
����������
�������

Citation: Qing, Z.; Zeng, Q.; Wang,

H.; Liu, Y.; Xiong T.; Zhang, S.

ADASYN-LOF Algorithm for

Imbalanced Tornado Samples.

Atmosphere 2022, 13, 544. https://

doi.org/10.3390/atmos13040544

Received: 29 January 2022

Accepted: 25 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

ADASYN-LOF Algorithm for Imbalanced Tornado Samples

Zhipeng Qing 1,2 , Qiangyu Zeng 1,2 , Hao Wang 1,2,* , Yin Liu 3,4 , Taisong Xiong 1,2 and Shihao Zhang 1,2

1 CMA Key Laboratory of Atmospheric Sounding, Chengdu 610225, China; 2016021234@cuit.edu.cn (Z.Q.);
zqy@cuit.edu.cn (Q.Z.); xts@cuit.edu.cn (T.X.); sxz@cuit.edu.cn (S.Z.)

2 College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
3 Jiangsu Meteorological Observation Center, Nanjing 210041, China; liuyin200421@163.com
4 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
* Correspondence: wh@cuit.edu.cn

Abstract: Early warning and forecasting of tornadoes began to combine artificial intelligence (AI) and
machine learning (ML) algorithms to improve identification efficiency in the past few years. Applying
machine learning algorithms to detect tornadoes usually encounters class imbalance problems because
tornadoes are rare events in weather processes. The ADASYN-LOF algorithm (ALA) was proposed
to solve the imbalance problem of tornado sample sets based on radar data. The adaptive synthetic
(ADASYN) sampling algorithm is used to solve the imbalance problem by increasing the number
of minority class samples, combined with the local outlier factor (LOF) algorithm to denoise the
synthetic samples. The performance of the ALA algorithm is tested by using the supporting vector
machine (SVM), artificial neural network (ANN), and random forest (RF) models. The results show
that the ALA algorithm can improve the performance and noise immunity of the models, significantly
increase the tornado recognition rate, and have the potential to increase the early tornado warning
time. ALA is more effective in preprocessing imbalanced data of SVM and ANN, compared with
ADASYN, Synthetic Minority Oversampling Technique (SMOTE), SMOTE-LOF algorithms.

Keywords: tornadoes; class imbalance; machine learning

1. Introduction

Tornadoes are small and medium-scale extreme weather events, usually generated
at the bottom of thunderstorm clouds, with destructive power that can tear houses and
trees and roll into the sky. Tornadoes occur less frequently in China than in the United
States each year, and the majority of tornadoes occur from noon till evening in the sum-
mer months (June, July, and August) [1]. A tornado can be classified as EF0 to EF5 level
according to the damage degree and wind speed [2,3]. With the upgrade of radar detection
capabilities, tornado recognition algorithms went through the following process: tornadic
vortex signature (TVS) criteria [4]-mesocyclone detection algorithm (MDA) [5,6]-tornado
detection algorithm (TDA) [7]-tornadic debris signature (TDS) [8]. With the upgrading of
computer technology in the past few years, artificial intelligence (AI) algorithms and classi-
fication models are gradually applied to tornado detection. For example, tornado detection
algorithm based on neuro-fuzzy system and fuzzy logic [9,10], the S-band radar adaptive
neuro-fuzzy tornado detection system [11], forecasting tornado with random forests [12],
using a convolutional neural network (CNN) and image to predict tornadoes [13]. Artificial
intelligence in the future tornado detection can reduce the tornado false alarm rate, increase
the early warning time, and lower the experience restrictions on weather forecasters.

When applied to detect tornadoes, artificial intelligence algorithms usually suffer from
the class imbalance problem. The class imbalance problem means the instances of one class
are much more than the instances of another class [14], and the performance of classifiers
leans to be partial towards the majority class in the imbalanced data set [15]. The imbalance
might make it difficult to develop effective classifiers [16] in many applications such as
sensor and detection [17,18]. Imbalanced models result in poor detection and high false
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alarm rates based on AI methods in tornado recognition. There were many studies on the
class imbalance problem of tornado samples. In 2014, Trafalis et al. used SVM, Logistic
Regression, RF, and other models to evaluate the performance of different algorithms under
the imbalanced tornado data set. However, they only compared the performance of differ-
ent models without further research and solution to the problem of class imbalance [19].
When studying rare events, Maalouf et al. tested the imbalanced tornado sample set using
a sample-weighted learning method [20–22]. This method essentially did not increase the
number of tornado samples, so it may still face the class imbalance problem when applied
to other models. In 2021, Basalyga et al. constructed tornado image samples using tornado
data set and balanced the image training set using image enhancement technology [13].
Image translation and rotation have limited effects on balancing vector samples. An ef-
fective way to solve the class imbalance problem of tornado samples is to use radar to
collect more tornado events to increase the number of minority samples. This method
takes a considerable cost to monitor future tornadoes. Even worse, to retain classification
information, minority and majority samples could be increased simultaneously, which will
cause the class imbalance problem to still exist at the tornado sample set.

In order to solve the problem of class imbalance in the tornado sample set, sampling
techniques need to be applied to balance the majority and minority. He et al. gave a compre-
hensive overview of imbalanced learning [23]. Haixiang et al. provided an in-depth review
of rare event detection from the perspective of imbalanced learning [24], and Yu et al. stud-
ied the solutions to the imbalanced problem [25]. In the field of research on the imbalance of
vector sample class, under-sampling, over-sampling, threshold shifting, Synthetic Minority
Oversampling Technique (SMOTE, creates artificial data based on feature space similarities
between existing minority samples), ADASYN, SMOTEBOOST, SMOTE-LOF, adaptive sam-
pling, and other data balancing methods have been well researched [23,25–31]. The ADASYN
used a weighted distribution for different minority class samples according to the samples’
level of difficulty in learning. More synthetic data were generated for minority class exam-
ples that were harder to learn than those minority examples that were easier to learn [27].
A brief introduction of ADASYN algorithm shows in Section 3.1.

This study aims to solve the class imbalance problem of vector samples for tornadoes
by using an adaptive synthetic (ADASYN) sampling approach to increase the number of
minority samples. In addition, to verify the effectiveness of synthetic minority samples by
the ADASYN approach, the local outlier factor (LOF) algorithm is carried out to identify
and filter out noise data. In addition, the score performance of ADASYN-LOF, ADASYN,
SMOTE-LOF, SMOTE algorithms is compared.

This research is organized as follows: Section 2 presents the weather radar used
to detect tornadoes and how to build the tornado sample set using radar level-II data.
Section 3 introduces the ADASYN, LOF, and machine learning algorithms, while Sectin 4
describes the experimental framework. Additionally, Section 5 contains the analysis of
results and discussion. Lastly, the conclusions are presented in Section 6.

2. Data
2.1. Weather Radar

Fast-scanning and high-resolution weather radars, such as S, X, Ka-band, and phased
array radars, are widely applied to detect and warn tornadoes [32–35]. The S-band China
new generation of Doppler weather radar (CINRAD SA) plays an essential role in mon-
itoring and forecasting tornadoes. The CINRAD SA’s maximum distance resolution is
0.25 km, and the maximum detection range is 460 km. The radial resolution is 1 degree.
The reflectivity (Z) distance resolution is 1km, ranging from 0 to 460 km. The detection
range of Doppler velocity (V) and velocity spectrum width (W) is 230 km, and the distance
resolution is 0.25 km [36]. The CINRAD SA scans in the volume coverage pattern (VCP)
21, elevation angles from 0.5 to 14.5 degrees, with 8 effective elevation data, 0.5, 1.5, 2.5,
3.4, 4.3, 6.0, 10, and 14.5 degrees. The scale of tornadoes usually ranges from tens meters to
two kilometers. High-resolution radar networks can improve the acquisition and retrieval
of tornado features [37]. The distance resolution limited CINRAD SA’s capability to detect
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the structure of tornadoes finely. However, CINRAD SA can warn and identify tornadoes
by monitoring mesocyclone and tornado velocity signatures, which means that artificial
intelligence tornado recognition algorithms based on CINRAD SA’s tornado characteristics
are feasible.

2.2. Tornado Samples

An interpolation algorithm was first used to increase Z distance resolution to 0.25 km
when constructing the tornado sample set. Z, V, and W were combined at the same moment
and elevation angle. Additionally, the combined data was divided into many 4 × 4 blocks.
The characteristics related to tornadoes were calculated in each block, such as maximum,
minimum, and average of ZVW, tornado velocity signature, and the range of W, et al.,
32 features in total, as shown in the Table A1. The time and coordinate information of
tornadoes were used to classify samples (class: yes-tornado = 1 (yes), non-tornado = 0 (no)).
The small-scale characteristic of tornadoes leads to the tiny tornado area in Plan Position
Indicator (PPI) data. The feature of short generation and disappearance time of tornado
results in a tiny proportion of tornado data in the radar database. These two characteristics
cause a small number of yes-tornado samples (positive samples), and a large number
of non-tornado samples (negative samples) in the tornado sample set obtained by the
block segmentation, which will lead to a considerable difference in the proportion of the
two-class samples forming imbalanced data, as is shown in Figure 1. Negative samples
belong to the majority class samples for the sample set, and positive samples belong to the
minority samples. Minority samples tend to have higher importance than majority samples
in the tornado classification model. The prediction model obtained from an imbalanced
sample set will reduce the recognition effect of the minority class in order to obtain high
overall classification accuracy [23]. Calculating the historical data of tornadoes recorded
by CINRAD SA from 2005 to 2015, there are a total of 3897 samples, 97 tornado samples
(minority class samples), and 3800 non-tornado samples (majority class samples). The class
imbalance ratio is relatively high, and the results of tornado detection models are flawed.

Figure 1. The class imbalance problem of tornado samples.

3. Methods
3.1. ADASYN

One training sample set Dtr = {xi, yi}, i = 1, . . . , m, where xi is a sample vector with
n-dimensional features, and yi ∈ Y = {1, 0}, and the m indicates the total number of
samples. Firstly, calculate the number of synthetic minority class samples that need to be
generated according to Equation (1). The ms and ml , respectively, indicate the number of
minority class samples and the number of majority class samples in the Dtr, ms ≤ ml and
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ms + ml = m. The β ∈ [0, 1] is used to specify the Dtr balance level after the generation of
the synthetic samples.

G = (ml −ms)× β (1)

Secondly, find the k-nearest neighbors for each minority sample xi according to the Eu-
clidean distance in n-dimensional space, and calculate the ratio ri according to Equation (2),
where ∆i is the number of majority class samples in the k-nearest neighbors of xi and k is
equal to the number of k-nearest neighbors. Then, the ri is normalized to the r̂i according
to Equation (3), where the r̂i is the density distribution and ∑ms

i=1 r̂i = 1.

ri =
∆i
k

, i = 1, . . . , ms (2)

r̂i =
ri

∑ms
i=1 ri

(3)

Thirdly, calculate the number of synthetic samples needed to be generated for each
minority class sample xi, according to Equation (4).

gi = r̂i × G (4)

Finally, generate gi synthetic samples for each minority class sample xi, according to
Equation (5), where the xzi is randomly selected from the minority samples in the k-nearest
neighbors and δ is a random number, δ ∈ [0, 1], as is shown in Figure 2 (left).

xnew = xi + (xzi − xi)× δ (5)

Figure 2. Generation of synthetic samples with the ADASYN approach (left), and noise identification
with the LOF approach (right) (the size of the circle outside of the red sample is the LOF value).

3.2. LOF

After the ADASYN algorithm, the tornado sample set can obtain a balanced ratio,
where the number of minority samples: majority samples = 1:1. The synthetic minority
samples may have noise samples, and the local outlier factor (LOF) algorithm is used
to identify and eliminate noise [31]. The detailed process of the algorithm can refer to
reference [38].

For a sample p, the local outlier factor of p is calculated by Equation (6), where the
LOF value is the average ratio of the local reachability density of p and those p’s k-nearest
neighbors. The LOF value of one sample that is not noise is approximately 1. When the
LOF value of a sample is significantly greater than 1, it can be labeled as noise, as is shown
in Figure 2 (right).

LOFk(p) =
∑o∈Nk(p)

ρk(o)
ρk(p)

|Nk(p)| (6)
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3.3. Machine Learning Models

Supporting vector machine (SVM) classification algorithm constructs a hyperplane
that separates training samples into binary class, and the SVM is a linear classifier defined
in a very high dimensional feature space [39]. The SVM formulation corresponds to the
problem of minimizing ||w||2/2 under the constraints yi(wTxi + b) ≥ 1, i = 1, . . . , l, where
the w is the weight vector that is perpendicular to the separating hyperplane, b is the bias,
and l is the number of observations [19]. If the training samples are nonlinearly separable
in the feature space, the kernel function is used to increase the dimension of sample space,
and the nonlinear problem is converted to a linear problem in a high dimension space,
shown in Figure 3 SVM, and Chang et al. developed a library for SVM, including C-SVC,
v-SVC, and SVR et al. [40]. The SVM usually outputs classification probabilities by using
the Platt scaling method [41].

Artificial neural networks (ANN) algorithm has attracted much research in the past
few years, and several studies have been applied to the weather radar, such as a study that
combined the generative adversarial networks (GNN) and super-resolution reconstruction
of weather radar echo images [42]. Another study applied a deep convolutional neural
network (DCNN) to NEXRAD PPI scans, and the increased resolution and frequency
content improved observation capabilities [43]. The structure of ANN includes: one input
layer, several hidden layers, one output layer, and the hidden layers connect the input and
output (as is shown in Figure 3 ANN) [44]. The ANN uses functions, such as tanh and
sigmoid, to map and activate neurons, and the ANN requires multiple rounds of iterative
training to minimize loss and achieve good accuracy [45,46]. Binary ANN usually uses 0.5
as the threshold of classification probability to classify samples.

Breiman proposed the random forest (RF) algorithm in 2001. RF constructs multiple
classification trees through randomly sampling samples and randomly selecting features
and uses a voting mechanism to make prediction and classification, and outputs probabili-
ties according to the voting results. (shown in Figure 3 RF) [47–49]. The RF usually uses ID3,
C4.5, and GINI methods [50,51]. ID3 cannot handle the problem of continuous attributes,
but the C4.5 algorithm can handle it. The Gini index reflects the purity of a dataset, and the
smaller the value, the higher the purity. The RF is a multivariate nonlinear classification
model, avoiding model overfitting with less sensitivity to noise [52]. RF has been widely
used in the field of remote sensing [53–55] and extreme weather warnings [12,56,57].

Figure 3. The supporting vector machine (SVM), artificial neural network (ANN), and random forest
(RF) algorithms.
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4. Experiments
4.1. Experiment 1

In order to obtain qualitative differences between models with and without ADASYN-
LOF algorithm, the numerical results need to be compared. The tornado samples were
divided into training and testing samples, where the number of training samples: the
number of testing samples = 1:1, and the number of positive samples in training samples:
the number of positive samples in testing samples = 1:1, and the number of negative
samples in training samples: the number of negative samples in testing samples = 1:1
(training set: 1900 negative samples, 49 positive samples, and testing set: 1900 negative
samples, 48 positive samples). This experiment steps are shown in Figure 4. We created a
copy of the training samples that were directly used to build models (SVM (IBD), ANN
(IBD), RF (IBD)). The original training samples were processed by the ADASYN approach,
so the number of positive samples was equal to the number of negative samples; then, the
LOF algorithm was used to identify the noise of balanced data. After the LOF approach,
models (SVM (BD), ANN (BD), RF (BD)) were obtained. ADASYN’s k = 20, LOF’s k = 20,
and LOF eliminated 93 noise samples during this experiment. The testing samples were
directly used to obtain models’ quantitative performance, and the binary classification
confusion matrix (Table 1) was used. In the confusion matrix, the TP is the number of
correct yes-tornado samples predicted by the model, FP is the number of non-tornado
samples that the model misclassifies as yes-tornado samples, FN is the number of yes-
tornado samples that are misclassified as non-tornado samples, and TN is the number of
non-tornado samples correctly classified by the model. According to TP, FP, FN, and TN,
the accuracy (7), precision (8), F-score (9), and G-mean (10) can be obtained, and the F-score
equals to F1-score when β = 1 and Recall = TP/(TP + FN). In addition, in order to
compare the performance of different models, the Area Under Curve (AUC) score was used.
AUC is defined as the area under the receiver operating characteristics curve enclosed by
the coordinate axis. The larger the AUC value, the better the average performance of the
model. When assessing the weather forecast model, the contingency table was usually
used to evaluate the forecast accuracy. So, combining the confusion matrix and the 2 × 2
contingency table (Table 2), POD (11), FAR (12), and CSI (13) were obtained. The different
model performance results show in Table 3.

Figure 4. The flow chart of experiment 1.

Table 1. Binary classification confusion matrix.

True Class

Positive (yes-tornado) Negative (non-tornado)

Model prediction Y (yes-tornado) TP (True Positives) FP (False Positives)
N (non-tornado) FN (False Negatives) TN (True Negatives)
Column counts PC = TP + FN NC = FP + TN
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Table 2. 2 × 2 contingency table (X, Y, Z represent the number of times the model correctly warned,
missed, falsely warned weather processes, respectively, and W represents the number of times the
model correctly warned of no weather processes).

Warning

YES NO

weather event
YES X Y
NO Z W

Table 3. The performance of different models.

Model Evaluation ADASYN-LOF NONE

SVM

ACC 0.9277 0.9317
PRE 0.7385 0.9211

F1-score 0.8421 0.8046
G-mean 0.9467 0.8388

AUC 0.9473 0.8496
POD 0.9796 0.7143
FAR 0.2615 0.0790
CSI 0.7273 0.6731

ANN

ACC 0.9438 0.9237
PRE 0.9070 0.8750

F1-score 0.8478 0.7856
G-mean 0.8832 0.8354

AUC 0.8880 0.8446
POD 0.7959 0.7142
FAR 0.0930 0.1250
CSI 0.7358 0.6481

RF

ACC 0.9438 0.8916
PRE 0.9268 0.9583

F1-score 0.8444 0.6301
G-mean 0.8740 0.6834

AUC 0.8803 0.7322
POD 0.7755 0.4694
FAR 0.0732 0.0417
CSI 0.7308 0.4600

accuracy(ACC) =
TP + TN
PC + NC

(7)

precision(PRE) =
TP

TP + FP
(8)

F− score =
(
1 + β2)× Recall × Precision

β2 × Recall + Precision
(9)

G−mean =

√
TP

TP + FN
× TN

TN + FP
(10)

POD =
X

X + Y
=

TP
TP + FN

(11)

FAR =
Z

X + Z
=

FP
TP + FP

(12)

CSI =
X

X + Y + Z
=

TP
TP + FN + FP

(13)
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4.2. Experiment 2

In order to compare the performance of different models in actual tornado detection,
while making full use of all available samples, all tornado samples were used to train
models. The experiment steps are shown in Figure 5. Create a copy of the training samples
that were directly used to build models (SVM (IBD), ANN (IBD), RF (IBD)). For the original
training samples, the ADASYN algorithm was used to balance the ratio of yes-tornado
samples and non-tornado samples to 1 : 1. The LOF approach identified the noise samples
of synthetic samples. Then, models (SVM (BD), ANN (BD), RF (BD)) were obtained,
and models were used to detect tornadoes from 2016–2018, and the results are shown in
Section 5.2. ADASYN’s k = 20, LOF’s k = 20, and LOF eliminated 246 noise samples
during this experiment.

Figure 5. The flow chart of experiment 2.

5. Results and Discussion

The sample set that has the class imbalance problem is imbalanced data, forming
imbalanced models, such as SVM (IBD), ANN (IBD), RF (IBD). Similarly, the balanced data,
without the class imbalance problem, forms balanced models, such as SVM (BD), ANN
(BD), RF (BD).

5.1. Model Performance

In Table 3, the different models’ results were compared. The proposed approach by
combing ADASYN and LOF in handling training samples is called the ADASYN-LOF
approach (ALA), and the NONE indicates that the models were built by the original
training samples (copy). After the ALA, the SVM’s ACC and PRE decreased, the ANN’s
ACC and PRE increased, and the RF’s ACC and PRE increased. The balanced models had a
better F1-score, G-mean, and AUC than imbalanced models, which indicates that the ALA
improves the performance of models. For the AUC after the ALA, the SVM’s AUC had
the maximum performance improvement, and the AUC score order was: SVM > ANN
> RF, indicating that the average performance of the balanced model is: the SVM is the
best, followed by ANN, and final RF. The balanced SVM’s POD was greatly improved,
and the CSI increased, but the FAR also increased. The balanced ANN had a better POD,
CSI, and FAR than the imbalanced ANN. The balanced RF had a better performance of
POD and CSI and worse FAR performance than imbalanced RF. In terms of POD, FAR and
CSI after the ALA, the biggest improvement was ANN. The POD order after the ALA was
SVM > ANN > RF. Although the POD of SVM was greater (>0.15) than the ANN and RF,
the SVM’s FAR was much higher than the POD of ANN and RF. The high FAR caused the
SVM’s CSI to be slightly smaller than the CSI of ANN and RF.

The yes-tornado and non-tornado samples are unequally distributed in the imbalanced
sample set, which leads to the models having a high misclassification rate of yes-tornado
samples and relatively low G-mean, F1-score, POD, and CSI. After the two class samples
are in a balanced distribution, the models’ ability to carry out predictive accuracy in
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determining the yes-tornado samples is improved, thereby increasing the G-mean, F1-score,
POD, and CSI.

5.2. Tornado Detection Results

When using the models to detect tornado cases, the historical tornado events that
were not included in the training and testing samples were used from 2016 to 2018. The
case requirements are met: the distance between the tornado and the radar center is no
more than 130 km, and the Meteorological Bureau has official records about the tornado.
In this section, the model detection results are represented by black asterisks, the value is
the classification probability of the model, and the results are displayed in reflectivity Z.
When there is no black asterisk in the Z, no samples are classified as yes-tornado samples
by the model. The detection results of different models after the ALA are called SVM
detection results (BD), ANN detection results (BD), and RF detection results (BD). Similarly,
the model detection results without the ALA are called SVM detection results (IBD), ANN
detection results (IBD), and RF detection results (IBD). The upper and lower subgraphs on
the far right are the Doppler velocity V and velocity spectrum width W, respectively, at the
same moment and elevation angle as Z.

The first case was the EF4 tornado that touched the ground in Funing, Jiangsu Province,
at about 14:30 (Beijing time, UTC+8) on 23 June 2016. The imbalanced models were used to
warn tornadoes, using radar 1.5-degree elevation level-II data from 14:00 to 14:30 (Beijing
time, UTC+8). The imbalanced models’ first tornado warning was at 14:14 (Beijing time,
UTC+8), shown in Figure 6 SVM detection results (IBD), ANN detection results (IBD), and
RF detection results (IBD). The balanced models were used for tornado warning detection,
using radar 1.5-degree elevation level-II data from 14:00 to 14:30 (Beijing time, UTC+8). The
balanced models can issue a tornado touchdown warning at 14:14 (Beijing time, UTC+8)
in the same area with a greater probability the imbalanced models (SVM: 0.99 > 0.98,
ANN: 0.99 > 0.97, RF: 0.91 > 0.81), as shown in Figure 6 SVM detection results (BD), ANN
detection results (BD) and RF detection results (BD). In addition, the balanced models’
tornado early-warning time was advanced to 14:08 (Beijing time, UTC+8), as shown in
Figure 7 SVM detection results (BD) and RF detection results (BD), when the imbalanced
models issued no warnings, as shown in Figure 7 SVM detection results (IBD), ANN
detection results (IBD), and RF detection results (IBD).

Figure 6. The results of models early warning the tornado at 14:14 (Beijing time, UTC+8) 1.5-degree
(the black circle centered at the models warning results with a radius of 1.5 km, the SVM, ANN, RF
represent Support Vector Classifier, Artificial Neural Network Classifier, Random Forest Classifier,
the V represents Doppler Velocity, and the W represents Doppler Velocity Spectral Width. The BD
indicates that the classifier was formed on a balanced tornado dataset, and the IBD indicates that the
classifier was formed on an imbalanced tornado dataset.).
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Figure 7. The results of models early warning the tornado at 14:08 (Beijing time, UTC+8) 1.5-degree
(the black circle centered at the models warning results with a radius of 1.5 km, the SVM, ANN, RF
represent Support Vector Classifier, Artificial Neural Network Classifier, Random Forest Classifier,
the V represents Doppler Velocity, and the W represents Doppler Velocity Spectral Width. The BD
indicates that the classifier was formed on a balanced tornado dataset, and the IBD indicates that the
classifier was formed on an imbalanced tornado dataset.).

The second tornado case occurred in Dongtai, Jiangsu Province at around 11:00 (Beijing
time, UTC+8), on 2 July 2017. The tornado was 77 km away from the radar center, and the
sample variable value calculated by the block segmentation was small, which caused the
imbalanced models to fail to recognize this tornado, as shown in Figure 8 SVM detection
results (IBD), ANN detection results (IBD), and RF detection results (IBD). The balanced
models were used to detect the tornado, the tornado was identified, with relatively a high
probability of being classified as yes-tornado (SVM: 0.99, ANN: 0.99 and 0.98, RF: 0.8),
as shown in Figure 8 SVM detection results (BD), ANN detection results (BD), and RF
detection results (BD).

Figure 8. The tornado identification results of models at 11:01 (Beijing time, UTC+8) 0.5-degree (the
black circle centered at the tornado location with a radius of 1.5 km, the SVM, ANN, RF represent
Support Vector Classifier, Artificial Neural Network Classifier, Random Forest Classifier, the V
represents Doppler Velocity, and the W represents Doppler Velocity Spectral Width. The BD indicates
that the classifier was formed on a balanced tornado dataset, and the IBD indicates that the classifier
was formed on an imbalanced tornado dataset.).

The third case was the tornado that occurred in the outer circulation of Typhoon
Wembia No.1815 in 2018, which touched the ground in Xuzhou, Jiangsu Province at around
18:40 (Beijing time, UTC+8), on 18 August. The tornado was far away from the radar
center, and the distance was 120.5 km. When the detection range of CINRAD SA is
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more significant than 100 km, CINRAD SA suffers from beam broadening and power
attenuation, so only partial information of the tornado can be obtained. In Figure 9
V, although 4V = |V− − V+| = 26.5 m/s at the 0.5-degree elevation, the radar TVS
product did not issue a tornado warning because the thresholds of TVS were not met.
The imbalanced models were used to detect this tornado, and no tornado warnings were
issued, as shown in Figure 9 SVM detection results (IBD), ANN detection results (IBD),
and RF detection results (IBD). The balanced SVM and ANN model identified this tornado,
as shown in Figure 9 SVM detection results (BD), ANN detection results (BD). However,
the balanced RF model did not issue this tornado, as shown in Figure 9 RF detection
results (BD).

Figure 9. The tornado identification results of models at 18:45 (Beijing time, UTC+8) 0.5-degree (the
black circle centered at the tornado location with a radius of 1.5 km, the SVM, ANN, RF represent
Support Vector Classifier, Artificial Neural Network Classifier, Random Forest Classifier, the V
represents Doppler Velocity, and the W represents Doppler Velocity Spectral Width. The BD indicates
that the classifier was formed on a balanced tornado dataset, and the IBD indicates that the classifier
was formed on an imbalanced tornado dataset.).

In the first tornado case, the balanced and imbalanced models were used to compare
the tornado’s early warning time. The first tornado warning of the imbalanced models was
at 14:14 (Beijing time, UTC+8), and the first tornado warning of balanced models, SVM and
RF, was at 14:08 (Beijing time, UTC+8). The balanced models increased the tornado early
warning time from 16 min to 22 min, indicating that the ALA optimizes the distribution of
samples and can advance the tornado early warning time. In addition, the balanced models
had a higher probability than the imbalanced models (SVM BD: 0.99 > SVM IBD: 0.98, ANN
BD: 0.99 > SVM IBD: 0.97, RF BD: 0.99 > RF IBD: 0.81), which indicates that the results of
the balanced models have higher credibility than the results of the imbalanced models.

In the second tornado case, the scale of the tornado and the sample features were
small, which caused the imbalanced models cannot identify this tornado. The balanced
models recognized the tornado, and the balanced models had better F1-score and G-mean
score than the imbalanced models in Table 3, which confirms that balanced models have
better classification performance and can warn more tornado cases than the imbalanced
models, making up for the shortcomings of the imbalanced models. In addition, it is worth
mentioning that there were two asterisks in the Figure 8 ANN detection results, this was
because: when the models were used to detect tornadoes, the intersection between adjacent
blocks was also calculated, as shown in Figure A1.

In the third case, the tornado was far away from the radar. The radar was heavily
affected by beam broadening and power attenuation, resulting in the TVS algorithm failing
to issue tornado warnings. For similar reasons, in the detection results at 18:45 (Beijing time,
UTC+8), the imbalanced models could not identify the tornado, but the balanced SVM
and ANN model identified the tornado. The balanced and imbalanced RF models did not
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issue any tornado warnings. It is speculated that the negative velocity value of the tornado
was small, which caused the failure of RF models. In this tornado case, the performance of
the balanced model was: ANN > SVM > RF and the average performance of the balanced
model obtained in Table 2 was SVM > ANN > RF. The difference in performance is because
the internal classification criteria of different models is different, which indicates that
multiple models should be coordinated in the actual tornado warning.

In addition to using specific tornado cases to test the models, this experiment compared
the noise immunity performance of balanced models and imbalanced models (figures
omitted), and the results show that the balanced models have more robust noise immunity
performance than the imbalanced models. Especially when the radar is of poor quality, the
balanced models issue fewer or no false warnings than the imbalanced models.

Before studying the ALA, weight and cost methods were used to solve the imbalance.
However, due to the small number of positive samples, the methods (adding weights
for different class) did not generate new samples and did not improve the problem of
missing tornadoes. The study compared the performance of the ADASYN-LOF, ADASYN,
SMOTE-LOF, and SMOTE algorithms on the dataset, as shown in Table A2. For the SVM,
the ADASYN-LOF’s ACC, PRE, F1-score, G-mean, AUC, FAR, and CSI were better than the
ADASYN, SMOTE-LOF, and SMOTE. For the ANN, the ADASYN-LOF’s AUC, F1-score,
G-mean, AUC, POD, CSI were better than the other algorithms. For the RF, the PODs
of ADASYN-LOF and SMOTE-LOF were equal. Generally, if using SVM or ANN as a
classifier, it is better to use ADASYN-LOF to preprocess imbalanced data. For RF, the
SMOTE-LOF could be better.

The LOF algorithm can also be used for unsupervised classification, and it is hoped
that subsequent research will apply this method to the detection of tornadoes (outliers).

6. Conclusions

The tornado sample set usually has the class imbalance problem that might cause the
machine learning models to have a poor tornado detection effect. The adaptive synthetic
(ADASYN) sampling approach is used to solve the problem, and the local outlier factor
(LOF) algorithm is applied to identify noise data in synthetic samples. The ADASYN and
LOF approach is called the ADASYN-LOF approach (ALA). The SVM, ANN, RF models
are used and the main conclusions are as follows.

1. After the ALA, the accuracy and precision are increased or decreased, the F1-score,
G-mean, AUC, POD, CSI are significantly improved, the average performance is
improved, and models have better noise immunity performance than the models
without the approach.

2. Using specific tornado cases to test models, the balanced models have the following
advantages after the ALA.

• In the early tornado warning, the models have the potential to increase the early
warning time of tornadoes touching the ground.

• The balanced models can identify some tornadoes that cannot be identified by
the imbalanced models.

• The models can identify tornadoes that cannot be detected due to the limitation
of the tornado velocity signature (TVS) algorithm threshold.

3. Compared with the ADASYN, SMOTE-LOF, and SMOTE algorithms, the ALA per-
forms better in preprocessing imbalacned data if SVM or ANN is used as the classifier.
If RF is used, the SMOTE-LOF algorithm could work better.

There are three directions for future research:

• optimize the k value of the ALA and appropriately reduce the dimension of sample
features;

• study how to appropriately decrease the majority samples when applying the ALA;
• use more datasets (such as tornado datasets in the United States) to evaluate the ALA

and apply outlier detection algorithms to detect tornadoes.
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Appendix A

Table A1. The 32 features of the tornado sample.

Feature Description Unit

r_average the average value in the 4 × 4 Z block dBZ
r_max the maximum value in the 4 × 4 Z block dBZ
r_min the minimum value in the 4 × 4 Z block dBZ

v_average the average value in the 4 × 4 V block m/s
v_max the maximum value in the 4 × 4 V block m/s
v_min the minimum value in the 4 × 4 V block m/s

w_average the average value in the 4 × 4 W block m/s
w_max the maximum value in the 4 × 4 W block m/s
w_min the minimum value in the 4 × 4 W block m/s

s_average the average value of velocity shear in the 4 × 4 V block 1/s
s_max the maximum value of velocity shear in the 4 × 4 V block 1/s
s_min the minimum value of velocity shear in the 4 × 4 V block 1/s

l_average the average value of angular momentum in the 4 × 4 V block m2/s
l_max the maximum value of angular momentum in the 4 × 4 V block m2/s
l_min the minimum value of angular momentum in the 4 × 4 V block m2/s

vt_average the average value of rotation speed in the 4 × 4 V block m/s
vt_max the maximum value of rotation speed in the 4 × 4 V block m/s
vt_min the minimum value of rotation speed in the 4 × 4 V block m/s

c4_d_v_max the maximum value of velocity difference in the 2 × 2 V block m/s
c4_s_average the average value of velocity shear in the 2 × 2 V block 1/s

c4_s_max the maximum value of velocity shear in the 2 × 2 V block 1/s
c4_s_min the minimum value of velocity shear in the 2 × 2 V block 1/s

c4_l_average the average value of angular momentum in the 2 × 2 V block m2/s
c4_l_max the maximum value of angular momentum in the 2 × 2 V block m2/s
c4_l_min the minimum value of angular momentum in the 2 × 2 V block m2/s

c4_vt_average the average value of rotation speed in the 2 × 2 V block m/s
c4_vt_max the maximum value of rotation speed in the 2 × 2 V block m/s
c4_vt_min the minimum value of rotation speed in the 2 × 2 V block m/s
w_range the range value of velocity spectral width in the 4 × 4 W block m/s

w_40 the threshould greater than 40% velocity spectral width in the 4 × 4 W block m/s
w_60 the threshould greater than 60% velocity spectral width in the 4 × 4 W block m/s
w_80 the threshould greater than 80% velocity spectral width in the 4 × 4 W block m/s

Figure A1. The calculation of intersection between adjacent blocks.
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Table A2. The performance of ADASYN-LOF, ADASYN, SMOTE-LOF, SMOTE algorithms.

Evaluation ADASYN-LOF ADASYN SMOTE-LOF SMOTE

SVM

ACC 0.9277 0.9197 0.9237 0.9116
PRE 0.7385 0.7164 0.7273 0.6957

F1-score 0.8421 0.8276 0.8348 0.8136
G-mean 0.9467 0.9416 0.9442 0.9363

AUC 0.9473 0.9423 0.9448 0.9373
POD 0.9796 0.9796 0.9796 0.9796
FAR 0.2615 0.2836 0.2727 0.3043
CSI 0.7273 0.7059 0.7164 0.6857

ANN

ACC 0.9438 0.9237 0.9398 0.9398
PRE 0.9070 0.8947 0.9250 0.9048

F1-score 0.8478 0.7816 0.8315 0.8352
G-mean 0.8832 0.8246 0.8624 0.8718

AUC 0.8880 0.8369 0.8701 0.8778
POD 0.7959 0.6939 0.7551 0.7755
FAR 0.0930 0.1053 0.0750 0.0952
CSI 0.7358 0.6415 0.7115 0.7170

RF

ACC 0.9438 0.9357 0.9478 0.9398
PRE 0.9268 0.9231 0.9500 0.9722

F1-score 0.8444 0.8182 0.8539 0.8235
G-mean 0.8740 0.8507 0.8762 0.8430

AUC 0.8803 0.8598 0.8828 0.8546
POD 0.7755 0.7347 0.7755 0.7143
FAR 0.0732 0.0769 0.0500 0.0278
CSI 0.7308 0.6923 0.7451 0.7000

References
1. Chen, J.; Cai, X.; Wang, H.; Kang, L.; Zhang, H.; Song, Y.; Zhu, H.; Zheng, W.; Li, F. Tornado climatology of China. Int. J. Climatol.

2018, 38, 2478–2489. [CrossRef]
2. McCarthy, D.; Schaefer, J.; Edwards, R. What are we doing with (or to) the F-Scale. In Proceedings of the 23rd Conference on

Severe Local Storms, St. Louis, MO, USA, 6–10 November 2006; Volume 5.
3. Doswell, C.A., III; Brooks, H.E.; Dotzek, N. On the implementation of the enhanced Fujita scale in the USA. Atmos. Res. 2009, 93,

554–563. [CrossRef]
4. Brown, R.A.; Lemon, L.R.; Burgess, D.W. Tornado detection by pulsed Doppler radar. Mon. Weather Rev. 1978, 106, 29–38.

[CrossRef]
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