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Abstract: This paper presents an algorithm for the retrieval of nitrous oxide profiles from the At-
mospheric InfraRed Sounder (AIRS) on the Earth Observing System (EOS)/Aqua using a nonlinear
optimal estimation method. First, an improved Optimal Sensitivity Profile (OSP) algorithm for
channel selection is proposed based on the weighting functions and the transmissions of the target
gas and interfering gases, with 13 channels selected for inversion in this algorithm. Next, the data of
the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-
to-Pole Observations (HIPPO) aircraft and the Earth System Research Laboratory (ESRL) are used to
verify the retrieval results, including the atmospheric nitrous oxide profile and the column concentra-
tion. The results show that using AIRS satellite data, the atmospheric nitrous oxide profile between
300–900 hPa can be well retrieved with an accuracy of ~0.1%, which agrees with the corresponding
Jacobian peak interval of selected channels. Analysis of the AIRS retrievals demonstrates that the
AIRS measurements provide useful information to capture the spatial and temporal variations in
nitrous oxide between 300–900 hPa.

Keywords: N2O; AIRS; inversion; optimized estimation

1. Introduction

In the past 40 years, there have been more and more discussions regarding the role of
human activities in affecting atmospheric composition and the subsequent consequences.
The major concerns of scientists and policy makers are global warming and stratospheric
ozone depletion [1]. N2O plays a very important role in these two aspects. On the one
hand, it is a very important greenhouse gas. Its 20-year and 100-year global warming
potentials (GWPs) and 20-, 50-, and 100-year global temperature change potentials (GTPs)
are nearly 300 times that of CO2, although its radiative forcing is far less than CO2 and
CH4 [2]. In addition to its radiative forcing on the climate system, since the beginning
of the 21st century, N2O has also been viewed as the most important ozone-depleting
substance [3].

Traditional ground-based observations cannot provide a global picture of N2O dis-
tribution (or geographic variability) because their coverage is sparse. In the past decades,
space-borne remote sensing has been employed for the measurement of global nitrous
oxide. There are mainly three spectral ranges used to measure N2O: the mid infrared
(2265–2280 nm), thermal infrared (4.5–8 µm), and microwave (652.83–502.296 GHz),
with three viewing geometries (limb, occultation, and nadir). The limb instruments include
the Stratospheric and Mesospheric Sounder (SAMS, on board Nimbus-7) by means of limb
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measurement [4], the Sub-Millimeter Radiometer (SMR, on board Odin) [5], the Microwave
Limb Sounder (MLS, on board Aura) [6], and the Michelson Interferometer for Passive At-
mospheric Sounding (MIPAS, on board Envisat) [7], as well as the Atmospheric Chemistry
Experiment-Fourier Transform Spectrometer (ACE-FTS, on board SCISAT-1) [8]. The oc-
cultation measurements include the Atmospheric Trace Molecule Spectroscopy (ATMOS)
on board Atlas-I, -II, and -III [9,10], which is the first measurement of N2O using infrared
occultation, and the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) on
board the Advanced Earth Observing Satellite (ADEOS)-I and ADEOS-II [11].

The limb and occultation observations are mainly focused on the middle and up-
per atmospheres, while the nadir observation can provide effective information on the
troposphere, with a better horizontal resolution and the capability to derive the surface
temperature and emissivity via inverse retrieval. The nadir measurements include the
Atmospheric Infrared Sounder (AIRS, on board Aqua) [12], the Tropospheric Emission
Spectrometer (TES, on board EOS-Aura) [13], the Infrared Atmospheric Sounding Inter-
ferometer (IASI, on board MetOp-A) [14], and the Cross-track Infrared Sounder (CrIS,
on board Suomi-NPP) [15].

The AIRS, an infrared spectrometer, is designed to produce high-resolution, three-
dimensional water vapor and temperature profiles on a global scale. The AIRS on NASA’s
Aqua satellite was launched on May 4, 2002. It provides soundings of the atmosphere
with 2378 spectral channels over three wavelength ranges, i.e., long-wavelength infrared
(LWIR, 8.80–15.4 µm [1136–649 cm−1]), medium-wavelength infrared (MWIR, 6.24–8.22 µm
[1613–1216 cm−1]), and short-wavelength infrared (SWIR, 3.74–4.61 µm [2665–2181 cm−1])
at a high spectral resolution (λ/∆λ = 1200) [16]. The large swath on the polar orbiting and
the observation at the infrared band makes it possible to provide global observation twice
a day, both day and night. Xiong et al. (2014) [12] showed the capability to undertake
the retrieval of N2O using the AIRS algorithm. Ma et al. (2021) [17] analyzed the annual
and monthly mean changes of nitrous oxide and its spatial distribution characteristics in
China for the first time from AIRS data by using the OEM method. Xiong et al. (2014) [12]
derived the concentration and change of N2O by using a singular value decomposition
(SVD) of the weighted covariance of the sensitivity matrix and damping the least significant
eigenfunctions of the SVD to constrain the solution. A different retrieval method, especially
the channel selection method, is developed and presented in this paper. In our study,
an optimal estimation method [18] is used. Section 2 describes this method, the a priori
profile used, the method of channel selection based on the channel sensitivities, and the
weighting functions. Validation of the results through comparisons with different data
are shown and discussed in Section 3. The summary and conclusions are provided in
Section 4. The developed channel selection method in this study can obtain the absorption
information of N2O to the greatest extent and improve the inversion accuracy. In addition,
AIRS has not released N2O products at present.

2. Materials and Methods

Because the retrieval problem is ill-conditioned and has no unique and stable solution,
regularization techniques must be utilized to find the best representation of the true state.
The optimal estimation method [18] is one of the most widely used methods for retrieval.
This method is adopted to derive nitrous oxide profiles in this paper.

Since the forward model is usually a nonlinear function of the atmospheric state vector,
an iterative method is needed to find the minimum of the cost function (J):

J = (X− Xa)
T ·Sa

−1·(X− Xa) + (F(X)−Y)T ·Se
−1·(F(X)−Y) (1)

The difference between the measured (Y) and the simulated (F(X)) radiances and
the difference between the retrieved (X) and a priori (Xa) state vectors are constrained
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by the measurement error covariance matrix (Se) and the a priori covariance matrix (Sa),
respectively. The solution in each iteration is:

Xi+1 = Xa + (Ki
TSe
−1Ki + Sa

−1)
−1

Ki
TSe
−1[(Y− F(Xi))− Ki(Xa − Xi)] (2)

where Xi+1 and Xi are the current and previous state vectors, respectively. In our retrieval
scheme, the first guess (X0) is chosen to be equal to the a priori profile (Xa). K = ∂Y/∂X
is the weighting function, or Jacobian matrix. The a priori covariance matrix is used as
follows [18,19]:

(Sa)ij = σiσjxaixaj exp(− abs(j− i)
H

) (3)

where i and j are the index of Xa, respectively, H is a scalar (the value here is 1000), and σi, σj
is the standard deviation of the a priori as detailed in Section 2.1. The measurement error
covariance matrix (Se) is a diagonal matrix from the AIRS noise [20] and the non-diagonal
elements are set to zero.

In our retrieval, the atmospheric temperature, humidity, O3, surface temperature,
and surface emissivity data from the AIRS L2 products are used as inputs in the forward
model. AIRS L1 cloud-cleared AIRS data are used for retrieval. The N2O profile parameter
is the state vector.

2.1. A Priori Profile

For the ill-conditioned problems, other information, in addition to the measurements,
is needed to constrain the solution and to choose a reasonable profile from the infinite
number of mathematically possible profiles [21]. In the optimal estimation retrieval tech-
nique, this information generally takes the form of the a priori profile and Sa matrix, which
is regarded as a very important prior restriction to obtain a stabilized and regularized
solution [22].

Eigenvector regression method profiles are often used to construct the a priori state.
This study investigates an algorithm for rapidly retrieving initial atmospheric N2O profiles
from AIRS hyperspectral data based on eigenvector statistics. It mainly includes the
following steps: (1) using the community radiative transfer model (CRTM) [23] for rapid
brightness temperatures (BTs) simulations and BTs derivative calculations under various
sky and surface conditions; (2) performing an empirical orthogonal expansion on the
covariance matrix of the simulated BTs using principal components analysis; (3) finding the
best fits to the matrix of the profile samples and to the empirically orthogonally expanded
matrix of the simulated BTs using the method of least squares and calculating the regression
coefficients; and, finally, (4) using the AIRS data to rapidly derive atmospheric N2O profiles
based on the regression coefficients, and using it as the initial profile for the optimal
estimation algorithm. This method to derive the first guess is similar to the AIRS algorithm
in the derivation of temperature and water vapor first guess profile and later use of this
profile and AIRS data in a set of channels for the final retrievals [24,25]. So, the difference
of this algorithm from the AIRS algorithm is the use of the optimal estimation method for
retrieval, and the algorithm in this study obtains a non-fixed first guess through statistical
regression, while the first guess of N2O in the AIRS algorithm is a fixed value [12].

The training samples consist of two parts, namely the atmospheric profile samples
and BTs, as simulated based on the profile samples. The atmospheric profile samples are
composed of 83 global temperature, humidity, CO2, O3, N2O, CO, and CH4 profiles in
101 atmospheric pressure layers under clear-sky conditions [26]. These profiles are sampled
from 121,462,560 profiles using the cycle 30R2 model of the European Centre for Medium-
Range Weather Forecasts system and the sampling strategy proposed by Chevallier et al.
(2006) [27].

Using the simulated BTs (y) (we select the first 1245 channels (649.50 cm−1 to 1273 cm−1)),
the inverse solution can be written [28,29] as:

x = C·y (4)
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where the vector x contains the atmospheric profiles of the nitrous oxide. C is the best fit
operator matrix obtained using a linear least-squares method:

C = XYT(YYT + EET)
−1

(5)

where (YYT) is the covariance of the simulated BTs, (XYT) is the covariance of the training
profile with the simulated BTs, and (EET) is the statistical covariance of the spectral radiance
noise which is adopted from AIRS with a fixed value for each channel. This method
decomposes the sample profile and simulated radiation value at the same time, and couples
the principal component coefficient to the regression coefficient, which will reduce the
calculation time and the error in the calculation process. The detailed eigenvector regression
algorithm was presented in our previous published article [30].

The statistical regression coefficients are calculated using different sets of eigenvectors,
i.e., 5, 6, and 7 eigenvectors for the training samples, and 7, 10, 20, and 30 eigenvectors for
the simulated BTs. Figure 1 shows the retrieval results obtained using various numbers of
eigenvectors, as well as their relative difference (RD) from the High-Performance Instru-
mented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observa-
tions (HIPPO) data. The results show that the best accuracy is achieved with 5 eigenvectors
for the training samples and 20 eigenvectors for the simulated BTs.

Figure 1. Statistical regression results and seven eigenvectors for simulated BTs. (a) Statistical
regression results obtained using various numbers of eigenvectors and their relative difference from
HIPPO measurement data (time: 10 June 2011). (b) Eigenvectors for simulated BTs (in order to draw
the continuous line segments, here only part of the bands (650–1620 cm−1) were selected).
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2.2. Channel Selection

The retrieval channel selection is one of the core issues for retrieval algorithms. Due to
the sensor’s hyperspectral resolution, there are many spectral channels within the detection
range. Since the retrieval using all channels needs a high computational cost, an optimal
set of channels should be selected based on the target gas absorption, and the selected
channels should contain the largest amount of information on the target gas but the least
amount of information on interference gases [31]. In this section, based on the channel
sensitivity, the spectral ranges within which the absorption of atmospheric N2O is the most
intense and is not masked by the absorption of other gases (i.e., the spectral ranges within
which N2O does not greatly overlap with other gases) are determined. In other words,
the spectral ranges most sensitive to N2O are first identified. Then, based on the weighting
functions, the channels that can help improve the retrieval accuracy and vertical resolution
of the profiles are selected for retrieval.

Crevoisier et al. (2003) [32] proposed an optimal sensitivity profile (OSP) algorithm
for AIRS data. The OSP algorithm classifies 2311 profiles in the Thermodynamic Initial
Guess Retrieval (TIGR) dataset to 82 types of groups and eventually classifies these groups
into three types, namely, tropical (28), mid-latitude (27), and polar (27). Each profile
contains atmospheric temperature, humidity and O3 profiles and is divided into 40 layers.
As proposed in Crevoisier et al. (2003) [32], the channel selection follows three principles:
(1) when the radiance of the optimal channel for observing a certain gas is treated as “signal”
and the interference from other gases is treated as “noise”, then channels with a relatively
high SNR are selected; (2) when the signal of the observed gas is relatively small, the SNR
may be relatively low—in this case, it is necessary to set a fixed signal threshold to remove
the channel when the gas signal is smaller than the threshold; and (3) because the SNR is
the integral of the whole atmosphere, the observation to some atmospheric pressure layers
may not be possible if only using channels selected based on the SNR. Therefore, a Jacobian
matrix is used to further select channels with various peaks.

Table 1 summarizes the N2O retrieval channels selected using the OSP algorithm.
The OSP algorithm is unable to reflect the physical meanings of the channel selection
and weighting functions. In this study, an improved OSP algorithm for channel selection
(modified OSP) is proposed. First, the spectral ranges sensitive to N2O are determined
considering the interference from other gases. Next, the transmittances of several main
gases are calculated based on the AIRS data. In addition, channels with various transmit-
tances that are unmasked by the transmittances of other trace gases are selected based
on the spectral ranges determined in the first step. Finally, the weighting functions are
approximately calculated from the re-derived equation (as described in Equation (8)) for
weighting functions, and the channels with non-overlapping weighting function peaks are
selected for retrieving atmospheric N2O profiles.

Table 1. The selected AIRS channels number for N2O retrieval using the OSP algorithm.

Number of AIRS Channels Wavenumber (cm−1)

1883 2197.91
1884 2198.83
1897 2210.85
1901 2214.57
1917 2229.59
1921 2233.38
1923 2235.27
1924 2236.22

2.2.1. Analysis of Channel Sensitivity

The three fundamental absorption features of N2O are centered at 1284.91 (υ1),
588.77 (υ2), and 2223.76 cm−1 (υ3). The υ1 band of N2O, the υ4 band (1310.76 cm−1)
of CH4 and the main vibrational absorption band (1594.75 cm−1) of water vapor overlap
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one another. Consequently, it is very difficult to separate the absorption of N2O from CH4
and water vapor using the υ1 band of N2O. The υ2 band of N2O is outside the spectral
range of AIRS and is thus not taken into consideration. Although the υ3 band of N2O is
overlapped with part of the υ3 band of CO2 and part of the CO absorption band, the change
in BT caused by the changes in CO2 (2%) and CO (2%) concentrations are much smaller
than those caused by the change in N2O concentration. Figure 2 shows a segment of the
AIRS spectrum near the υ1 absorption band of N2O, as well as the similar contributions of
the two other major absorbing gases—water vapor and CH4 in this spectral range.

Figure 2. A segment of the AIRS spectrum near the υ1 absorption band of N2O (top plot) and the
transmittances of N2O, water vapor and CH4 (bottom three plots) in the MWIR range.

Figure 3 presented the changes in BTs caused by the changes in N2O, water vapor,
and CH4 concentrations, the absorption band of N2O is overlapped with the absorption
of CH4 and water vapor. Considering the AIRS channel noise [20], only two channels (at
1291.1395 and 1291.7086 cm−1) that are most sensitive to N2O but have less interference
from other gases are selected, as marked in Figure 3. Using a similar method, some channels
sensitive to N2O in υ3 band are selected, as shown in Figures 4 and 5. This is the first step
of channel selection.

Figure 3. Changes in the BT near the υ1 absorption band of N2O that occur when the water vapor,
N2O and CH4 concentrations increase by 10%, 0.6%, and 2%, respectively, (top) and the AIRS channel
noise in the υ1 absorption band of N2O (bottom).
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Figure 4. A segment of the AIRS spectrum near the υ3 absorption band of N2O (top plot) and the
transmittances of N2O, CO2, and CO (bottom three plots) in the SIR range.

Figure 5. Changes in BT near the υ3 absorption band of N2O that occur when the CO2, N2O, and CO
concentrations increase by 2%, 0.6%, and 2%, respectively, (top) and AIRS channel noise in the υ3
absorption band of N2O (bottom).

2.2.2. Weighting Functions

Due to the correlations between the channels, a large number of retrieval channels is
not necessarily favorable in the retrieval of atmospheric N2O profiles. Further selection
based on weighting functions will be carried out. Without considering the surface contribu-
tion, the radiative transfer equation for the thermal IR region can be written in the form of
the BT as below:

Tυ(∞) =
∫ ∞

0
T(z)

∂τυ(z, ∞)

∂z
dz (6)

where T, z, and τυ represent brightness temperatures, altitude, and transmittance, respec-
tively. Most remote sensing problems and relevant retrieval algorithms can be simplified to
Fredholm integral equations of the first kind [33], i.e.:

g(υ) =
∫ ∞

0
k(υ, z) f (z)dz (7)
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where k(υ, z) is a kernel function; g(υ) is the observed vector value, which is a known
function, and f (z) is the function to be solved. Here, we assume that the average form (T(z)
and g(υ), the average value for T(z) and g(υ) and let T− T(z) = f (z) and g− g(υ) = g(z).
By subtracting the equation in the standard form from Equation (6) and then solving the
first-order variation of the resultant equation [31], we have:

k(υ, z) =
∂τυ(z)

∂z
·dT(z)

dz
|T=T(z) (8)

The kernel function (i.e., the weighting function) k(υ, z) shows the sensitivity of the
satellite observed radiance to the gas amounts as a function of the altitude.

As shown in Equation (6), the weighting function is essentially the convolution of
atmospheric temperature and N2O transmittance profiles. The optimal information layer
is located at the point of intersection between temperature and N2O profiles. Evidently,
when the temperature profile remains unchanged, N2O concentrations at various altitudes
can be determined by selecting channels with various transmittances. In this paper, the fast-
forward CRTM is used to directly calculate the transmittances and weighting functions of
several main gases affecting atmospheric N2O retrieval from the AIRS spectral channels.

Figure 6 shows the weighting functions of the two channels near the υ1 absorption
band of N2O. The peak regions of the weighting functions of the two channels coincide
with one another, and the weighting function of one channel exhibits larger peaks than
that of the other channel. Therefore, only the channel with a larger peak is selected as the
retrieval channel.

Figure 6. Weighting functions of the channels selected near the υ1 absorption band of N2O.

From the weighting functions of the channels selected near the υ3 absorption band of
N2O, we noticed that most of the peaks overlap on each other. Only 13 channels with the
largest peaks in various atmospheric pressure layers are selected for retrieval, as shown in
Figure 7.
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Figure 7. Weighting functions of all the channels selected for retrieval.

Table 2 shows the selected channels for N2O profile retrieval by the modified OSP
method. Based on the weighting functions of the selected channels, AIRS is sensitive to
N2O in the range of 200–800 hPa (i.e., the peak region of the weighting functions). Figure 8
shows the vertical atmospheric N2O profiles obtained using various channel selection
algorithms. The retrieval run with the same setup as the M-OSP, with only difference being
the retrieval channels. Evidently, the retrieval accuracy of the modified OSP algorithm
proposed in this study is significantly higher than that of the OSP algorithm. The largest
relative difference between the retrievals from the modified OSP algorithm and the HIPPO
data is less than 0.1%.

Table 2. The selected channels for N2O retrieval using the modified OSP algorithm.

Number of AIRS Channels Wavenumber (cm−1)

1382 1291.7086
1883 2197.9108
1898 2211.7779
1900 2213.6399
1916 2228.6466
1919 2231.4825
1920 2232.4294
1924 2236.2248
1925 2237.1756
1926 2238.1272
1927 2239.0796
1929 2240.9868
1930 2241.9415
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Figure 8. N2O profiles retrieved using various channel selection algorithms (time: 10 June 2011).

3. Results and Discussion

The validation of results derived from satellite data is an essential step in improving
retrieval algorithms, ensuring profile accuracy. In this study, atmospheric N2O profiles
under clear-sky conditions were retrieved from AIRS Level-1B thermal IR radiance data.
The retrieved profiles were validated using HIPPO N2O profile data and the data measured
at the U.S. National Oceanic and Atmospheric Administration (NOAA)’s Earth System
Research Laboratory (ESRL) observatories.

3.1. Validation Using HIPPO Observation Data

The HIPPO aircraft, supported by the U.S. NOAA and National Science Founda-
tion, is used to observe greenhouse gases, trace gases with long lifespans, black carbon,
and aerosols, as well as the carbon isotopic composition of CO2 [34]. The HIPPO aircraft
flew five times across the Pacific Ocean from 85◦ N to 67◦ S, with vertical profiles approx-
imately every 2.2◦ of latitude between 2009 and 2011. The fourth and fifth flights of the
HIPPO aircraft, made between June and July 2011 and between August and September 2011,
were used to validate the retrieval results (https://www.eol.ucar.edu/field_projects/hippo,
accessed on 29 December 2022). During these missions, N2O is observed with a precision
of 0.09 ppbv and an accuracy of 1.0 ppbv [35].

HIPPO data measured in the high-, mid-, and low-latitude regions of the Southern
and Northern Hemispheres were selected to validate the algorithms. Table 3 lists the
selected profiles. The match-up of AIRS with HIPPO measurements is selected if (1) the
time difference is within 24 h and (2) the distance is within 100 km. Only the pixels with
high-quality cloud-cleared radiance were used for retrieval.

Figure 9 shows the 13 retrievals matched up with HIPPO and the mean retrieval
profile, and the RD between the retrieval results and the HIPPO data is shown in Figure 10.
It is evident from Figure 10 that the retrieval comparisons are significantly improved when
applying the averaging kernels to convolve the HIPPO data. The RD in layer 300–800 hPa
is less than 0.1%, which demonstrates that AIRS is sensitive to N2O in the middle to upper
troposphere, with the peak vertical sensitivity between 300–800 hPa.

https://www.eol.ucar.edu/field_projects/hippo
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Table 3. HIPPO data selected to validate the algorithms.

HIPPO (Flight Number) Time Latitude Longitude

1 4 10 June 2011 32.63 −103.14
2 4 17 June 2011 71.78 −141.88
3 4 23 June 2011 −5.66 −167.33
4 5 28 August 2011 −36.86 176.66
5 5 30 August 2011 −65.69 164.00

Figure 9. An example of the retrieval results for the mid-latitude region of the Northern Hemisphere.

Figure 10. Average retrieval results for the 13 sample points matching the HIPPO data (left) and the
RD between the retrieval results and the HIPPO data (right).
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Figure 11 shows the root-mean-square deviation (RMSD) and root-mean-square rela-
tive deviation (RMSRD) of the retrievals using all HIPPO data selected in Table 3. The RMSD
is essentially less than 0.5 ppb and the RMSRD is less than 0.2%.

Figure 11. The root-mean-square deviation (RMSD) and root-mean-square RD (RMSRD) of the
retrievals using all HIPPO data selected in Table 3.

The retrieval accuracy is the highest for the range of 300–800 hPa and the RD is
approximately 0.1% for nearly all the locations. The retrieval accuracy is lower for the
range of 200–300 hPa and the lowest for values above 200 hPa.

Figures 12–14 show examples of the retrieval results for regions at various latitudes.
The retrieval results show that there is no significant difference between the atmospheric
N2O profile concentrations in the troposphere over the high-latitude, mid-latitude, and trop-
ical regions of the Southern Hemispheres. The retrieval accuracy is the highest for the range
of 300–900 hPa and the lowest for values above 200 hPa. The largest RD exceeds 15%. In the
thermal infrared (TIR), measurement sensitivity to the lowermost troposphere requires
high thermal contrast between the Earth’s surface and the near-surface (tens to hundreds of
meters above the surface) atmosphere. the reason for this retrieval accuracy over different
altitude ranges might be associated with the lower thermal contrast. As shown in Figure 5,
the averaging kernel is almost zero at surface 900 hpa, and the retrieved information almost
entirely comes from the a priori.

Figure 15 shows the sample AK matrices and the degree of freedom ds and entropy H
for the AIRS observations over high-latitude, mid-latitude, and tropical regions. AK ma-
trices characterize the sensitivity of the retrieved profiles relative to the true state of the
atmosphere. These three measurements show different sensitivities at different latitudes
to the N2O vertical distribution. The analysis reveals that the AIRS sensitivity to the N2O
profile is greatest in the middle of troposphere (300–800 hPa). The information content
and the degree of freedom are relatively low (ds = 0.0850), medium (ds = 0.1060), and high
(ds = 0.1265). The ds is so low because it represents only what the second part of the
retrieval brings as additional information that has limited room for improvement compared
with the regression results. The value of the AKs from the surface to 900 hPa is close to zero.
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Figure 12. An example of the retrieval results for the high-latitude region of the Northern Hemisphere
(left) and the RD between the retrieval results and the HIPPO data (right).

Figure 13. An example of the retrieval results for the tropical region (left) and the RD between the
retrieval results and the HIPPO data (right).
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Figure 14. An example of the retrieval results for the mid-latitude region of the Southern Hemisphere
(left) and the RD between the retrieval results and the HIPPO data (right).

Figure 15. Examples of AKs for the measurements over tropical (left), mid-latitude (middle), and high-
latitude (right) regions.

3.2. Validation Using ESRL Observatory Data

Two research groups from the U.S. NOAA ESRL—the Halocarbons and Other At-
mospheric Trace Species group and the Carbon Cycle Greenhouse Gases group—have
been continuously observing N2O since 1977. Two sampling methods, in situ and flask,
have been used. The flask method records near-surface monthly average measurements of
N2O, whereas the in situ method records hourly, daily, monthly, and global measurements
of N2O.

Data measured at the Mauna Loa Observatory (MLO) (coordinates: 19.539◦ N, 155.578◦ W;
altitude: 3397 m) in Hawaii during 23 days of September 2013 available from the NOAA/ESRL
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Chromatograph for Atmospheric Trace Species (CATS) Program were selected and com-
pared with the average satellite-observed values for all the matching points. The instru-
mental precision 5 of N2O is approximately 0.2% for NOAA CATS [36]. Observation points
within a latitude range of 1◦ and a longitude range of 1◦ from the MLO were selected as
matching points. The MLO is located at an altitude of 3.4 km. The value at a similar altitude
(661 hPa) was selected for each matching point. Figure 16 shows the comparison.

Figure 16. Comparison of the results retrieved from the AIRS data and the MLO observations for
September 2013.

The ESRL’s daily average data of N2O represent the average of all the hourly observa-
tions for each day (an observation is made each hour throughout the entire day (24 h)) and
are thus relatively smooth. In comparison, each value retrieved from the AIRS data is the
average of the values measured at the observation points matching the MLO at a certain
time. As a result, a certain fluctuation (by 1–2 ppb) is observed in the values retrieved from
the AIRS data. Overall, the values retrieved using the statistical regression algorithm are
lower than the MLO observations.

4. Conclusions

One algorithm to retrieve atmospheric N2O profiles from AIRS data was presented,
which includes the algorithm for a rapid initial profile retrieval and the channel selection
under the framework of optimization theory. The channel selection was based on the
physical meaning of this weighting function has been discussed in detail. Based on the
weighting functions, as well as the transmittances of several main atmospheric gases and
the sensitivity of their changes to BT, a total of 13 channels were selected for optimal
retrieval in this paper. Theoretically, N2O concentrations in various atmospheric pressure
layers can be retrieved if the channels with various transmittances of N2O can be located.
However, in practice, channel selection faces challenges from widening satellite sounding
channels and interference from other gases.

The retrieval results were validated using the profiles from HIPPO aircraft measure-
ments and the ESRL data. The results show that this optimal estimation algorithm is more
accurate than the statistical regression algorithm. The mean relative difference between
the retrieved profiles and the HIPPO measurements is less than 0.1% in the vertical layers
between 300–900 hPa. The retrieval accuracy is slightly lower in layers of 200–300 hPa
(~5%) and the error is larger in layers above 200 hPa (>15%).

Because the absorption bands of N2O are mixed with other gases, future research will
focus on simultaneous retrieval of the profiles of atmospheric temperatures, water vapor,
and other gases that interfere N2O (e.g., CH4).

This study presents an algorithm for the retrieval of N2O profiles from the AIRS
using a nonlinear optimal estimation method, although they are subject to limitations.
For example, limited observation of sample points is available to verify the algorithm of



Atmosphere 2022, 13, 619 16 of 17

the paper, and the results are limited to a specific time and area. More observations will be
added to illustrate the reliability of the algorithm in the future.
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