
����������
�������

Citation: Mansouri, E.; Mostajabi, A.;

Schulz, W.; Diendorfer, G.;

Robinstein, M.; Rachidi, F. On the

Use of Benford’s Law to Assess the

Quality of the Data Provided by

Lightning Locating Systems.

Atmosphere 2022, 13, 552. https://

doi.org/10.3390/atmos13040552

Academic Editors: Francisco J.

Pérez-Invernón and Alejandro

Malagón-Romero

Received: 3 March 2022

Accepted: 22 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

On the Use of Benford’s Law to Assess the Quality of the Data
Provided by Lightning Locating Systems

Ehsan Mansouri 1 , Amirhosein Mostajabi 1 , Wolfgang Schulz 2 , Gerhard Diendorfer 2 ,
Marcos Rubinstein 3 and Farhad Rachidi 1,*

1 Electromagnetic Compatibility Laboratory, Swiss Federal Institute of Technology (EPFL),
1015 Lausanne, Switzerland; ehsan.mansouri@epfl.ch (E.M.); amirhossein.mostajabi@epfl.ch (A.M.)

2 Department of ALDIS, OVE Service GmbH, 1010 Vienna, Austria; w.schulz@ove.at (W.S.);
g.diendorfer@ove.at (G.D.)

3 Institute for Information and Communication Technologies, University of Applied Sciences of Western
Switzerland (HES-SO), 1400 Yverdon-les-Bains, Switzerland; marcos.rubinstein@heig-vd.ch

* Correspondence: farhad.rachidi@epfl.ch

Abstract: Lightning causes significant damage and casualties globally by directly striking humans
and livestock, by igniting forest fires, and by inducing electrical surges in electronic infrastructure,
airplanes, rockets, etc. Monitoring the evolution of thunderstorms by tracking lightning events using
lightning locating systems can help prepare for and mitigate these disasters. In this work, we propose
to use Benford’s law to assess the quality of the data provided by lightning locating systems. The
Jensen–Shannon and Wasserstein distances between the recorded data distribution and Benford’s
distribution are used as metrics for measuring the performance of the lightning locating systems.
The data are provided by the European lightning detection network (EUCLID) for the years from
2000 to 2020. The two decades consist of three time windows between which the lightning locating
system underwent several upgrades to improve the detection of both positive and negative strokes.
The analysis shows that the agreement with Benford’s law is consistent with the expected behavior
caused by the applied upgrades to the system throughout the years. The study suggests that the
proposed approach can be used to test the success of software and hardware upgrades and to monitor
the performance of lightning locating systems.

Keywords: Benford’s law; lightning detection systems; lightning location systems

1. Introduction

Lightning is an atmospheric phenomenon that transfers significant amounts of electri-
cal charge, up to many hundreds of Coulombs, from thunderclouds to the ground over a
short period of time, typically less than a second. Lightning releases energies of several
gigajoules, much of it resulting in a broad spectrum of electromagnetic radiation from DC
to radio frequencies, visible light, microwave radiation, and X-rays. It also generates heat
due to the movement of charges in the atmosphere, causing rapid changes in temperature
and pressure, that can be heard as thunder. These properties of lightning can cause human
and livestock casualties, infrastructure damage, and electromagnetic interference [1,2]. It
can start fires, especially in forests; it can interfere, damage, and destroy electrical devices,
which can cause fatal system failures in airplanes and rockets as well as power network
disruption [3–6].

The localization of lightning discharges is critical in a wide range of applications.
Meteorological agencies, airports and space launch facilities, land management entities,
forest services, and power transmission and distribution companies are typical users of
lightning information. Lightning and thunderstorm forecasting and warning, locating
infrastructure damage, lightning and geophysics research, risk assessment, and resolving
insurance claims are just a few examples in which the information provided by lightning
locating systems (LLS), such as the location of the lightning strike and its intensity, are
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extensively used [7]. Ground-based or satellite-based LLSs use a single or a network of
electromagnetic sensors to detect and locate lightning discharges. In ground-based LLSs,
the central processor is triggered if the signal generated by a lightning discharge is detected
by multiple sensors. These signals are processed and combined together using various
methods including time of arrival and magnetic direction finding to estimate the precise
location of the lightning event.

In this work, we propose using Benford’s law as a means of assessing the quality of
the data provided by LLSs. Benford’s law states that in many classes of measurable natural
quantities, human activity related datasets, and combinations thereof, the frequency of
occurrence of the leading digit of the measured values follows a logarithmic probability
distribution, with the digit one appearing about 30% of the time and increasing digits
appearing with monotonically decreasing probability down to the digit nine, which is
observed as the leading digit only 5% of the time [8,9]. This observation has found applica-
tions for instance in fraud detection in accounting, tax returns, elections, and even scientific
reports [10–12]. Manoochehrnia et al. [13] used Benford’s law to verify the detection
efficiency of LLSs by analyzing lightning data over Switzerland from 1999 to 2007. In their
paper, it was shown that Benford’s law works for both positive and negative lightning
data [13]. In this paper, we use Benford’s law to quantify the quality of the data acquired
by LLSs. To do this, we use the data provided by the European lightning detection network
(EUCLID) over a region in Austria in three different time windows between which the LLS
has undergone several upgrades to improve the localization accuracy, detection efficiency,
and categorization capability. We will show that performance improvements due to these
successive upgrades are positively correlated with the level of conformity of the lightning
data to Benford’s law.

2. Materials and Methods

LLS provides essential data for each detected stroke, including location, peak current
estimate, polarity, and type. In this paper, we focus on the evolution of detection efficiency
as a result of upgrades. In this section, we briefly introduce Benford’s law and describe its
application to the data obtained by the LLS.

2.1. Benford’s Law

Benford’s Law or Newcomb-Benford’s Law was first discovered by astronomer Simon
Newcomb in 1881 [8]. He realized that the first pages of paperback logarithm tables,
which were popular at the time, were more worn down than the last pages. Noticing
that the early pages correspond to numbers starting with the digit one, he concluded that
numbers in nature tend to start with digit one more frequently compared to other digits. He
proposed that the probability of observing digit “N” at the beginning of a number is equal
to log(N + 1)− log(N) = log(1 + 1

N ) for naturally occurring data [8,9]. In 1938, Frank
Benford examined the phenomenon on 20 different data sets, published their hypothesis,
and was credited for this discovery [14].

A set of numbers satisfies Benford’s law if the probability of the first (most significant)
digit equal to d obeys the following equation:

Prob(d) = log10(d + 1)− log10(d) log10(1 +
1
d
) (1)

Benford’s law for numbers in any integer base B for d ∈ {1, 2, . . . , B − 1} can be
obtained by changing the base of the logarithm in Equation (1) from 10 to B. The distribution
described by Equation (1) is shown in Figure 1. It can be seen that digit one occurs about
30% of the time, while the probability of digit nine is less than 5% as opposed to a naive
belief that all digits are equiprobable with a probability of 11%.
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Figure 1. First digit’s probability distribution in a set satisfying Benford’s law.

From probability theory, we know that for a uniform continuous variable between
[a, b], the probability of selecting a number in the interval [x, y] ∈ [a, b] is equal to the ratio
of the lengths of the intervals, namely |x−y|

|a−b| . By the same argument, if we choose a number

uniformly between [10i, 10i+1) in a logarithmic scale, the probability of this number lying
in the interval [d× 10i, (d + 1)× 10i) in logarithmic scale which has d as the leading digit
is as follows:

Prob(d) =
log((d + 1)× 10i)− log(d× 10i)

log(10i+1)− log(10i)
=

log d+1
d

log 10
= log(1 +

1
d
)

which corresponds to Benford’s law. Therefore, if the data spans several decades with
approximately uniform distribution on a logarithmic scale, it will satisfy Benford’s law [15].

Benford’s law has been extensively applied in various fields, such as accounting, fraud
detection, and data-integrity analysis (see, e.g., [10–12]). Manoochehrnia et al. [13] applied
for the first time Benford’s law to LLS data. Their analysis suggested that Benford’s law
may find an interesting application in the evaluation of the detection efficiency of LLS. In
what follows, we will apply Benford’s law to the data provided by EUCLID.

2.2. Data

In this section, we will examine the data provided by the EUCLID lightning locating
system in three different, non-overlapping time windows, between which the system
underwent several upgrades. Our goal is to use the changes in the level of compliance of
the data with Benford’s law after each one of the upgrades to investigate if Benford’s law is
a reasonable tool for the assessment of the performance of LLSs.

The data are provided by EUCLID. The dataset consists of lightning flashes and strokes
in the region with latitudes between 11◦ and 17◦ and longitudes between 46◦ and 49.5◦

(see Figure 2) in Austria, for three time periods: 2000–2004, 2010–2014, and 2016–2020.
The dataset includes the time of occurrence of each flash and stroke with a precision
of nanoseconds, their geographical coordinates, the amplitude and sign of the inferred
lightning current, and whether it was detected as a cloud or a cloud-to-ground event. The
data do not include whether the event was an upward or a downward flash.
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Figure 2. Lightning Dataset Region in Central Europe.

The statistics of the data are shown in Table 1. The first row shows the average global
count of cloud-to-ground and cloud flashes that can be compared to our dataset [16].
Between the first and the second time windows, the lightning detection system underwent
several upgrades, especially in the detection algorithm of cloud lightning discharges [17].
The significant increase in the number of lightning events in the second time period (2010–
2014) can be explained by the increase in the detection efficiency of the system as a result of
the applied upgrades. From the second to the third period, along with an improvement in
the detection efficiency, the cloud/ground classification algorithm was improved, which
resulted in better compliance with the expected global average values. The polarities of the
detected flashes in the three periods are consistent with global average values [16].

Table 1. Number of Events for the considered dataset

All Cloud-to-Ground
Total Events Cloud Cloud-to-Ground Positive Negative

Global Avg 100% 75% 25% 10% 90%

2000–2004 3,924,380 346,207 3,578,173 441,310 3,136,863
(100%) (8.82%) (91.2%) (12.3%) (87.7%)

2010–2014 4,660,586 1,824,429 2,836,157 424,631 2,411,526
(100%) (39.1%) (60.9%) (15.0%) (85.0%)

2016–2020 9,892,750 7,742,915 2,149,835 195,893 1,953,942
(100%) (78.3%) (21.7%) (9.11%) (90.9%)

2.3. Data Preprocessing

We will apply Benford’s law to the number of cloud-to-ground strokes detected within
predefined time slices as explained in what follows. With reference to Figure 3, each one
of the three time windows, e.g., 2000–2004, is divided into time slices and the number
of cloud-to-ground strokes detected by the LLS within that slice constitutes a data point.
The number of data points is, therefore, equal to the number of slices into which the time
window is divided. The totality of the points constitutes the dataset on which Benford’s
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law will be tested. The data processing was carried out using the Pandas Python library
as follows: A dataframe was created and sorted by the time stamp of the lightning event.
A time slice size was then selected (for instance, one day, one hour, etc.), and the number
of lightning events in each time slice was counted. The number of lightning events in a
given time slice is a data point as explained earlier. A discussion on the selection of the
optimum time slice will be given in Section 2.6. The number of time slices having a number
of strokes that start with the digits one to nine was then counted and the relative frequency
of appearance was compared against Benford’s law. A metric was used to quantify the
compliance with the ideal Benford distribution for the first digit. The metric is described in
the next subsection.

Figure 3. Data preprocessing: Each time window is divided into time slices and the number of strokes
detected by the LLS within each slice constitutes a data point.

2.4. Metric

In this work, we used the following two metrics to quantify the similarity of the dataset
created in the previous section with the ideal Benford distribution: (i) the Jensen–Shannon
distance, and (ii) the Wasserstein distance. Both of them satisfy the required properties of a
proper distance: d(x, y) is a distance if, for any x, y, and z, the following hold:

• d(x, y) ≥ 0
• d(x, y) = 0 if and only if x = y
• d(x, y) = d(y, x)
• d(x, y) ≤ d(x, z) + d(z, y)

For two probability distributions P and Q over probability space X, the Jensen–
Shannon distance is defined as:

JSD(P, Q) =

√
1
2

DKL(P ‖ M) +
1
2

DKL(Q ‖ M) (2)

where M = 1
2 (P + Q) and DKL(P ‖ Q) = ∑x∈X P(x) log

(
P(x)
Q(x)

)
is the Kullback–Leibler

divergence.
The first Wasserstein distance is defined as:

W1(P, Q) = inf
γ∈Γ(P,Q)

∫
|x− y|dγ(x, y)

=
∫ +∞

−∞
|P −Q|

(3)
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where Γ(P, Q) is the set of distributions whose marginals are equal to P and Q. Furthermore,
P , and Q are the cumulative distribution functions (CDF) of P and Q, respectively.

2.5. Code

The codes were developed in Python. As mentioned earlier and illustrated in Figure 3,
Pandas was used to handle each dataset and to partition events into time slices. It was also
used for grouping and aggregation over partitions. Numpy, Scipy, and Matplotlib were
used to find the first digit of each entry, to calculate the metrics, and to visualize the results.

2.6. Selection of the Size of the Time Slice

The proximity of the dataset distribution to Benford distribution depends on the
choice of the length of the time slice. We selected the time slice that minimizes the distance
between the two distributions. To find the best time slice under this criterion, we examined
the variation of the metrics as a function of the time slice size. The Wasserstein distance and
the Jensen–Shannon distance for both positive and negative strokes in the third considered
time window (2016–2020) are shown in Figure 4. In this figure, the black line shows the total
number of time slices as the time slice size is changed, the red line is the maximum number
of lightning events per time slice, and the blue and green lines are the Jensen–Shannon and
the Wasserstein distances. The data for negative strokes are presented in the upper panel,
and those for positive strokes in the lower panel. As it can be seen in the figure, the minima
of the Jensen–Sh and Wasserstein distances occur approximately for the slice size of around
24 h (1 day) for both positive and negative polarity events. It is important to understand
that there are two opposing factors that result in the appearance of a minimum in the
Jensen–Shannon and Wasserstein distances. Since lightning is a rare event, the number of
lightning events per time slice cannot reach high values when the time slice size is small.
This represents a problem since a large span of values is a requirement of Benford’s law’s
applicability. For this reason, the conformity with Benford’s law is low for small time slice
sizes and hence the metric shows large distances between the two distributions. On the
other hand, as the time slice size increases, the number of time slices becomes smaller,
leading to a lower number of data points. As a consequence, a smooth and well-behaved
distribution cannot be obtained leading, again, to large values of the metrics due to the
large distance between the lightning detection system dataset and Benford distribution.
The optimum value that leads to a large enough span in each time slice and a large enough
number of slices corresponds to a time slice size of approximately one day. Although the
minima are close but not exactly at slice size equal to 24 h, we selected one day, since it
coincides with an easily identifiable partition without appreciable penalty in the accuracy
of the results.
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Figure 4. The choice of the size of the time slice. In these figures, which correspond to negative
(upper panel) and positive (lower panel) strokes in the 2016–2020 time window, the horizontal axis is
the size of the time slices in hours. In the vertical axis, the black line shows the number of time slices,
the red line shows the maximum value of the dataset, and the solid blue and green curves represent
the smoothed Jensen–Shannon distance (JSD) and Wasserstein distance (WD), respectively, where as
dotted lines show actual value.

3. Results and Discussion

We selected one day as the time slice size and we compared the performance of
the detection system over time for both positive and negative strokes. Figure 5 shows a
comparison of the probability distribution of the leading digit for real data with the ideal
Benford distribution. Figure 6 shows the performance of the detection system by comparing
the distance to Benford distribution as a function of the time window. Both the Jensen–
Shannon and the Wasserstein metrics indicate that the first digit distribution of negative
strokes becomes closer to Benford distribution as time advances. This result is expected
under the assumption of this work since the detection efficiency for negative cloud-to-
ground lightning was improved over time by the upgrades made both to the software and
to the hardware of the EUCLID network [17]. In Figure 6, however, it can be seen that this
is not the case for positive strokes. Figure 6 shows that the performance worsens from the
first to the second time window and it then improves again in the third time window. In
Table 1, it can be seen that the total number of detected events increased over time, which
can be explained by one or by a combination of the following factors: (1) improvement of
the detection efficiency of the system, (2) normal variations of the lightning incidence, (3) an
increase in the number of lightning events due to climate change [18], or (4) changes in the
misclassification rate. However, the right-hand side of Table 1 indicates that the number of
detected positive and negative cloud-to-ground strokes decreased. If the lower number of
positive and negative strokes comes as a result of a lower detection efficiency of the system,
one might expect an increase in the values of the metrics (worse agreement). Surprisingly,
we see an improvement from the second to the third time window. This improvement is
actually due to an important upgrade between the second and the third time windows
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in which the lightning classification algorithm was significantly improved, reducing the
problem of misclassification of positive cloud-to-ground flashes being incorrectly identified
as cloud flashes [17].

In fact, in the two later periods, the detection efficiency was better than in 2000–2004
due to the upgrades made. For this reason, the agreement with Benford’s law was less good
than in the subsequent periods. The detection efficiency of the system was improved in 2010.
However, an appreciable number of cloud flashes was still misclassified as positive cloud-to-
ground flashes, resulting in the observed disagreement with Benford’s law. After upgrading
the classification algorithm in 2016, both the detection and classification efficiency were
improved, which was reflected in the significant improvement of the metrics. It is worth
mentioning that the negative cloud-to-ground lightning flashes are not affected by the
misclassification problem.

Figure 5. First digit distribution of data versus Benford. These figure show the frequency of the most
significant digit of lightning data in blue compared to the expected probability distribution dictated
by Benford’s law in red. The left column depicts the negative strokes data and the right one represents
the positive ones. Furthermore, rows represent the three time windows, from top to bottom: 2000–
2004, 2010–2014, 2016–2020. Jensen–Shannon distance (JSD), Wasserstein distance (WD), and range of
data is provided on the top of each figure.
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Figure 6. Agreement with Benford’s law for the number of positive and negative strokes per day
(lower is better). (Left panel) Jensen–Shannon distance; (right panel) Wasserstein distance.

Lightning locating systems detect lightning flashes through their emitted electromag-
netic radiation and the classification is done based on the shape of the received waveform.
The characteristics of the electromagnetic field waveshapes associated with cloud dis-
charges are somewhat similar to those of small positive cloud-to-ground lightning. Improv-
ing the detection efficiency results in higher detection of small-amplitude cloud lightning
events. Some of these small-amplitude events are counted as positive cloud-to-ground
lightning due to the classification error. Therefore, if only the strokes with amplitudes
higher than an appropriate threshold current are considered, the misclassification issue
should be mitigated and a relative improvement over time in compliance with Benford’s
law would be expected. This is shown in Figure 7 using 10 kA as a threshold.

Figure 7. Compliance with Benford’s law for number of positive and negative strokes with current
amplitude over 10 kA per day (lower is better). (Left panel) Jensen–Shannon distance; (right panel)
Wasserstein distance.

4. Conclusions

Lightning’s deleterious effects can be mitigated by monitoring the evolution of thun-
derstorms by tracking lightning events using lightning locating systems. In this work, we
used Benford’s law to assess the quality of the data provided by lightning locating systems.
The Jensen–Shannon and Wasserstein distances between the recorded data distribution and
Benford’s distribution were used as metrics for measuring the performance of the lightning
locating systems. The used data for the analysis were provided by the European lightning
detection network (EUCLID) and they were recorded during three time windows from
2000 to 2020 between which the lightning locating system underwent several upgrades
to improve the detection of both positive and negative strokes. The analysis showed that
the agreement with Benford’s law is consistent with the expected results of the upgrades
applied to the system over time. The study suggests that the proposed approach can be
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used to monitor the performance of lightning locating systems and to assess the relative
success of upgrades and changes to their software and hardware. Furthermore, lightning
locating systems can provide historical data that can be used to develop data-driven light-
ning forecasting and nowcasting systems. The proposed approach using Benford’s law
can also be used to assess the quality of the available data in a given region to be used for
such purposes.
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