverage spatial distribution of the surface O3 concentration, we employed the WRF-
Chem model to roughly estimate the near-surface MDA8 O3 concentration (SIMO3). The
Carbon-Bond Mechanism version Z (CBMZ) was selected for the chemical mechanism
because it is more efficient in O3-NO titration than other mechanisms [39,40]. The specific
physicochemical parameterization schemes of the WRF-Chem model are shown in Table 1.
The model adopts two layers within the nested grid with the coordinate system in a
Lambert projection (Figure S1). The resolution of the first layer (D01) is 27 km, and
the simulation can cover most of North China while providing the background fields of
large-scale atmospheric transport diffusion and pollutant concentrations. In contrast, the
resolution of the second layer (D02) is 9 km, and it mainly covers the BTH region. To

http://113.108.142.147:20035/
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improve the accuracy of the WRF-Chem model MDA8 O3 simulation, the model was run
every month with a spin-up time for the first 168 h.

Table 1. WRF-Chem model configuration.

Domain D01 D02

Horizontal resolution (km) 27 9
Domain size 64 × 56 81 × 17

Vertical resolution 33 33
Boundary layer scheme YSU [41] YSU

Land surface scheme Noah [42] Noah
Cumulus parameterization scheme Grell-3D [43] Grell-3D

Microphysics scheme Morrison 2-mom [44] Morrison 2-mom
Longwave radiation scheme RRTM [45] RRTM
Shortwave radiation scheme Goddard [46] Goddard

Chemical mechanism CBMZ [40] CBMZ
Model spin-up time (h) 168 168

Note: YSU: Yonsei University; Grell-3D: Grell three-dimensional; Morrison 2-mom: Morrison double-moment;
RRTM: rapid radiative transfer model; CBMZ: Carbon-Bond Mechanism version Z.

Then, in the second stage, the XGBoost machine learning model was combined with
the SIMO3 obtained in the first stage, meteorological parameters, and NDVI to further
calibrate and estimate the MDA8 O3 concentration with full spatiotemporal coverage. The
XGBoost model was developed based on gradient enhancement in 2016 [47]. Unlike other
machine learning algorithms used in previous studies, each iteration of the XGBoost model
adds a tree to fit the residuals between the prediction results of the previous tree, and then
the true values are estimated on the basis of the existing tree [48]. In addition, the proposed
model incorporates a regularization term, which can effectively prevent overfitting. The
model is expressed as the following Equation (1):

O3_Prei,j = f
(

DOYi,j, TEMi,j, RHi,j, BLHi,j, ETi,j,SPi,j, WDi,j, WSi,j, SSRDi,j, NDVIm,j, SIMO3 i,j
)

(1)

where O3_Prei,j indicates the estimated MDA8 O3 concentration on day i at grid j; DOYi,j
is the day of year (DOY); TEMi,j, RHi,j, BLHi,j, ETi,j, SPi,j, WDi,j, WSi,j, and SSRDi,j are the
values of TEM, RH, BLH, ET, SP, WD, and WS at grid j on day i, respectively; NDVIm,j is
the NDVI value in month m at grid j; and SIMO3i,j denotes the WRF-Chem model output
of the MDA8 O3 concentration on day i at grid j. Similar to the inverse distance weighting
(IDW) [49], the DOY was used the weighted time distance, namely, the reciprocal of the
distance from each day to the middle of the year, which can better reflect the continuity
of the daily variation in O3 pollution. Before constructing the model, we conducted
a correlation analysis for all independent variables (Table 2); the results show that all
correlations were statistically significant (p < 0.01). Among them, a positive relationship
was captured between the O3 concentration and TEM, RH, BLH, WD, WS, SSRD, NDVI,
and SIMO3, while a negative relationship was found with ET and SP. In addition, to avoid
the systematic errors caused by multicollinearity, the variance inflation factor (VIF) index
was calculated to identify the collinearity among all independent variables used in the
WRFC-XGB model. A VIF smaller than 10 indicates the absence of multicollinearity in
our model. According to the results, no multicollinearity existed in our model (VIF < 10).
Furthermore, we compared the WRFC-XGB model with other machine learning methods
(Table S1).

To further evaluate the WRFC-XGB model, the traditional models used previous stud-
ies to estimate the O3 concentration were selected for comparison: the MLR model, general-
ized additive model (GAM), GWR model, and linear mixed effect (LME) model [22,50–52].
The same training dataset was used for each of these four models for the O3 estimation
in 2018.
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Table 2. Correlation and VIFs between the independent variables and O3.

Variable DOY TEM (k) RH (%) BLH (m) ET (mm) SP (hPa)

R 0.33 ** 0.72 ** 0.14 ** 0.28 ** −0.61 ** −0.18 **
VIF 1.20 5.34 3.10 2.58 4.07 1.33

Variable WD (◦) WS (m s−1) SSRD (W m−2) NDVI SIMO3 (µg m−3)

R 0.07 ** 0.05 ** 0.72 ** 0.43 ** 0.82 **
VIF 1.19 1.85 3.71 2.93 2.08

2.3.2. Evaluation Method

To test the estimation performance of the WRFC-XGB model, the commonly used 10-
CV method was applied herein. For this method, the observation results were first randomly
divided into ten parts. Then, nine subsets were selected as the training data, and another
subset was used as the verification data. The above process was repeated 10 times to ensure
that each dataset was verified once, and the average values of 10 verification results were
taken as the final result [53]. Furthermore, according to the division of subsets for 10-CV,
we employed sample-based 10-CV and station-based 10-CV to evaluate the model [54]. In
addition, four indexes, namely, the regression line, R2, root mean square error (RMSE), and
mean absolute error (MAE), between the observed and estimated O3 were also calculated
to evaluate the agreement between the simulated results and measurements.

3. Results and Discussion
3.1. Feature Importance

Before estimating the MDA8 O3 concentrations, the applicability of independent
variables was evaluated first. Figure 2 shows the feature importance (FI) of all input
variables of the WRFC-XGB model. For this figure, the FI indicates the contribution of each
independent variable to the established model, and the maximum FI is 100%, where a higher
FI indicates a greater impact of the input variable on the MDA8 O3 estimation. In general,
the highest contribution was captured in SIMO3 with an FI of 36%, which can clarify the
rationality of our model and the accuracy of the WRF-Chem simulation, followed by SSRD
with an FI of 28%. As a general rule, radiation is conducive to photochemical reactions,
resulting in the formation of O3, and heavy O3 pollution episodes are usually accompanied
by high levels of radiation or severe weather conditions with more precursors [10]. Another
important reaction condition is temperature, which accounts for 10% of the MDA8 O3
estimation. Temperature is one of the main driving factors responsible for generating O3.
On the one hand, temperature can affect O3 concentrations by influencing atmospheric
turbulence and photochemical reactions [55,56]. On the other hand, temperature can
increase the biological emission of VOCs, thus increasing the O3 concentration in the BTH
region [57]. Following these variables, the total contribution of all the other meteorological
factors, including BLH, RH, SP, WD, WS, and ET, was ~17%, indicating that these variables
affect the generation, transmission, and dissipation of O3 to varying degrees [58–61].
Notably, the FI of DOY was approximately 6%, indicating that the surface O3 concentration
exhibited a significant temporal variation that could be captured effectively by our WRFC-
XGB model.

3.2. Model Accuracy Evaluation
3.2.1. Overall Accuracy

Figure 3 shows both the validation results of the WRF-Chem model simulation and the
10-CV results of the WRFC-XGB model. In general, the simulated MDA8 O3 concentrations
of the WRFC-Chem model are low (Figure 3a), with a low R2 of 0.67, and the RMSE and
MAE of the WRF-Chem model simulation are high at 38.61 µg m−3 and 28.32 µg m−3,
respectively. Compared with the WRF-Chem validation results, the estimation accuracies
of the XGBoost machine learning method are greatly improved for both the sample-based
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and the station-based 10-CV, with the R2 increasing by 0.28 and 0.24, respectively, and the
RMSE (MAE) decreases by 25.11 µg m−3 (18.72 µg m−3) and 20.91 µg m−3 (15.43 µg m−3),
respectively. However, the values estimated by the WRFC-XGB model are slightly under-
estimated, mainly due to the values simulated by WRF-Chem being far lower than the
observed concentrations. However, the scattered points are concentrated mainly near the
1:1 line, showing no serious deviation overall.

Figure 2. FIs and accumulative feature importance of the independent variables of the WRFC-XGB
model for the O3 estimation.

Figure 3. Frequency density scatter plots between the estimated and measured MDA8 O3. (a) WRF-
Chem model fitting. (b,c) WRFC-XGB model sample-based and station-based 10-CV results, re-
spectively. (d–f) Simulation results for MDA8 O3 greater than 160 µg m−3. The black and red lines
represent the 1:1 line and regression line, respectively.

Furthermore, to explore the simulation results in periods with high O3 pollution, we
examined the predictive ability of the WRFC-XGB model for MDA8 O3 concentrations ex-
ceeding the Class 2 Chinese Ambient Air Quality Standard (>160 µg m−3). The WRF-Chem
model-simulated MDA8 O3 concentrations exhibit great uncertainty with an extremely low
R2 of only 0.18, and the RMSE and MAE reach 63.11 µg m−3 and 53.37 µg m−3, respectively.
These large errors generated by the WRF-Chem model may be due to the lag of the emission
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inventory and the uncertainties in the meteorological factors such WS and BLH. Compared
with the WRF-Chem model, the WRFC-XGB model can effectively improve the MDA8 O3
estimation accuracy of during heavy O3 pollution periods, with the sample-based 10-CV
R2 approximately tripling (R2 = 0.71) compared with the WRF-Chem model alone. The
station-based 10-CV estimation accuracy is also improved (R2 = 0.57). This significant
improvement in the estimation accuracy is due to the excellent autonomous learning and
expression capabilities of the XGBoost machine learning method, which effectively corrects
the errors of the WRF-Chem model. Overall, our WRFC-XGB model can effectively and
precisely estimate the MDA8 O3 concentrations across the BTH region not only during
periods of light pollution but also during periods of heavy pollution.

3.2.2. Spatial Consistency Verification

The O3 concentrations show significant spatial heterogeneity across the BTH region,
which could also cause uncertainty in the spatial MDA8 O3 concentration distribution at
different scales. Therefore, we calculated the three evaluation indicators for sample-based
and station-based 10-CV at each station in the BTH region. Figure 4 plots the spatial
distributions of the R2, RMSE, and MAE at each surface measurement site in the BTH
region in 2018 from the sample- and station-based 10-CV for our WRFC-XGB model. In
general, our WRFC-XGB model yields superb spatial O3 estimates. For the sample-based
10-CV, the highest R2 is 0.98, which is found in Langfang. All sites exhibit an R2 greater
than 0.85, 97% of all sites have an RMSE less than 20 µg m−3, and 99% of all sites hold an
MAE less than 15 µg m−3 (Figure S2). In contrast, the lowest R2 is 0.86 in Tianjin, and the
site is near the Bohai Sea. The accuracies at the sites located in Qinhuangdao near the Bohai
Sea are also relatively low, similar to the spatial distribution simulated by the WRF-Chem
model (Figure S3). This may be because these stations are affected by the sea breeze, and
the WD and WS simulated by the WRF-Chem model have large errors relative to the other
meteorological elements. For the station-based 10-CV, the R2 is greater than 0.85 at 91%
of the sites, the RMSE is less than 20 µg m−3 at 79% of the sites, and the MAE is less than
15 µg m−3 at 79% of the sites. Overall, the simulation results of the WRFC-XGB model
display good spatial heterogeneity and can capture the characteristics in both high- and
low-pollution areas, which can be used to analyze and interpret the spatial differences in
the O3 concentration.

3.2.3. Temporal Consistency Verification

Figure 5 shows the frequency density scatter plots for the sample-based and station-
based 10-CV results of O3 concentration estimation at hourly, monthly, and seasonal scales,
respectively. Among all, the worst-performing was captured at hourly scale, with a sample-
based (station-based) 10-CV R2 of 0.93 (0.85), RMSE of 15.71 µg m−3 (21.98 µg m−3), and
MAE of 11.17 µg m−3 (15.68 µg m−3), respectively. Moreover, the R2, RMSE, and MAE of
sample-based 10-CV at monthly scale is 0.97, 6.47 µg m−3, and 4.76 µg m−3, respectively,
while those indexes for the station-based 10-CV is 0.95, 8.03 µg m−3, and 5.87 µg m−3,
respectively. More important, the R2, RMSE, and MAE values of the seasonal sample-
based (station-based) 10-CV are 0.97 (0.96), 5.77 µg m−3 (6.63 µg m−3), and 1.45 µg m−3

(1.61 µg m−3), respectively. Overall, the WRFC-XGB model shows a strong estimation
ability on all time scales, and the accuracy of our model increases as the time scale length-
ens because the model needs to capture fewer characteristic features. In addition, the
accuracy of sample-based 10-CV is higher than that of station-based 10-CV at all time scales,
which is consistent with another previous study [62], mainly because the O3 concentration
characteristics between similar sites are more similar than those between distant sites, and
station-based 10-CV reduce the number of sites for the training data.
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Figure 4. Spatial distributions of the R2, RMSE, and MAE of the monitoring sites for sample-based
(a–c) and station-based (d–f) 10-CV in the BTH region in 2018.

Figure 5. Sample-based and station-based 10-fold CV of the O3 concentration estimated on hourly
(a,d), monthly (b,e), and seasonal (c,f) time scales in the BTH region in 2018. The color bar indicates
the number of data points.
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3.3. Comparison with Other Traditional Models and Studies

Figure 6 presents a comparison of the MDA8 O3 estimation accuracy between the XG-
Boost method and four traditional models (MLR, GAM, GWR, and LME). Using the SIMO3
obtained in the WRF-Chem model for the model establishment, the R2 range of all models
is 0.64–0.95. The model with the worst accuracy is MLR, with a sample-based (station-
based) 10-CV R2 of 0.80 (0.79) and corresponding RMSE and MAE values of 27.20 µg m−3

(27.79 µg m−3) and 20.63 µg m−3 (21.05 µg m−3), respectively. This is mainly because MLR
considers only simple linear relationships between the O3 concentration and input vari-
ables. However, GAM adopts nonlinear regression, and its estimation accuracy is improved
compared with that of MLR, with a sample-based (station-based) 10-CV R2 of 0.85 (0.84),
RMSE of 23.38 µg m−3 (24.33 µg m−3), and MAE of 17.58 µg m−3 (18.35 µg m−3). Further-
more, the sample-based (station-based) 10-CV R2 of GWR is 0.82 (0.81), while its RMSE and
MAE are 25.36 µg m−3 (26.56 µg m−3) and 19.35 µg m−3 (20.34 µg m−3), respectively. The
estimation accuracy of the LME model is the highest among these traditional models and
is even close to that of the WRFC-XGB model. Its sample-based (station-based) 10-CV R2

is 0.94 (0.91), and its RMSE and MAE are 15.32 µg m−3 (18.44 µg m−3) and 10.94 µg m−3

(12.93 µg m−3), respectively. This is mainly because the LME model considers both fixed
effects and random effects. Fixed effects represent the annual average state of influence of
each input variable on O3, while random effects are used to explain the diurnal variation
relationships between O3 and SIMO3 and the meteorological factors, as well as the monthly
variation relationship between O3 and NDVI. Nevertheless, although the estimation accu-
racy of the LME model is similar to that of the WRFC-XGB model, it requires an excessively
long computation time and a large number of calculations.

Moreover, without using SIMO3 as an input variable, the estimation accuracies of these
traditional models are reduced for both sample-based and station-based 10-CV (Figure S4).
The results indicate that the SIMO3 dataset obtained by the WRF-Chem model plays a vital
role in improving the O3 estimation accuracy. In addition, the worst-performing model at
this time is not MLR but GWR, mainly because GWR is a spatial analysis algorithm that is
based on the local effects of objects distributed in space, and thus, considers the influences
of spatial changes in the model input variables on the estimated O3 concentration [63]. In
the WRF-Chem model, although the simulated O3 concentration is low overall, its spatial
distribution is reasonable, and therefore, provides a good basis for estimating the O3 for
GWR. Therefore, after removing the O3 concentration output from the WRF-Chem model,
the estimation accuracy of GWR drops the most below even that of MLR.

To further prove the reliability of the WRFC-XGB model proposed in this study, we
compared the results of our model with the conclusions of existing publications (Table 3),
including the results of sample-based and station-based verification analyses. Taking
the sample-based verification results as an example, the nationwide O3 estimation ac-
curacies based on the data fusion model (5-CV R2 = 0.7, RMSE = 26 µg m−3) [64] and
the RF (10-CV R2 = 0.69, RMSE = 26 µg m−3) and XGBoost models (10-CV R2 = 0.78,
RMSE = 21.47 µg m−3) are all lower than that of our model [23,62]. In addition, some
studies have estimated the O3 concentrations in other regions. For instance, Li et al. [65,66]
estimated the O3 concentrations on Hainan Island (10-CV R2 = 0.59) and the Qinghai-
Tibet Plateau (10-CV R2 = 0.76, RMSE = 14.41 µg m−3). Compared with the application
of other models on the same spatial (regional) scale (10-CV R2 = 0.84) [67], our model
achieves a higher estimation accuracy. This is mainly because the result of a high-resolution
(9 km × 9 km) model with physicochemical principles (WRF-Chem) is incorporated into
the WRFC-XGB model, which reduces the deviation caused by interpolation.
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Figure 6. Sample-based and station-based 10-fold CV results of traditional statistical models and the
WRFC-XGB model. Red dots indicate the estimation results of the fusion of these models (traditional
statistical models and the WRFC-XGB model) with the WRF-Chem model. Blue dots indicate that
only these models are used.

Table 3. Comparison of the O3 estimation accuracy between the WRFC-XGB model and the models
used in previous studies.

Model Spatial
Resolution

Temporal
Resolution

Study Area
Model Validation

Reference
R2 RMSE (µm m−3)

GWR 0.25◦ × 0.25◦ Month Eastern China 0.77 - [22] (Zhang et al., 2020)
RF 0.01◦ × 0.01◦ Daily (MDA8H) BTH 0.84 (sample_CV10) - [61] (Ma et al., 2021)
RF 0.01◦ × 0.01◦ Daily (mean) BTH 0.84 (sample_CV10) -
RF 0.01◦ × 0.01◦ Hour (1hmax) BTH 0.81 (sample_CV10) -

Data fusion model 0.1◦ × 0.1◦ Daily (MDA8H) China 0.7 (sample_CV5) 26 [58] (Xue et al., 2020)
RF 0.1◦ × 0.1◦ Daily (MDA8H) China 0.69 (sample_CV10) 26 [23] (Zhan et al., 2018)

XGBoost 0.1◦ × 0.1◦ Daily (MDA8H) China 0.78 (sample_CV10) 21.47 [56] (Liu et al., 2020b)
XGBoost 0.1◦ × 0.1◦ Daily (MDA8H) China 0.64 (station_CV10) 27.27 [56] (Liu et al., 2020b)
XGBoost 0.1◦ × 0.1◦ Daily Hainan Island 0.59 (sample_CV10) 24.14 [59] (Li et al., 2020a)
RF-GAM 0.25◦ × 0.25◦ Daily (MDA8H) Tibetan Plateau 0.76 (sample_CV10) 14.41 [60] (Li et al., 2020b)

WRFC-XGB 0.1◦ × 0.1◦ Daily (MDA8H) BTH 0.95 (sample_CV10) 13.50 Our study
0.1◦ × 0.1◦ Daily (MDA8H) BTH 0.91 (station_CV10) 17.70

3.4. Spatial Distribution of MDA8 O3 in the BTH Region

The distribution of observation sites in the BTH region is uneven; most of the sites are
located in Beijing and Tianjin, and some of them lack measurements. In general, the MDA8
O3 concentration at all sites in the BTH region in 2018 was 106.67 ± 60.29 µg m−3. In this
study, the WRFC-XGB model was used to estimate the spatial and temporal coverage of
the MDA8 O3 concentration with a spatial resolution of 0.1◦ × 0.1◦ in the BTH region in
2018. Figure 6b–e shows the concentrations of MDA8 O3 estimated by WRFC-XGB in the
spring, summer, autumn, and winter in the BTH region. The results demonstrate that the
spatial distribution of the MDA8 O3 concentration exhibits obvious seasonality. The concen-
trations of MDA8 O3 in spring, summer, autumn, and winter were 100.93–145.74 µg m−3,
123.05–194.42 µg m−3, 61.13–94.60 µg m−3, and 44.22–82.74 µg m−3, respectively. As ex-
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pected, the O3 concentration in summer is much higher than that in the other seasons due
to the long sunshine duration, strong solar radiation, and active photochemical reactions
in summer, all of which are conducive to the formation of high concentrations of O3 [68].
Moreover, high temperatures lead to significant increases in the VOC emissions of O3
precursors, especially from natural sources, resulting in serious O3 pollution [69].

According to the results of the WRFC-XGB model, there are obvious spatial differ-
ences in the estimated MDA8 O3 concentration, with higher O3 concentrations in Beijing,
Tianjin, and southern Hebei, which is consistent with the results of Xue et al. [64]. Figure 7f
shows the spatial distribution of the frequency of O3 concentrations exceeding the standard
(the percentage of days when the O3 concentration exceeds the standard divided by 365),
yielding values between 5% and 30%, which is similar to the summertime distribution
of the MDA8 O3 concentration (Figure 7c). O3 is known to have a complicated nonlinear
relationship with VOC precursors and NOx (NO + NO2 = NOX). In China, power plants,
industry, and transportation are the main sources of NOX emissions, accounting for approx-
imately 88% of total NOX emissions [70]. The population distribution of the BTH region
varies considerably, where the population is most densely concentrated in Beijing, Tianjin,
and the central and southern regions of Hebei [71]. These densely populated areas have
large traffic flows and developed industries, and thus, are characterized by the highest
emissions in the BTH region. A previous study showed that Beijing, Tianjin, Shijiazhuang,
Tangshan, and Handan account for 65.4% and 65.2% of the total NOx and CO emissions
of BTH, respectively [72]. In addition to anthropogenic emissions, topography also has a
significant impact on O3 pollution. The BTH region is composed mainly of the Bashang
Plateau, Taihang Mountains, Yanshan Mountains, and northern part of the North China
Plain. Because the study area is topographically surrounded by mountains, southeasterly
winds can blow pollutants toward Beijing and accumulate; hence, Beijing is prone to heavy
pollution incidents [73].

Figure 7. Spatial distributions of the annual average (a) and seasonal average MDA8 O3 concentration
estimated from the WRFC-XGB model (b–e) and the O3 exceedance frequency (f) in the BTH region
(Beijing (BJ), Tianjin (TJ), Chengde (CD), Qinhuangdao (QHD), Tangshan (TS), Zhangjiakou (ZJK),
Baoding (BD), Langfang (LF), Cangzhou (CZ), Shijiazhuang (SJZ), Hengshui (HS), Xingtai (XT), and
Handan (HD)).
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4. Conclusions

Since 2013, many O3 concentration measurement sites have been built in China. How-
ever, the spatial distribution of those sites is uneven, resulting in an inadequate understand-
ing of the surface O3 loading, especially in the BTH region. Therefore, a new method, i.e.,
the WRFC-XGB model, which combines the WRF-Chem model with the XGBoost machine
learning algorithm, was developed in this study. Combining SIMO3 data, meteorological
data, NDVI data, and DEM data, the MDA8 O3 concentration across the BTH region in
2018 was estimated based on this model. Compared with the results of previous studies
and other traditional methods, our model shows higher accuracy and better spatial pre-
diction capabilities, with sample-based and station-based 10-CV R2 (RMSE) values of 0.95
(13.50 µg m−3) and 0.91 (17.70 µg m−3), respectively. Then, we employed the WRFC-XGB
model to estimate the full spatiotemporal coverage of MDA8 O3 in the BTH region. The
results show that the MDA8 O3 concentration is 106.67 ± 60.29 µg m−3 in BTH. The O3
concentration has obvious spatial differences across BTH, with high O3 concentrations
being found in Beijing, Tianjin, and southern Hebei. Overall, our WRFC-XGB method
possesses superior O3 estimation performance; thus, it can be widely used for estimating
O3 over long-term and wide spatial scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13040632/s1, Figure S1: Double-layer nesting distribution
in the WRF-Chem model, the color bar represents the altitude; Figure S2: Probability density functions
(PDFs) and cumulative density functions (CDFs) of the sample-based (red columns) and station-
based (blue columns) 10-fold cross-validation; Figure S3: The validation results of the WRF-Chem
simulations and site observations in the Beijing-Tian-Hebei region in 2018; Figure S4: The scatter
density plot of the final estimation accuracy of different traditional models with and without fusion
of the WRF-Chem model; Table S1: Comparison of MDA8 O3 concentration estimation accuracy
between integrating different machine learning algorithms with the WRF-Chem model and the
WRFC-XGB model.
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