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Abstract: The objective of the present study was to examine and predict the annual maximum
temperature in the northeast of Thailand by using data from 25 stations and employing spatial extreme
modeling which is based on max-stable process (MSP) using schlatter’s method. We analyzed extreme
temperature data using the MSP using latitude, longitude, and altitude variables. Our result showed
that the maximum temperature has an increasing trend. The return level estimates of the study areas
from both the local generalized extreme value (GEV) model and MSP models show that the Nong
Khai, Maha Sarakham, and Khon Kaen stations had higher return levels than the other stations for
every return period, whereas Pak Chong Agromet had the lowest return levels. Furthermore, the
results showed that MSP modeling is more suitable than point-wise GEV distribution. We realize that
the spatial extreme modeling based on MSP provides more precise and robust return levels as well
as some indices of the maximum temperatures for both the observation stations and the locations
with no observed data. The results of this study are consistent with those of some previous studies.
The increasing trend in return levels could affect agriculture and the surrounding environment in
northeast Thailand. Spatial extreme modeling can be beneficial in the impact management and
vulnerability assessment under extreme event scenarios caused by climate change.

Keywords: climate change; generalized extreme value distribution; spatial analysis; return level;
max-stable process

1. Introduction

Global climate change has become an urgent matter of concern as it threatens our
planet and affects lives and economy both directly and indirectly. Direct effects include,
among others, the risk of flooding from rising sea levels, while indirect effects include
higher food prices, owing to direct effects on crop cycles and growth. Climate change affects
strong weather events, including summer storms, cyclones, and typhoons. It strengthens
the El Niño and La Niña events, which are important factors in determining the direction
of frequent seasonal storms and the intensification of inclement weather, such as heavy
rain, in some countries. The Association of Southeast Asian Nations (ASEAN), including
Thailand, is a global food producer that has experienced longer hot and dry spells in their
areas of activity, resulting in water and food shortages. According to the Intergovernmental
Panel on Climate Change (IPCC) report [1], risks due to climate change are increasing, and
should be considered as a part of the 21st century climate system.

Climate change has affected Thailand in several ways; its impacts on the changes in
temperature and rainfall are particularly notable. Thus, preparations to deal with and adapt
to these changes are essential. In Thailand, when considering the change in temperature
since the beginning of record keeping (1951) by the Thai Meteorological Department
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(TMD) [2], it was found that the average temperature has been increasing. In 2021, the
TMD [2] found that the annual average temperature was 27.5 °C, which was 0.4 °C higher
than that in the previous 30-year period (1981–2010). Limsakul [3]’s research supports that
day and night temperatures in Thailand have risen considerably and are likely to continue
to increase. The northeastern region has shown a more rapid increase in temperature than
other areas in Thailand. Increases in temperature impact agriculture, such as through
water shortages and limiting plant growth. In addition, the northeastern region frequently
experiences severe droughts. Because many people in the northeastern region are farmers,
which comprise 46.6% of the population in Thailand [4], rises in temperature, especially
during intense heatwaves, will significantly (and likely negatively) influence the means of
living of many people in the region.

For the prediction of extreme temperature across Thailand, the statistical models
employed by previous studies are rather simple and standard. Sharma and Babel [5]
and Manomaiphiboon et al. [6] used regression models and the Mann-Kendall trend de-
tection method. They reported that the extreme temperature tend to increase significantly
for all stations examined in Thailand. Limsakul [3] used the empirical orthogonal function
approach whereas Rodchuen et al. [7] used an ARMA model. The results of the afore-
mentioned studies indicated that the frequency of hot (cool) temperature extremes has
increased (decreased) and will continue in the near future.

Some studies, such as those by [5,8–10], have attempted to employ extreme value
models to analyze extreme temperature data in Thailand. Seenoi et al. [10] modeled extreme
temperatures in upper northeastern Thailand at nine meteorological stations using a gen-
eralized extreme value (GEV) distribution (GEVD). They estimated the parameters using
the maximum likelihood estimation (MLE) method under stationary and non-stationary
settings. None of the above-mentioned studies applied the model spatially, but only locally;
here, local analysis means that the model was built independently for each weather station
without considering the spatial dependency among nearby stations. It is generally known
that spatial modeling of extreme values can reduce the mean squared error of prediction
compared to local modeling [11–13]. The reason for the better performance of spatial
modeling is that the spatial extreme model takes into account the spatial dependency
among nearby stations, whereas the local extreme model is applied independently for each
station without considering any events around nearby stations. However, spatial extreme
modeling based on the max-stable process (MSP) requires intensive computation; thus,
analysis with large number of locations is challenging [11]. Further, the MSP also requires a
clear model specification. These disadvantages have prevented researchers from employing
the MSP models to analyze extreme spatial data.

In our study, a spatial extreme value model based on an MSP was used and applied
to the maximum temperature data in northeastern Thailand. The objective of the spatial
analysis is to model a region where extreme events occur, and data are continuously
stored [14]. Spatial analysis is an important in-depth analysis, as researchers sometimes
cannot determine how independent or close each observation area is. Therefore, the spatial
analysis was used to model spatial extreme events. This is a way to analyze spatial data
and extreme value properties simultaneously. Yoon et al. [15] studied spatial GEV models
within continuous local extreme events using observations of annual daily maximum
rainfall data in northeastern Thailand, comprising 25 locations for the period 1982–2013. It
was shown that the regional spatial GEV model reflects the spatial pattern well compared
to the region-wide spatial GEV model as a local distribution of GEV and provides a strong
return level. Several studies have suggested that MSPs are useful for statistical modeling
of spatial extremes. These processes are natural extensions of multivariate extreme-value
distributions to infinite dimensions [12,16–18]. Thus far, no study has been conducted on
the spatial GEVD using observational temperature data in Thailand. Therefore, researcher
are interested in studying it to prepare for problems that may arise from temperature
changes.



Atmosphere 2022, 13, 589 3 of 16

Overall, in this study, we investigated the local GEV and spatial GEVD with extreme
values of daily maximum temperature data in northeastern Thailand for 25 stations and
predicted the return level of temperature in the 2, 10, 25, 50, and 100 year return peri-
ods. Section 2 presents the study areas and meteorology; Section 3 presents the modeling
methodology, including the GEV model structure and spatial GEV model; Section 4 de-
scribes the results of both local GEV and spatial GEV models; and, finally, Section 5 presents
the discussion and summarizes the conclusions of this study.

2. Study Area

The northeastern region of Thailand, which was considered as the study area, approxi-
mately 168,854 km2, which is comparable to one-third of the total area of Thailand. This
region is 120–400 m above sea level. The northeastern region is mostly a pan-like plateau
divided into two large areas: the Korat River Basin, which includes the Mun and Chi rivers,
and the Sakon Nakhon River Basin in the northern part of the region.

The general climate in Thailand has an average year-round temperature of 26–27 °C,
with the lowest average temperature above 18 °C; therefore, Thailand is included in the
tropical climate zone. The difference in climatic temperatures indicates that the months
with the highest air temperature are April to early May, when the temperature reaches
40–41 °C, whereas the coldest months are December to January, when the temperature
drops below 10 °C. The air temperature distribution was found to be high during April–
September. When entering October, the air temperature gradually decreases and cools from
November to February, and the weather warms again as March begins. From 1951 to 2012,
the TMD [2] reported that the annual average temperature for the northeastern region was
28.6 °C, but the hottest air temperature was 43.9 °C in the Udon Thani Province in late
April [19].

Figure 1 shows ridge line plots of the monthly average temperature from 1989 to 2019
for six stations (Nong Khai, Udon Thani, Sakon Nakhon, Khon Kaen, Chaiyaphum, and
Nakhon Ratchasima) in the northeast region of Thailand, consistent with the previous
description.

Figure 1. Ridge line plot of monthly average temperature data (unit: °C) from 1989 to 2019 for six
stations in the northeast region of Thailand.

The northeastern region usually experiences a long period of warm weather because of
its inland nature and tropical latitude zone. Between March and May, the peak temperature
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is about 40 °C. In winter, monsoon winds from China cover Thailand, causing occasional
cold weather and the temperature to drop to a relatively low value. Particularly in the
northeast, the temperatures can drop to near zero °C [19].

In this study, we used yearly data to analyze GEV and then selected the annual
maximum temperatures from the daily maximum temperature data obtained from the
TMD [2]. The data records were for the duration of 1989 to 2019 from 25 stations in
northeastern region of Thailand. The Table 1 shows the station names and identifications,
including the altitude above sea level and descriptive statistics of the temperature data
(unit: °C) for all 25 stations. All of the stations in the northeastern region of Thailand
are shown in Figure 2. Although the weather stations were well distributed, some were
located close to each other. Boxplots of the annual maximum temperature data for each
station are plotted in Figure 3. This shows that some stations were located close to each
other, but had different temperature distributions. For example, the Nakhon Ratchasima
(431201), Pak Chong Agromet (431301), and Chok Chai (431401) stations are in the same
province but have different temperature characteristics. This may be due to different
topographies. The Pak Chong Agromet station is surrounded by mountains, and thus, the
ambient temperature is relatively low. The Chok Chai Station is mostly in the highlands
and has a river running through it. Therefore, both stations had lower temperatures than
the Nakhon Ratchasima station.

Table 1. Temperature monitoring station and height above sea level for 25 stations and descriptive
statistics of annual maximum temperature data (unit: °C) in northeastern region of Thailand. N and
SD represent number of observations and standard deviation, respectively. Q1 is 25th and Q3 is 75th
percentile.

Station ID Station Name Latitude Longitude Altitude (m) N Mean SD Median Min Max Q1 Q3

352201 Nong Khai 17◦52′ 102◦43′ 167 31 40.9 1.20 40.6 38.9 43.3 40.0 41.9
353201 Loei 17◦27′ 101◦44′ 246 31 40.7 1.38 40.4 38.6 43.4 39.8 41.7
353301 Loei Agromet 17◦24′ 101◦43′ 311 31 39.2 7.40 40.5 38.0 43.5 39.6 41.2
354201 Udonthani 17◦23′ 102◦43′ 177 31 40.9 1.18 41.0 38.3 43.0 40.1 41.8
356201 Sakon Nakhon 17◦09′ 104◦08′ 168 31 40.0 1.08 40.0 38.0 41.7 39.1 41.0
356301 Sakon Nakhon Agromet 17◦07′ 104◦03′ 238 31 38.8 7.29 40.0 37.9 42.5 39.3 41.0
357201 Nakhon Phanom 17◦25′ 104◦47′ 141 31 39.5 1.27 39.2 37.5 42.1 38.5 40.5
357301 Nakhon Phanom Agromet 16◦26′ 104◦47′ 142 31 38.4 7.23 39.8 37.3 42.1 38.8 40.6
381201 Khon Kaen 16◦27′ 102◦49′ 168 31 40.6 0.98 40.8 38.5 42.4 39.8 41.3
381301 Tahpra Agromet 16◦20′ 104◦43′ 171 31 39.4 7.39 40.6 38.3 42.7 40.0 41.3
383201 Mukdaharn 16◦32′ 104◦43′ 162 31 40.7 1.02 40.8 38.9 42.5 40.0 41.6
387401 Maha Sarakham 16◦14′ 103◦04′ 161 31 40.8 1.03 40.6 39.0 43.3 40.2 41.6
403201 Chaiyaphum 15◦48′ 102◦02′ 209 31 40.4 1.12 40.5 38.1 42.6 39.5 41.0
405201 Roiet 16◦03′ 103◦41′ 147 31 39.8 1.06 39.7 38.0 42.3 39.0 40.4
405301 Roiet Agromet 16◦04′ 103◦37′ 161 31 38.4 7.21 39.8 35.9 41.2 39.0 40.3
407301 Ubon Ratchatani Agromet 15◦23′ 105◦03′ 118 31 38.8 7.29 40.1 38.0 42.4 39.2 40.7
407501 Ubon Ratchatani 15◦15′ 104◦52′ 126 31 40.2 1.15 40.3 37.9 42.6 39.2 41.0
409301 Si Sa Ket 15◦02′ 104◦15′ 134 31 38.8 7.27 40.0 38.4 42.5 39.7 40.6
431201 Nakhon Ratchasima 14◦57′ 102◦04′ 204 31 40.4 1.21 40.6 37.9 43.2 39.6 41.3
431301 Pak Chong Agromet 14◦38′ 101◦19′ 551 31 36.2 6.81 37.5 35.0 39.4 36.5 38.2
431401 Chok Chai 14◦43′ 102◦10′ 187 31 39.6 0.95 39.5 38.1 42.5 39.0 40.0
432201 Surin 14◦53′ 103◦30′ 147 31 39.4 0.97 39.3 38.0 42.0 38.7 39.8
432301 Surin Agromet 14◦53′ 103◦27′ 144 31 39.0 7.32 40.2 38.0 43.3 39.5 41.0
432401 Tha Tum 15◦19′ 103◦41′ 144 31 40.3 1.16 40.2 38.6 42.3 39.2 41.3
436401 Nang Rong 14◦35′ 102◦48′ 185 31 40.4 1.03 40.4 38.2 43.0 39.8 41.1
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Figure 2. Locations of 25 observation weather stations in northeast region of Thailand with labels
above each location showing the ID of each station.

Figure 3. Boxplots of annual maximum temperature data for each station in northeastern region.

3. Methodology

Analysis of the extreme value model with extreme value theory (EVT) can be divided
into two types according to the nature of the selection of the extreme value data: GEVD
and generalized Pareto distribution (GPD). Modeling with GEVD is suitable for analyzing
extreme values over time periods of interest, such as daily, weekly, monthly, quarterly, and
yearly. GPD analysis is suitable when there is a large amount of daily data. In this study,
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we analyzed the GEVD by selecting yearly maximum values from daily temperature data
recorded from 1989 to 2019 for 25 stations.

3.1. GEVD

The GEVD developed by Jenkinson [20] is flexible to three other distributions: Gumbel,
Fréchet, and Weibull distributions. Assuming that Xi, where i = 1, 2, · · · , n are independent
random variables and have the same probability density function F(x), the maximum value
of the random variable is X(n) = Max(X1, X2, · · · , Xn).

3.1.1. Local GEVD

The cumulative distribution function (CDF) of the GEVD is as follows [11]:

F(x) = exp

(
−
(

1 + ξ
x− µ

σ

)−1/ξ
)

, 1 + ξ
x− µ

σ
> 0 (1)

where µ, σ, and ξ denote the location, scale, and shape parameters, respectively. The case
with ξ → 0 is the Gumbel distribution

F(x) = exp

(
−
(

1 + ξ
x− µ

σ

))
, −∞ < x < ∞ (2)

The cases with ξ > 0 and ξ < 0 are known as Fréchet and negative Weibull distribu-
tions, respectively.

3.1.2. MLE

We estimated the parameters using the MLE method. Assuming that X1, X2, · · · , and, Xn
are independent variables and have a GEVD, then the log-likelihood function can be written
as follows:

l(µ, σ, ξ) = −mlogσ−
(

1 +
1
ξ

) n

∑
i=1

log

[
1 + ξ

( xi − µ

σ

)]
−

n

∑
i=1

[
1 + ξ

( xi − µ

σ

)]− 1
ξ

, (3)

where ξ 6= 0 and 1 + ξ
(

xi−µ
σ

)
> 0 for i = 1, · · · , n. For the case ξ = 0, it is the limit of the

Gumbel distribution; then, the log-likelihood function becomes

l(µ, σ) = −mlogσ−
n

∑
i=1

(
xi − µ

σ

)
−

n

∑
i=1

exp
{
−
( xi − µ

σ

)}
. (4)

In practice, it is easier to maximize the log-likelihood function. We obtained the values
of µ̂, σ̂, and ξ̂ from Equations (3) and (4).

The goodness-of-fit test used for this study was the Kolmogorov-Smirnov (KS) test,
which is obtained by transforming to a standard Gumbel distribution, defined by [11].

x̃ =
1
ξ̂

log
{

1 + ξ̂
( x− µ̂

σ̂

)}
, (5)

with probability distribution function Pr{x̃ ≤ x} = exp{−e−x}, x ∈ R.
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3.1.3. Return Level Estimation

After the parameters were estimated using the maximum likelihood method, the
return level value zp for 0 < p < 1, where zp is defined as the value expected to exceed the
average once every 1/p Coles [11], can be calculated as follows:

ẑp

µ̂− σ̂

ξ̂

[
1− y−ξ̂

p

]
, for ξ̂ 6= 0,

µ̂− σ̂logyp, for ξ̂ = 0,
(6)

where yp = −log(1− p). The standard error of the return level was calculated using the
delta method. The extreme value model has a preliminary agreement that the distribution of
the GEV data at each station is independent of one another; thus, our data are a multivariate
series, since data from several locations were recorded. Therefore, the extreme values theory
approaches are insufficient and were, thus, modeled using the spatial extreme value, as
presented [21].

3.2. Spatial GEVD

In this study, we created a spatial model for extreme values via an MSP using Schlater’s
characterization. The MSP is an infinite-dimensional generalization of multivariate EVT
distribution. The concept of spatial dependence is that everything is interrelated, but the
nearer ones are more closely related than the distant ones [21], as shown in Figure 4.

For data analysis, we used linear transformations to provide geographic information
of the station, as in Equation (7).

xnew =
[x−min(x)]

[max(x)−min(x)]
(7)

to make the inverse calculation of the Hessian matrix more stable [15].

Figure 4. Spatial location in northeast region of Thailand.

Let M(l, t) be the daily maximum temperature data for the location (l) and period (t)
in the spatial domain D ⊂ R2 [21]. Then, the distribution of M(l, t) is:

M(l, t) = GEV(µ(l, t), σ(l, t), ξ(l, t)), (8)

where µ(l, t), σ(l, t), and ξ(l, t) are the locations, scale, and shape parameters from the
GEVD. A stochastic process Z(r) is defined as an MSP if successions of continuous function
an(r) and bn(r) exist, as in Equation (9).
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Z(r) =
max

i=1,··· ,n
Zi(r)− bn(r)

an(r)
, r ∈ R (9)

In the present study, we used Schlater’s method to rewrite Equation (9) as Equa-
tion (10):

Z(x) = max
i≥1

(UiYi(x)), x ∈ X, (10)

where Ui are the points of a Poisson process at (0,+∞), and Y1(x), · · · , Yn(x) are indepen-
dent replications of the stochastic process Y(x). Portero Serrano et al. [22] presented at
bivariate CDF, as follows:

P(zi, zj) = exp

{
−1

2

( 1
zi

+
1
zj

)(
1 +

√
1− 2(ρ(h) + 1)

zizj

(zi + zj)2

)}
, (11)

where ρ(h) is the correlation function and the distance h separates the different maxima:

ρ(h) = νexp

(
−
( h

τ

)η
)

, 0 < η ≤ 2, τ > 0, 0 ≤ ν ≤ 1, h > 0, (12)

where τ and η are the scale and shape parameters. The parameter ν represents the nugget
effect of measurement errors and microscale variations in the data [13]. The correlation
function ρ(h) between two random (X, Y) items should have a positive correlation for
ρ = 1 as a full dependency, with this function being constrained by the extremal coefficient
(θ) describing the characteristics of the matrix of the dependencies tail and the extremal
coefficient function θ(h) = 1 + [{1− ρ(h)}/2]1/2 [21–24].

To select the best trend surface model, we used the Takeuchi information criterion
(TIC) [25] and, chose the smallest available one. Through a model selection procedure, we
built a regression-based form for the location, scale, and shape parameters, as follows:

µ̂(x) = µ0 + µlonlon(x) + µlonlon(x)2 + µlatlat(x) + µlatlat(x)2 + µaltalt(x)

σ̂(x) = σ0 + σlatlat(x) + σaltalt(x) (13)

ξ̂(x) = ξ0

where these models are several combinations of models with the latitude, longitude, and
altitude of the station at which the data were observed x. The shape parameter ξ(x) was
treated as a constant. The parameters ψ of the model were identified by the pairwise
marginal density and estimated by maximizing a composite log-likelihood function, as
follows [24]:

lp(ψ̂) =
n

∑
i=1

∑
{j<k:yj ,yk∈Yi}

log f (yi, yk; ψ), (14)

and TIC function is given by

TIC = −2lp(ψ̂) + 2tr

{
H(ψ̂)−1 J(ψ̂)

}
, (15)

where

H(ψ̂) = −
∂2log f (zik, zjk; ψ̂)

∂ψ∂ψT

J(ψ̂) = −
K

∑
k=1

∂log f (zik, zjk; ψ̂)

∂ψ

∂log f (zik, zjk; ψ)

∂ψT ,
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where i = 1, 2, · · · , n, j = 1, 2, · · · , m and the return level analysis concept are used to
estimate the future extreme temperature.

4. Results
4.1. GEVD

From Table 2, the 95% confidence interval estimated the contour shape parameters
from the local GEV of the study area, indicating the optimal distribution at each station.
There are 10 stations with the contour parameter, and positive coverage means that the tail
is skewed to the right; therefore, the optimal distribution is the Gumbel distribution. There
are 15 stations in which the shape parameter approximation is in the zero range, that is, the
Weibull distribution. We performed our model with the KS test statistic at a significance
level of 0.05 by comparing the CDF values of the sample data with the CDF values of the
actual data. It was found that the Gumbel and Weibull distributions were appropriate for
the data.

Table 2. Point parameter estimates in 95 confidence interval, appropriate distribution and p-value of
Kolmogorov–Smirnov (KS) test of some stations from local GEV.

Station

Parameter Estimate

Distribution p-Value of KSµ̂(s.e) σ̂(s.e) ξ̂(s.e)

CI 95% CI 95% CI 95%

353201
40.19 (0.24) 1.15 (0.18) −0.33 (0.18)

Gumbel 0.96(39.72, 40.66) (0.79, 1.51) (−0.69, 0.03)

353301
40.12 (0.23) 1.12 (0.17) −0.31 (0.16)

Gumbel 0.91(39.67, 40.57) (0.78, 1.45) (−0.63, 0.00)

354201
40.51 (0.21) 1.08 (0.15) −0.35 (0.11)

Weibull 0.99(40.09, 40.93) (0.79, 1.38) (−0.57, −0.13)

356201
39.81 (0.24) 1.18 (0.23) −0.77 (0.20)

Weibull 0.86(39.35, 40.27) (0.73, 1.64) (−1.16, −0.38)

357201
39.04 (0.24) 1.16 (0.18) −0.23 (0.18)

Gumbel 0.85(38.57, 39.52) (0.79, 1.52) (−0.58, 0.12)

381301
40.51 (0.17) 0.85 (0.13) −0.29 (0.14)

Weibull 0.97(40.17, 40.84) (0.60, 1.09) (−0.57, −0.02)

405201
39.83 (0.21) 1.01 (0.15) −0.31 (0.14)

Weibull 0.99(39.43, 40.23) (0.72, 1.31) (−0.59, −0.03)

407501
39.87 (0.19) 0.94 (0.14) −0.34 (0.15)

Weibull 0.99(39.49, 40.24) (0.66, 1.23) (−0.63, −0.04)

431201
40.02 (0.21) 1.08 (0.15) −0.45 (0.10)

Weibull 0.98(39.61, 40.43) (0.78, 1.38) (−0.64, −0.25)

431301
38.47 (0.19) 0.97 (0.14) −0.38 (0.12)

Weibull 0.89(38.09, 38.84) (0.70, 1.24) (−0.61, −0.14)

432201
39.05 (0.15) 0.76 (0.11) −0.18 (0.13)

Gumbel 0.92(38.75, 39.36) (0.55, 0.98) (−0.44, 0.08)

The return level estimates of the study areas from the local GEVD calculated from
Equation (6) are shown in Table 3, indicating that Nong Khai Station (352201) had higher
return levels for temperature than the other stations, whereas Surin Station (432201) had
the lowest return levels for every return period.
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Table 3. Return levels (unit: °C) for several return periods (T = 5, 10, 25, 50, and 100) with standard
error in parentheses for each station from local generalized extreme value distribution.

Station 5 Years 10 Years 25 Years 50 Years 100 Years

352201 41.87 (0.07) 42.41 (0.59) 42.99 (0.19) 43.35 (0.35) 43.66 (0.59)
353201 41.55 (0.06) 42.01 (0.29) 42.46 (0.11) 42.71 (0.18) 42.91 (0.29)
353301 41.46 (0.05) 41.92 (0.26) 42.38 (0.10) 42.64 (0.17) 42.84 (0.26)
354201 41.77 (0.04) 42.19 (0.10) 42.59 (0.05) 42.81 (0.07) 42.98 (0.10)
356201 40.86 (0.02) 41.07 (0.004) 41.21 (0.004) 41.27 (0.003) 41.30 (0.004)
356301 40.84 (0.02) 41.12 (0.02) 41.33 (0.01) 41.43 (0.01) 41.49 (0.02)
357201 40.51 (0.08) 41.08 (0.63) 41.67 (0.21) 42.03 (0.38) 42.34 (0.63)
357301 40.53 (0.07) 41.08 (0.52) 41.65 (0.18) 42.00 (0.32) 42.29 (0.52)
381201 41.19 (0.02) 41.45 (0.06) 41.66 (0.03) 41.76 (0.04) 41.83 (0.06)
381301 41.44 (0.03) 41.71 (0.14) 41.95 (0.06) 42.07 (0.09) 42.16 (0.14)
383201 41.54 (0.02) 41.90 (0.02) 42.27 (0.01) 42.48 (0.02) 42.65 (0.02)
387401 41.48 (0.02) 41.75 (0.06) 41.98 (0.02) 42.09 (0.04) 42.17 (0.06)
403201 41.04 (0.04) 41.47 (0.17) 41.88 (0.07) 42.11 (0.11) 42.30 (0.17)
405201 40.99 (0.04) 41.35 (0.17) 41.68 (0.07) 41.85 (0.12) 41.99 (0.17)
405301 40.97 (0.03) 41.35 (0.07) 41.73 (0.04) 41.94 (0.05) 42.11 (0.07)
407301 41.03 (0.05) 41.49 (0.30) 41.97 (0.11) 42.26 (0.19) 42.51 (0.30)
407501 40.98 (0.04) 41.36 (0.14) 41.72 (0.06) 41.92 (0.09) 42.08 (0.14)
409301 40.93 (0.05) 41.40 (0.22) 41.89 (0.10) 42.20 (0.15) 42.46 (0.22)
431201 40.98 (0.03) 41.36 (0.03) 41.72 (0.03) 41.92 (0.03) 42.08 (0.03)
431301 40.93 (0.03) 41.40 (0.08) 41.89 (0.04) 42.20 (0.05) 42.46 (0.08)
431401 40.22 (0.03) 41.29 (0.23) 41.92 (0.08) 42.30 (0.14) 42.46 (0.23)
432201 39.58 (0.04) 39.94 (0.25) 40.28 (0.09) 40.46 (0.16) 40.60 (0.25)
432301 40.19 (0.03) 40.56 (0.05) 40.94 (0.02) 41.18 (0.03) 41.39 (0.05)
432401 40.06 (0.07) 40.47 (0.50) 40.91 (0.17) 41.20 (0.30) 41.44 (0.50)
436401 41.00 (0.02) 41.31 (0.02) 41.59 (0.01) 41.72 (0.01) 41.82 (0.02)

4.2. Spatial GEVD

We modeled the spatial model for extreme temperature data for 25 stations in northeast
Thailand via an MSP using Schalater’s method with a powered exponential covariance
function ρ(h) [15,23]. Table 4 shows the parameter estimation with standard error in
parenthesis which was calculated via the MSP method referenced in Equation (14). Through
a model selection from minimum TIC criterion among possible forms of µ(x) and σ(x)
from Equation (15), we obtained the location and scale parameters as in Table 4. From
this table, lat2 represents the squared term of the latitude of x and the shape parameter is
treated as a constant.

Table 4. The parameter estimation with standard error in parenthesis obtained from spatial GEV
models. Calculated via the max-stable process method referenced in Equation (14).

Parameter Estimate

ρ(h) ν 0.0289 (0.0076)
τ 0.2083 (0.0497)

µ(x) µ0 41.8774 (0.2481)
lat 0.6843 (0.1084)
lat2 −1.5736 (0.1749)
alt −0.0096 (0.0008)

σ(x) σ0 1.0924 (0.1101)
lat −0.0002 (0.0004)

ξ ξ −0.2667 (0.0415)
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Figure 5 presents the scatter plots of µ, σ, and ξ from the GEVD and MSP for 25
stations, independently corresponding to the model selection procedure. Based on the
selected model, we obtained estimates of location (µ), scale (σ), and shape (ξ) parameters
for regional spatial GEV in Table 5.
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Figure 5. Relationships between geographic covariance and GEV parameters where parameter
estimates were obtained from GEV models for 25 stations independently.

Table 6 and Figure 6 show the return levels corresponding to 2, 25, 50, and 100 year
return periods, which were obtained from an MSP using the regional models for 25 stations
in the northeast region of Thailand. Table 6 shows that the stations with the highest return
levels were Nong Khai (352201), Maha Sarakham (387401) and Khon Kaen (381201), while
Pak Chong Agromet station (431301) had the lowest return temperature levels. From
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Table 5. Estimated parameters and standard error values (in parenthesis) obtained from regional
spatial GEV model.

Station Location µ̂(x) Scale σ̂(x) Shape ξ̂(x)

352201 40.446 (0.15) 1.062 (0.07) −0.267 (0.04)
353201 39.974 (0.15) 1.047 (0.08) −0.267 (0.04)
353301 39.906 (0.15) 1.046 (0.08) −0.267 (0.04)
354201 40.274 (0.14) 1.061 (0.07) −0.267 (0.04)
356201 39.765 (0.13) 1.062 (0.07) −0.267 (0.04)
356301 39.607 (0.13) 1.059 (0.07) −0.267 (0.04)
357201 39.817 (0.14) 1.067 (0.07) −0.267 (0.04)
357301 39.742 (0.14) 1.065 (0.07) −0.267 (0.04)
381201 40.292 (0.14) 1.063 (0.07) −0.267 (0.04)
381301 40.154 (0.14) 1.063 (0.07) −0.267 (0.04)
383201 39.723 (0.13) 1.068 (0.07) −0.267 (0.04)
387401 40.304 (0.14) 1.065 (0.07) −0.267 (0.04)
403201 40.198 (0.15) 1.060 (0.07) −0.267 (0.04)
405201 40.010 (0.13) 1.067 (0.07) −0.267 (0.04)
405301 39.903 (0.13) 1.065 (0.07) −0.267 (0.04)
407301 39.332 (0.14) 1.069 (0.08) −0.267 (0.04)
407501 39.553 (0.14) 1.071 (0.08) −0.267 (0.04)
409301 39.739 (0.13) 1.070 (0.08) −0.267 (0.04)
431201 39.883 (0.13) 1.059 (0.08) −0.267 (0.04)
431301 38.590 (0.17) 1.029 (0.10) −0.267 (0.04)
431401 39.825 (0.14) 1.059 (0.07) −0.267 (0.04)
432201 39.779 (0.14) 1.066 (0.07) −0.267 (0.04)
432301 39.828 (0.14) 1.067 (0.07) −0.267 (0.04)
432401 39.974 (0.13) 1.070 (0.08) −0.267 (0.04)
436401 39.672 (0.14) 1.060 (0.07) −0.267 (0.04)

Table 6 and Figure 6 show the return levels corresponding to 2, 25, 50, and 100 year
return periods, which were obtained from an MSP using the regional models for 25 stations
in the northeast region of Thailand. Table 6 shows that the stations with the highest return
levels were Nong Khai (352201), Maha Sarakham (387401) and Khon Kaen (381201), while
Pak Chong Agromet station (431301) had the lowest return temperature levels. From
Figure 6, we can see that the MSP model collects geographical and covariate information
well across the region. We used a Kriging and inverse distance weighting (IDW) technique
for interpolation in drawing Figure 6. Then we compared the IDW and Kriging techniques
and found that the IDW method was more effective. See detailed results in supplementary
material. This result is consistent with the TMD report that these stations are relatively flat
and the climate is classified as tropical [2].

Table 6. Return levels (unit: °C) for several return periods (T = 2, 10, 25, 50, and 100) for each station
from spatial generalized extreme value distribution.

Station 5 Years 10 Years 25 Years 50 Years 100 Years

352201 40.82 42.24 42.73 43.02 43.26
353201 40.34 41.75 42.23 42.51 42.75
353301 40.27 41.68 42.16 42.44 42.68
354201 40.64 42.07 42.56 42.85 43.09
356201 40.14 41.56 42.05 42.34 42.58
356301 39.98 41.40 41.88 42.17 42.41
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Table 6. Cont.

Station 5 Years 10 Years 25 Years 50 Years 100 Years

357201 40.19 41.62 42.11 42.40 42.64
357301 40.11 41.54 42.03 42.33 42.56
381201 40.66 42.09 42.58 42.87 43.11
381301 40.52 41.95 42.44 42.73 42.97
383201 40.10 41.53 42.02 42.31 42.55
387401 40.68 42.11 42.60 42.89 43.13
403201 40.57 41.99 42.48 42.77 43.01
405201 40.38 41.82 42.31 42.60 42.84
405301 40.27 41.70 42.19 42.49 42.72
407301 39.71 41.14 41.63 41.92 42.17
407501 39.93 41.36 41.86 42.15 42.39
409301 40.11 41.55 42.04 42.34 42.58
431201 40.25 41.68 42.16 42.45 42.69
431301 38.95 40.33 40.80 41.09 41.32
431401 40.20 41.62 42.10 42.39 42.63
432201 40.15 41.58 42.07 42.37 42.61
432301 40.20 41.63 42.12 42.41 42.65
432401 40.35 41.78 42.28 42.57 42.81
436401 40.04 41.47 41.95 42.24 42.48

Figure 6. Return level maps for 25 stations corresponding to 2, 25, 50, and 100 year return periods in
northeast region of Thailand (unit: °C). Return levels were obtained from max-stable process models.

5. Discussion and Conclusions

In this study, we used GEV and spatial GEV modeling using the MSP to analyze the
annual maximum temperatures in northeastern Thailand at 25 stations. We used Schlathers
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method with a powered exponential correlation function to build a regional model. In
addition, we predicted the return levels of the observation data for several return periods
using regional models and drew return level maps. This study showed that 15 stations
had Weibull distributions and 10 had Gumbel distributions, which were suitable for the
significant KS tests for all stations for the local GEV model. The return level estimates of the
study areas from the local GEV showed that Nong Khai (352201) had higher return levels
than the other stations for every return period. For the spatial GEV model, we analyzed
extreme data using MSP with latitude (lat), longitude (lon), and height above sea level
(altitude, alt) variables. The equations suitable for modeling are as follows:

µ̂(x) = µ0 + µlatlat(x) + µlatlat(x)2 + µaltalt(x)

σ̂(x) = σ0 + σlatlat(x)

We set the shape parameter as constant for the spatial GEV models. Thus, future
research could consider a nonconstant shape parameter ξ(x), which may require more samples.
Building the best regression-based form for the location and scale parameters requires a
substantial computational burden. We selected covariates at the minimum TIC from many
possible models. We employed a stage-wise selection procedure to select the best regression-
based form from all the possible combinations. However, we observed failure of the TIC
computation in a few cases, which made the procedure unstable. In this regard, future
research should develop a fast and stable algorithm for the better selection of variables. The
Figure 6 shows the MSP model of the spatial GEV, which collects geographical and covariate
information across the region. The stations with the highest return temperatures were Nong
Khai (352201), Maha Sarakham (387401), and Khon Kaen (381201), whereas Pak Chong
Agromet (431301) had the lowest return levels in every return period. The estimation results of
the return level of our study is consistent with Limsakul’s [3] research showing that Thailand’s
temperature tends to increase, as well as Seenoi’s [10] research supporting that temperatures
in upper northeastern Thailand tend to increase.

Due to the continually increasing estimate of the return level, the northeastern region
of the country may be affected by some risky extreme events. These are, for example,
severe droughts and intense heatwaves that could result in forest fires or significantly
fewer agricultural products. This is coupled with the possibility of overall temperatures
exceeding 35 °C and the spread of pests and plant pathogens.

The approach of this study can be applied to the field of numerical model outputs of
climate systems and compared to a model fitted to climate observations. Future studies
should seek a significant covariate that affects temperature. The latitude, longitude, and
altitude data are considered important; however, we may have missed more important
covariates for extreme temperatures in this study, such as topographic aspects and coastal
proximity. One of the reasons why the global spatial GEV model is not a good reflection is
that the geographic covariates do not reflect the characteristics of the region. If the covariates
that have influence are considered in the model, it is expected that the explanatory power of
the model will be further enhanced. Furthermore, the detection and prediction of changes
in climate, including trends in extreme temperatures [13] and extreme wind speeds [26],
will be performed. In addition, the MSP modeling approach for different time periods can
be used to determine climate change extremes in Thailand.

Modeling the entire distribution (including the maximum, mean, and minimum
simultaneously) of a climate variable for a spatial field and using it to detect changes
(e.g., shifts in means and standard deviations) may be more reliable and valuable than
modeling only extremes [27]. For this purpose, a time-dependent MSP model with climatic
covariates [28] as well as a spatial-temporal linear model [26,29] can be useful. Addressing
these challenges may be the first step in delving further into this research area. Moreover,
increased collaboration between climate scientists and statisticians is required.
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