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Abstract: The paper presents the results of a 1.5-year evaluation study of low- and medium-cost
ozone sensors. The tests covered electrochemical sensors: SensoriC O3 3E 1 (City Technology) and
semiconductor gas sensors: SM50 OZU (Aeroqual), SP3-61-00 (FIS) and MQ131 (Winsen). Three
copies of each sensor were enclosed in a measurement box and placed near the reference analyser
(MLU 400). In the case of SensoriC O3 3E 1 sensors, the R2 values for the 1-h data were above
0.90 for the first 9 months of deployment, but a performance deterioration was observed in the
subsequent months (R2 ≈ 0.6), due to sensor ageing processes. High linear relationships were
observed for the SM50 devices (R2 > 0.94), but some periodic data offsets were reported, making
regular checking and recalibration necessary. Power-law functions were used in the case of SP3-
61-00 (R2 = 0.6–0.7) and MQ131 (R2 = 0.4–0.7). Improvements in the fittings were observed for
models that included temperature and relative humidity data. In the case of SP3-61-00, the R2 values
increased to above 0.82, while for MQ131 they increased to above 0.86. The study also showed that
the measurement uncertainty of tested sensors meets the EU Directive 2008/50/EC requirements for
indicative measurements and, in some cases, even for fixed measurements.

Keywords: air pollution; air-quality monitoring; calibration; measurement uncertainty

1. Introduction

Tropospheric ozone (O3) is one of six criteria air pollutants and plays a key role in the
atmospheric environment due to its ability to oxidize many trace gases and its impact on
the energy budget of the troposphere. It is also one of the most important greenhouse gases
as a so-called short-lived climate factor (SLCF) [1–3].

Surface ozone has a detrimental effect on human health [4,5], affects the cardiovascular,
nervous and respiratory systems (e.g., it can aggravate lung diseases such as chronic
obstructive pulmonary disease—COPD), and causes premature death, especially due to
respiratory illnesses [6–8]. According to recent studies, in 2010 approximately 1 million
premature respiratory deaths worldwide could be attributed to long-term exposure to
O3 [9]. Furthermore, ozone causes damage to plants [10–12] and materials [13]. EEA [14]
has reported that about 99% of the urban population lives in the environment, where the
concentration of ozone exceeds the new WHO guideline [15].

O3 is mainly formed by complex secondary reactions of volatile organic compounds
(VOCs) and nitrogen oxides (NOx) under sunlight [16,17]. The spatial variation of ozone
concentration is controlled by the emission rate of precursors from anthropogenic and
natural sources (e.g., biogenic VOCs) [18–20]. In urban areas, identifying the sensitivity of
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O3 formation is difficult due to complex atmospheric chemical mechanisms. Some studies
reported that temporal variation of O3 production was more VOC-sensitive in the early
morning and NOx-sensitive for most of the afternoon [21], while during different precursor
regimes and meteorological conditions, O3 production is sensitive towards NOx [22]. In
China, most urban areas are located in a VOC-sensitive or transition regime [23]. In rural
areas, the availability of NOx is more important [24,25].

The rates of O3 formation also depend on favourable meteorological conditions, such
as incoming solar radiation and high temperature [26,27]. Therefore, climate-change-
related increases in global temperature and frequency of heatwaves could lead to elevated
concentrations of ozone corresponding to threats to human health [1,28–32]. It should
be noted that atmospheric processes of ozone formation are very complex, and therefore
extensive networks of continuous measurements and appropriate models are necessary to
assess exposure to this pollutant and to understand future changes.

Although spatiotemporal changes in O3 concentrations are rather regular over large
distances, on the local scale, intra-urban variability of ozone precursors emission leads
to a large variation in O3 levels [33]. Evaluation of these small-scale variations, which
allows understanding of the mechanism of O3 formation and destruction, is extremely
important to control precursor emissions and implement proper health policies [34,35].
However, conventional O3 measurement stations based on UV absorption are expensive
and have relatively high power consumption, and their spatial coverage is not very dense.
Due to these disadvantages, new approaches are sought and sensor technology is gaining
popularity in this field [36]. Networks of sensor devices can complement traditional
air-quality monitoring and improve the spatial and temporal resolution of air quality
measurements [37].

Two types of O3 sensors are currently available on the market: electrochemical and
metal oxide semiconductor gas sensors. The principle of operation of the electrochemical
sensor is based on a chemical reaction between the target gas and the electrolyte on the
surface of the working electrode. It results in a current flow that is proportional to the
concentration of the gas being measured [38,39]. The operation principle of the metal oxide
sensor is based on changes in the conductivity of the semiconductor material, as a function
of changes in gas concentration [40]. In the case of ozone, as its concentration increases, the
conductivity of the sensor decreases, and sensor responses might be measured as voltage
variations on the load resistor connected in series to the sensor. Both types of sensors have
been used successfully to monitor ozone concentrations in recent studies [33,38,41–45].

In general, the prices of O3 sensors are several orders of magnitude lower than the
cost of regulatory-grade instrumentation. However, the price range of commercially
available devices is wide and there is no single definition of “low-cost” or “medium-
cost” sensors [46–48]. For this study, it was assumed that “low-cost” sensors are those that
are in the range of a few tens of dollars (below USD 100). Devices that cost up to a few
hundred dollars were defined as “medium-cost”. Selecting a sensor from a specific price
group is an important part of creating a measurement device or monitoring network, and
knowing the capabilities and limitations of such devices is crucial for both professional
researchers and citizen scientists [49,50].

The purpose of this study was to examine the performance of selected O3 sensors
in ambient air in Wrocław, Poland. The research was also intended to determine the
suitability of the sensors for the design of a future O3 monitoring network. Four sensor
models were enclosed in a measurement box and collocated with a UV-absorption analyser.
The sensors were evaluated in several aspects: stability of long-term operation under
changing meteorological conditions, reproducibility of sensor units, linearity of outputs
and relationship to reference data, and measurement uncertainty.
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2. Material and Methods
2.1. Measurement Site Description

The measurement campaign was carried out from June 2019 to December 2020 at the
Meteorological Observatory of the Department of Climatology and Atmosphere Protection
of the University of Wrocław (8 Kosiby Street, Wrocław, Poland). The observatory is located
in the eastern district of Wrocław, on a detached housing estate, near allotments and a large
city park. There are no industrial facilities in its vicinity and the distance to the nearest
roads with medium traffic intensity is around 120 m. The sampling systems of the ozone
measuring devices were mounted on a measurement platform, at a height of approximately
15 m above the ground level. This altitude is higher than that for typical ozone samplers
used in Poland (2.5–4 m), but due to lower sensitivity to any possible local emissions it is
more suitable for atmospheric measurements.

2.2. Reference Ozone Data

Ozone concentration measurements from the MLU 400 analyser (MLU Messtechnik
für Luft und Umwelt, Essen, Germany) were used as reference values. The principle
of operation of that instrument is based on ultraviolet absorption, and the device meets
the ISO 13964:1998 standard. The instrument service was performed annually, and the
calibration procedure was executed automatically by the device. Measurement data (1 min)
were stored in the external database. Furthermore, meteorological variables (temperature,
relative humidity, sum of incoming solar radiation) were measured at the observatory
according to WMO procedures.

2.3. O3 Sensors and Measurement Setup

Sensors with different operating principles and belonging to different price ranges
were selected for the study. From the low-cost sensor group, the following were used:
SP3-61-00 (Nissha FIS Inc., Osaka, Japan) and MQ131 (Zhengzhou Winsen Electronics
Technology Co., Ltd., Zhengzhou, China). These sensors were chosen for testing because
their operation in ambient air has not been reported in detail in the literature so far. FIS
sensor tests were carried out only for the older version of this device, namely the SP-61
sensor, under laboratory conditions [51] and in a field study lasting a few weeks [52].
Regarding the Winsen MQ131 sensor, its evaluation was less than 2.5 days [53].

Both devices belong to the group of semiconductor gas sensors. The SP3-61-00 sensor
contains a sensing material in the form of a thin film of indium/tin oxide (ITO) formed on
the alumina substrate. The heater, in the form of a thick film of ruthenium oxide, is printed
on the reverse. This sensing element also contains gold electrodes and lead wires and is
placed in tubular housing (h = 13 mm, ϕ = 14 mm). According to the technical specification,
the measurement range is about 0.025–0.6 ppm. The MQ131 sensor has a similar design,
but the sensitive layer is made of tungsten trioxide, applied to a ceramic tube. The complete
detection element is enclosed in a plastic cap (h = 12 mm, ϕ = 16 mm). The detection range
is approximately 0.01–1 ppm.

Sensors were purchased in 2019 at a cost of approximately USD 20 per device. In this
research, three copies of each sensor model were used and connected to specially designed
PCB boards equipped with microcontrollers. The designed circuits allowed the sensors to
be powered and the measurement signals (volts) to be transmitted as digital values.

Another device tested, from the category of gas-sensitive semiconductor sensors, was
SM50 by Aeroqual Ltd. (Auckland, New Zealand). In this research, an OZU module with a
range of 0–0.15 ppm was used. Unlike the previously described sensors, this device fell
into the medium-cost group—the purchase cost in 2019 was about USD 400.

The sensing element is made of tungsten trioxide, just as for MQ131, but the SM50 is a
more developed measurement device consisting of multiple components mounted on a PCB
board (60 mm × 75 mm). The sensor housing is a cylindrical plastic enclosure (h ≈ 15 mm,
ϕ ≈ 16 mm) with an inlet filter and an outlet beneath the sensor. The characteristic feature
of this device is a micro fan mounted on the underside, which allows the flow rate to be
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modulated. According to the manufacturer, the use of this procedure in conjunction with
temperature modulation makes it possible to obtain adequate instrument precision and
stability. The algorithms implemented reduce small baseline drifts and interfering signals
(e.g., due to water vapour).

The SM50 is factory calibrated and the outputs can be analogue or digital. Aero-
qual devices have been used in many studies, showing good agreement with reference
instruments [54–57] and demonstrating usefulness in air-quality monitoring [33,44,45,58].
However, none of the studies that were conducted lasted more than 12 months and were
carried out under very harsh meteorological conditions. For this measurement campaign,
three units of this sensor were used.

The last of the devices tested was the SensoriC O3 3E 1 by City Technology (Portsmouth,
Great Britain/sensors designed and manufactured in Bonn, Germany). This device is an
electrochemical three-electrode sensor cell with an organic electrolyte. The purchase cost of
such a sensor was about USD 400 and, for this reason, it was also classified as a medium-
cost device. The measuring range of the O3 3E 1 sensor is 0–1 ppm. The sensor cover has a
diameter of 15.6 mm and is approximately 14.5 mm high (“MINI” version of the enclosure).
This cell is mounted on a PCB transmitter board (~25 mm × 44.5 mm) with a 4–20 mA
output. The PCB also incorporates an onboard temperature compensation.

This sensor module was selected for this study because its operation has been little
reported in the literature. However, it showed good performance in both laboratory [59]
and five-month field studies [60]. As with previous sensors, three units of SensoriC sensor
were used in this study. The short characteristics of all devices tested are shown in Table 1.

Table 1. Characteristics of the ozone sensors used in the research.

Sensor Model SensoriC O3 3E 1 SM50 (OZU) SP3-61-00 MQ131

Manufacturer
(country of origin)

City Technology Aeroqual Nissha FIS Winsen
(Great Britain/Germany) (New Zealand) (Japan) (China)

Cost level
Approximate price ($)

Medium cost Low-cost
400 400 20 20

Sensor type
Electrochemical Metal oxide semiconductor

Amperometric 3-electrode
sensor cell WO3 ITO: In2O3/SnO2 WO3

Concentration range
(ppm) 0–1 0–0.150 ~0.025–0.6 0.01–1

Output signal Current: 4–20 mA Digital: ppm Voltage:
0–5 V Voltage: 0–5 V Voltage: 0–5 V

Factory-fabricated
accessories Transmitter board

Board with
microcontroller and

micro fan
− −

Dimensions (mm)
Sensor: h ≈ 14.5,

ϕ = 15.6
Board: 25 x 44.5

Sensor: h ≈ 15,
ϕ ≈ 16

Board: 60 x 75

Sensor:
h = 13 (plus pins),

ϕ = 14

Sensor:
h = 12 (plus pins),

ϕ = 16

Approximate weight (g) 13 a 65 a 1.2 2

Operating conditions −20 ◦C to +40 ◦C
15% to 90% RH

−20◦C to +50 ◦C
5% to 90% RH

−10 ◦C to +50 ◦C
<95% −10 ◦C to +50 ◦C

a Weight of the entire measuring module.

All O3 sensors were examined using a set-up developed for the testing of PM2.5
sensors [61], which ensured similar measurement conditions for the devices tested. Sensors
were placed inside a handmade PVC box with a rainproof lid, where outside air was drawn
through openings in one of the walls and exhausted by fans mounted on the opposite wall.
Sensor measurement circuits were attached to PVC plates perpendicular to the bottom
of the box. The system contained power supplies and a microcomputer that sent the
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measurement results to a database. Multiport USB hubs and MODBUS modules were used
to transmit data from the sensors to the microcomputer. The system also included a probe
with temperature and humidity sensors to monitor the conditions inside the box. The box
was attached to the measurement platform at a distance of approximately 1.5 m from the
inlet of the reference analyser.

3. Data Analysis
3.1. Data Preparation

Data from 13 June 2019 to the end of 2020 were taken for this analysis. In the case of
the MLU 400 analyser, a preliminary data selection was performed. First of all, all data
related to maintenance and service works were removed. Then, a comparison was made
with data from the national monitoring station and outlier signals were excluded.

The signals from all devices were then averaged hourly, considering datasets with at
least 75% completeness. The choice of hourly averaging was dictated by the possibility
of comparing such data with data from national monitoring stations and calculating 8 h
running averages, which was necessary to test the equivalence of sensor measurements
data (Sections 3.4 and 4.5).

3.2. Reproducibility between Units

The reproducibility of sensor units (intramodel variability) is an important feature
regarding the calibration of such devices. Sensors with high reproducibility do not have to
be calibrated individually, and calibration factors from one unit could be used for others
without significant loss of accuracy.

To investigate the general relationships between the sensors, Pearson’s correlation
coefficient was first used. Then, the reproducibility of the sensors was evaluated by
visualising the dispersion of the measurement data. For this purpose, the scatterplots of
sensors outputs versus the averaged data from all units were plotted.

3.3. Relationship between O3 Sensors and Reference Analyser

Models for sensor calibration were developed assuming MLU 400 analyser hourly data
as response variables and sensor signals as predictors. Reference data were expressed as
µg/m3, but sensor signals were collected as µA (SensoriC O3 3E 1), ppm (Aeroqual SM50)
and V (FIS SP3-61-00 and Winsen MQ131) and used in that form in calibration functions.

Based on the manufacturer’s declarations, linear models for medium-cost sensors
(SensoriC by City Technology and SM50 by Aeroqual) were assumed. In the case of low-
cost devices (FIS and Winsen sensors), the conductivity changes due to changes in ozone
concentration are non-linear and such models were considered for them.

An additional approach to determining the calibration equations was to use multiple
regression with environmental factors such as temperature and relative humidity. Such
factors may influence sensor performance, and their inclusion in calibration models may
be beneficial [62,63]. The goodness of fit of all models was evaluated using the coefficient
of determination value (R2).

3.4. Attempts to Test the Equivalence of Sensor Measurements

The sensor performance and quality of the calibration models were also evaluated in
terms of meeting the data quality objectives (DQO) of the European Air Quality Directive
2008/50/EC [64]. The EU Directive specifies the requirements to be met by fixed regulatory
monitoring stations but also permits the use of new measurement methods as long as
they demonstrate equivalence with reference methods. One of the factors to check is the
measurement uncertainty, and for ozone this must not exceed 15%. The Directive also
allows for supplementing fixed measurements with so-called indicative measurements.
The uncertainty of such a method of ozone concentration reporting should not exceed 30%.

Equivalence tests were performed according to the Guide to the Demonstration of
Equivalence of Ambient Air Monitoring Methods by the EC Working Group [65]. The
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procedure is based on the appliance of orthogonal regression and the calculation of the
expanded relative uncertainty (with the coverage factor k = 2) at a limit value. In the
case of ozone, the Directive sets a target value of 120 µg/m3 for a maximum daily 8 h
mean concentration.

4. Results and Discussion
4.1. Long-Term Sensor Performance
4.1.1. Evaluation of Operation Stability

Figure 1 presents the results of O3 measurements over a period of almost 1.5 years.
For the sake of clarity, the outputs of only one unit of each sensor model were plotted.
As can be seen, there were several issues during the measurement campaign that caused
some data to be missing. Generally, data gaps occurred due to power outages or data
transmission problems. In the case of the sensor measurement box, the system had to be
reset in a few cases to restore data transfer. A major interruption in the measurements
occurred in July and August 2020, when the observatory building was being renovated
and the measurement instruments were not continuously powered. The percentage of data
missing from the reference analyser was approximately 13% and for the sensor test system
it was more than 30%. However, it should be noted that this situation was not related to
the sensors themselves, but to the external factors mentioned above.
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Figure 1. Results of the O3 measurement campaign: (a) MLU 400 reference analyser; (b) SensoriC O3
3E 1 (City Technology); (c) SM50 OZU (Aeroqual); (d) SP3-61-00 (FIS); and (e) MQ131 (Winsen). The
1 h averaged data for selected sensors were plotted for clarity. Please note the different scales and
units on the y-axes.

At the beginning of the measurement session, some malfunctions occurred with one
copy of Winsen MQ131 (unit No. 1), caused by a too-loose connection to the USB hub.
More serious functional problems were observed with the SensoriC O3 3E 1 sensors after
about 13 months of operation. The signals from these sensors had very low values and
were poorly correlated with the reference measurements. The reason for this was most
likely due to sensor ageing, which is described in more detail in Section 4.3.1.
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4.1.2. Meteorological Conditions and Ozone Concentrations during the Study

The study was carried out under various conditions, both in terms of ozone concen-
trations and meteorological variables. The air temperature recorded at the meteorological
observatory ranged from −7 ◦C to +36 ◦C, and the relative humidity ranged from 10
to 100%. The highest concentration of ozone in summer reached a value greater than
140 µg/m3 while in winter it was less than 50 µg/m3. The days with the highest concen-
trations of ozone occurred during heatwave periods characterised by high solar radiation
rates and air temperatures above 25–30 ◦C (Table S1 in the Supplementary Materials). Due
to the heat generated by the electronics components, the temperature inside the measuring
box was slightly higher and ranged from −4 ◦C to +37 ◦C (2 ◦C higher on average), and
the relative humidity was in the range 28%–94%. However, it should be noted that the
recorded high humidity conditions were at the upper limit of the operating conditions
of these sensors. In addition, the sensors and electronics were also operating at sub-zero
temperatures, which could affect their long-term performance.

The range of O3 concentrations registered throughout the test period with the refer-
ence analyser was 0.6–144 µg/m3. O3 concentrations were significantly positively corre-
lated with temperature (r ≈ 0.69) and highly negatively correlated with relative humidity
(r ≈ −0.80). Ozone formation was observed on warm and sunny days, especially during
summer. The highest values were recorded in 2019 in June, July and August, and in 2020 in
May and August. The signals from the SensoriC O3 3E 1 and SM50 sensors well tracked
the reference values. The general correlation coefficients for the entire study period were in
the range of 0.82–0.89 (Table 2).

Table 2. Pearson’s correlation coefficients of MLU 400 reference data (O3) vs. sensor data and
meteorological data (T—temperature, RH—relative humidity) for the entire study period.

SensoriC O3 3E 1 SM50 SP3-61-00 MQ131
T RH

Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3
O3 0.86 0.83 0.84 0.82 0.86 0.89 −0.60 −0.68 −0.57 −0.64 −0.56 −0.54 0.69 −0.80

The correlations for the low-cost sensors had a different character. Firstly, the raw
signals measured in volts were negatively correlated with the reference values, which
was due to the measurement circuit used. Secondly, the correlation coefficient values
were significantly lower (level of −0.5/−0.6), due to the non-linearity in their responses.
Considering the described behaviour of the sensors, calibration models were made using
non-linear functions.

4.2. Reproducibility between Units

Figure S1 in the Supplementary Materials presents the correlations between all units of
the sensors tested. Within a given sensor model, the highest Pearson’s correlation coefficient
values were obtained for SensoriC O3 3E 1 units (r = 0.991–0.998) and Aeroqual SM50
devices (r = 0.980–0.992). Very high collinearity between units was also observed for the FIS
SP3-61-00 sensor—the correlation coefficient was at the level of 0.98. For the Winsen MQ131
sensor, only units No. 2 and No. 3 were strongly correlated with each other (r= 0.975),
and unit No. 1 had significantly different performance: the correlation coefficient between
units 1 and 2 was 0.740 and for units 1 and 3 it was 0.666.

Figure 2 presents scatterplots of signals from sensor units versus the mean values of
their 1 h averaged data. The best reproducibility between units was observed for SM50
sensors (Figure 2b). Those medium-cost sensors were calibrated by the manufacturer in
the same manner, and their outputs were practically identical. The results shown are
generally consistent with those of the literature: Moltchanov et al. [44] reported a high
consistency of six SM50 sensors deployed in multi-sensor miniature nodes for air-quality
measurements (correlations between nodes were in the range 0.92–0.99), and Jiao et al. [66]



Atmosphere 2022, 13, 542 8 of 20

reported correlations at the level of 0.85–0.94 for SM50 sensors mounted in the field-testing
device and the measurement network node.
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Figure 2. Scatterplots of signals from sensors units vs. the mean values of the 1-h averaged data:
(a) SensoriC O3 3E 1 (City Technology); (b) SM50 (Aeroqual); (c) SP3-61-00 (FIS); and (d) MQ131
(Winsen). Dashed lines denote the ideal relationship.

High reproducibility was also observed for SensoriC O3 3E 1 (Figure 2a), however, for
only two copies of that device. The outputs for unit No. 1 were significantly lower than for
the others, although it was strongly linearly correlated with them. Similar observations
regarding the slightly different performance of such sensors can be found in the literature:
Spinelle et al. [60] reported that two copies of City Technology O3 3E 1F sensors operated
similarly during field calibration, even if some variation could be observed.

The raw data from the low-cost sensors were characterised by a greater scatter. In the
case of FIS SP3-61-00 (Figure 2c), there was a considerable agreement between the signals
from units 2 and 3. Only the outputs from unit no. 1 deviated from the others, although
they were strongly linearly correlated with them.

The largest discrepancy in the data was observed for the Winsen MQ131 sensor
(Figure 2d). In this case, units No. 2 and No. 3 were highly correlated, although their
signals did not completely overlap. A significant difference in responses was observed for
unit No. 1. One reason for this may be the problems with this unit observed at the beginning
of the measurement campaign. It is likely that the sensor was not properly powered and,
due to the necessary resetting of the circuit, it was not able to warm up properly. The
warm-up phase is required for semiconductor gas sensors to achieve chemical equilibrium
with the atmosphere after they are turned on [40]. Therefore, an adequate and consistent
sensor preparation time is essential before application in a monitoring network.
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4.3. Relationship between O3 Sensors and Reference Analyser
4.3.1. Performance of SensoriC O3 3E 1 Sensors (City Technology)

Figure 3 presents the results of the linear regression fittings between the O3 reference
analyser and the SensoriC O3 3E 1 units. Linear models were computed for different data
sets due to observed changes in sensor characteristics, as presented in Figure 4. In the case
of units No. 2 and No. 3, R2 values exceeding 0.95 were obtained up to about 6 months of
operation (December 2019). The results for sensor No. 1 were slightly lower—R2 was at the
level of 0.93/0.94.
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Figure 3. Results of linear fittings for 1-h averaged data from SensoriC O3 3E 1: (a) unit No. 1; (b) unit
No. 2; (c) unit No. 3. Dashed lines denote the fitted curves. n—number of samples used for the fitting,
R2—coefficient of determination.
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Figure 4. Changes in R2 from linear fittings for the SensoriC O3 3E 1 sensor and the reference O3

analyser over successive weeks of the study. The dashed line indicates an R2 coefficient of 0.9, which
was assumed as an indicator of the good quality fitting.

After 6 months of operation, the obtained R2 values decreased slightly, but were
at levels greater than 0.9 for all sensors. After approximately 9 months of operation
(March 2020), a significantly larger scatter of measurement data was observed (the second
dataset in Figure 3), resulting in a further decrease in the R2 values. From 9 to 11 months of
operation (March 2020–May 2020), R2 for units No. 1 and 2 was still above 0.9, but for unit
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No. 1 it dropped to ~0.88. After this time, the quality of the fits of the models decreased
significantly to the level of 0.82/0.83 at the end of the 13th month of the survey (July 2020).

In the last part of the study, after a break due to the renovation of the observatory, the
signals from all SensoriC units were significantly lower than those previously recorded (as
can be seen in Figure 1b) and were weakly correlated with the reference data (the third
dataset in Figure 3). The observed changes in the functioning of SensoriC sensors were very
likely related to the ageing processes. According to the sensor datasheet, the sensor life
expectancy should be no less than 18 months, but in this study, the proper operation of the
sensor was observed only for a period of about 12 months. Generally, for electrochemical
sensors, ageing is associated with evaporation or dilution of the electrolyte, which occurs
over time [67]. However, such processes can be accelerated when the sensors are operated
under adverse conditions, such as high humidity or sub-zero temperatures. Conditions
such as these were encountered in this study and may have led to shorter sensor lifetimes.

The general agreement between the sensor data from SensoriC O3 3E 1 and the refer-
ence data was good. The R2 coefficients, determined for a dataset that covered 12 months
of correct operation, were at the level of 0.88/0.89. Spinelle et al. [60] reported somewhat
lower results for two units of SensoriC devices. For the 2 week calibration period, the R2

values were equal to 0.845 and 0.878, while for the subsequent 5 month validation period
they were 0.667 and 0.813. The authors noted that the strength of the relationship between
measurement devices weakened over time. This kind of behaviour could also be due to the
ageing processes of the sensors.

4.3.2. Performance of SM50 OZU Sensors (Aeroqual)

Linear models of the relationship between the SM50 sensor units and the MLU 400
analyser are presented in Figure 5. As can be noticed, the Aeroqual data were characterised
by high variation due to periodic offsets. For all units of SM50, it was possible to distinguish
three groups of data for the following time ranges: (1) June 2019–October 2019, (2) October
2019–August 2020 and (3) August 2020–December 2020. The models for each dataset had
significantly different slopes and intercepts, but in each case, they were characterised by
high linearity and R2 values that exceeded 0.94.
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Figure 5. Results of linear fittings for 1-h averaged data from SM50: (a) unit No. 1, (b) unit No. 2,
(c) unit No. 3. Dashed lines denote the fitted curves. n—number of samples used for the fitting,
R2—coefficient of determination.

Changes in measurement characteristics were associated with periodic shutdowns and
resets of the measurement box (described in Section 4.1). As reported by Williams et al. [68],
Aeroqual ozone sensors use a combination of temperature steps and air-flow-rate steps
to continually reset and re-zero the sensor. In addition, when turned on, the sensor goes
into a warm-up mode to burn off contaminants from the sensor. Presumably, in the case
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of this study, the algorithm implemented in the device’s microcontroller may have made
changes to the calibration coefficients after a period of no power. The occurrences of such
offsets were also mentioned in the works of Moltchanov et al. [44] and DeWitt et al. [69].
The cited authors pointed out that changes in Aeroqual sensor measurement characteristics
significantly complicate O3 monitoring and suggested performing frequent calibration or
data examination. Considering the results of this study, such actions should be taken at
least after periods of sensor power loss. However, such actions can only be performed if
the sensor is close to the reference station or if the device can be moved to such a location
periodically, or by using the so-called chain calibration in the case of a distributed sensor
network [70].

Overall, during periods of stable operation, the agreement between the hourly data
of the SM50 OZU modules and the reference data was high. Similar observations can be
found in the study by Lin et al. [55], where R2 was at the level of 0.91, and in the study by
Masey et al. [56], where linear models created for different periods of operation had R2

values from 0.85 to 0.99.

4.3.3. Performance of SP3-61-00 Sensors (FIS)

Due to the non-linearity of the FIS sensor response, power-law models were adopted
for the calculations. Figure S2 in the Supplementary Materials presents the calibration
models for the data set from the entire study period. The overall quality of fit was moderate:
the R2 values were equal to 0.626 for unit No. 1, 0.602 for unit No. 2, and 0.630 for unit
No. 3.

Given a relatively large scatter in the data and the problems observed in the cases
described above, the dataset was divided into smaller sets associated with periods of
continuous sensor operation (as described in Section 4.3.2). The resulting models are shown
in Figure 6. In this approach, an improvement in fittings was obtained for all sub-periods:
the values of R2 were in the range 0.738–0.787 for units No. 1 and No. 3, and 0.664–0.729 for
unit No. 2. The distribution of the data and the calibration functions developed were quite
similar for the second (October 2019–August 2020) and third (August 2020–December 2020)
periods considered. Notable differences in the models were present for the initial study
period (June 2019–October 2019).
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Figure 6. Results of power-law fittings for 1 h averaged data from SP3-61-00: (a) unit No. 1; (b) unit
No. 2; (c) unit No. 3. Dashed lines denote the fitted curves. n—number of samples used for the fitting,
R2—coefficient of determination.

It should be noted that this low-cost sensor was not equipped with any condition
stabilisation system (such as flow and temperature modulation in SM50), which may have
resulted in more dispersed data and changes in the output signal after the device resets.
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4.3.4. Performance of MQ131 Sensors (Winsen)

Similar to the FIS SP3-61-00 sensor, power-law calibration functions were used for the
Winsen MQ131 sensor. The quality of the fittings for data from the entire measurement
campaign is shown in Figure S3 in the Supplementary Materials. The signals from the
Winsen sensors had the largest data scatter of all the devices tested. The R2 values for
individual units varied widely and were equal: 0.661 for unit No. 2, 0.551 for unit No. 3,
and only 0.487 for unit No. 1.

To test for changes in sensor behaviour over a long-term deployment, the dataset was
divided into smaller sets, as in the previous cases. The results for the three considered time
ranges are presented in Figure 7. The quality of the fit in the shorter sub-periods varied
greatly depending on the particular unit. A somewhat greater improvement was observed
for unit No. 2, but only in the case of the first two time periods, where the distribution
of the data and the quality of the calibration functions were quite similar (R2 = 0.708 and
0.710). Data from the last measurement period were characterised by greater scatter and R2

at the level of 0.635.
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Figure 7. Results of power-law fittings for 1 h averaged data from MQ131: (a) unit No. 1; (b) unit
No. 2; (c) unit No. 3. Dashed lines denote the fitted curves. n—number of samples used for the fitting,
R2—coefficient of determination.

In the case of unit No. 3, fittings with slightly higher R2 were achieved for the second
(R2 = 0.631) and third (R2 = 0.578) periods. On the other hand, the fit was worse (R2 = 0.516)
for the first period.

Problems in the functioning of unit No. 1 at the beginning of the study resulted in poor
fitting quality during the second study period (R2 = 0.394). However, a smaller dispersion
of the data and better fit results were achieved at the end of the study (R2 = 0.596).

4.3.5. Influence of Environmental Factors on Sensors Calibration

Tables S2–S5 in the Supplementary Materials present R2 values for calibration functions
incorporating additional parameters: temperature and humidity. Data from the inside
of the measurement box were used on the assumption that these parameters reflect the
properties of the air in the immediate vicinity of each sensor. Calculations were made for
individual measurement periods and, in some cases, for the entire study period.

For the electrochemical sensor SensoriC O3 3E 1 (Table S2), the results depended on
the time period considered. For the initial 9 month period of operation, when the sensor
performance was very high (R2 above 0.9 for all units), the addition of the new variables
did not result in a noticeable improvement in the fit quality. Including temperature in
the models raised R2 by only 0.003, and no improvement was seen with the addition of
RH. On the other hand, in the second measurement period, when deterioration in sensor
performance was observed, the addition of environmental parameters was beneficial. For
models that additionally included only RH, the R2 values increased by 0.02 on average.
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When the temperature was included, R2 increased by 0.175 on average (from an average
value of 0.651 to 0.826). The best results were achieved when both factors considered were
included in the modelling: the increase in R2 was at the level of 0.19 and the final R2 was at
the level of 0.840.

The results obtained are somewhat consistent with those reported by Spinelle et al. [59,60],
who showed minor effects of temperature and humidity on the performance of the SensoriC
sensors. However, these tests were conducted under laboratory conditions or as field
campaigns for no more than 6 months, when sensor ageing processes may not have been
noticeable. The effect of temperature on sensor performance should also be partially
compensated for by the built-in algorithm. However, at a later stage of operation, as the
sensor ages, this algorithm is probably no longer very effective.

As reported by Pang et al. [38], significant changes in signals and the performance of
electrochemical sensors can occur with rapid variations in RH, and if the environmental
RH slowly varies, the sensor performance should be relatively consistent. The issue of the
influence of temperature and RH on the functioning of electrochemical sensors was also
raised by Margaritis et al. [63]. The results of their investigation showed the benefits of
including these parameters in calibration models and similar conclusions can be drawn in
this study, especially for the long-term operation of the sensors.

Table S3 presents the results for Aeroqual SM50 sensors. In general, the addition of
environmental parameters to the calibration models did not significantly improve their
quality. Small increases in R2 values were observed only for models in the second and
third test intervals and reached on average 0.002 when RH was included and 0.010 for
temperature. For models that included both parameters, the increase in R2 was at the
level of 0.011. The lack of apparent improvement in the R2 values for linear models with
temperature and RH was also described by Jiao et al. [66]. On the contrary, some better
effects were reported in the study by Masiol et al. [54], but a substantial increase in the
quality of the fit of the models was observed for a polynomial of second order (the change
in R2 at the level of 0.3, from 0.87 for the model without environmental factors to 0.90 for
the model with corrections).

Although SM50 devices use metal oxide sensors, which are sensitive to temperature
and humidity [57,71], the influence of environmental factors on their operation is very
limited due to the compensation algorithms used. For this reason, the use of temperature
and RH in the calibration models for SM50 was not profitable.

A quite different situation occurred in the case of the low-cost sensor SP3-61-00 from
FIS (Table S4). The linear addition of RH to the power models resulted in an average
increase in R2 of 0.057, for the measurement periods considered separately and 0.084
for the full time period. Greater improvements were observed for models that included
temperature: the average increase in R2 was 0.104 for the individual survey intervals
and 0.163 for data collected over the entire survey. The addition of both environmental
parameters further improved the quality of the models: R2 increased on average by 0.115
for individual periods. Including the combined data from the entire study period in the
model increased R2 by approximately 0.215 from the 0.6 level to more than 0.82.

The effect of environmental factors on the sensitivity of the FIS sensor was described
by Spinelle et al. in [51], where they found a greater influence of temperature and a more
limited effect of humidity on this sensor performance. Thus, in general, the addition of
these parameters to the calibration models should improve the quality of the fitting.

Improvements in the fit quality of the models were also noted for the Winsen MQ131
sensor (Table S5), but the results for individual units and for individual time periods varied
widely. However, the addition of these parameters generally increased the quality of the
models more than the FIS sensors. The inclusion of RH in the models increased R2 by
0.005–0.311 (0.160 on average), while for temperature, the increase ranged from 0.108 to
0.499 (0.265 on average). Models that included both temperature and RH generally gave
the best results, with an improvement in R2 of 0.257 on average. It should also be noted
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that for the models developed for the entire dataset, higher R2 values (>0.86) were obtained
compared to the FIS sensors.

In metal oxide gas sensors, the gas-sensing process is strongly related to surface
reactions, and changes in temperature and humidity play an important role in it [72].
Considering both low-cost sensors (SP3-61-00 and MQ131), including environmental pa-
rameters in the calibration models might be valuable, especially since these devices do not
have any built-in compensating algorithms. It should also be noted that this study used
relatively simple models, and better results could be achieved using, for example, neural
networks [60] or random forests [63].

4.4. Influence of Interfering Compounds on Performance of Sensors

Air-quality sensors may exhibit a response to compounds other than the target gas [73].
According to the SensoriC O3 3E 1 sensor datasheet, high concentrations of solvent vapours
or continuous exposure to hydrogen sulphide can blind this sensor or increase its ageing
rate. However, such compounds were not used or stored in the vicinity of the measurement
site, and their effect on sensor performance can be considered negligible. On the other
hand, a compound that can affect this sensor performance is NO2 [59,60]. NO2 emissions
are associated with vehicle traffic [74] and this factor may have had some effect on the
performance of electrochemical sensors, due to the location of the roads nearby.

The problem of sensor poisoning can also occur with the SM50. According to the
manufacturer, silicones or silanes can damage the sensor, but such compounds were not
used for the construction and maintenance of the measuring box or near the point of
measurements. Cross-readings can also be caused by the presence of volatile organic
compounds (VOCs), but it was assumed that their effect was negligible due to the lack of
significant sources of such emissions in the measurement environment. Regarding NO2,
it has a limited effect on sensor performance, according to studies by Lin et al. [55] and
Masiol et al. [54].

For the low-cost FIS ozone sensor, laboratory tests of SP-61 by Spinelle et al. [51]
showed a minor effect of gaseous interferents (NO2, NO, CO, CO2, NH3) on its performance.
According to the MQ131 sensor datasheet, its performance can be adversely affected by
organic silicon compounds, corrosive gases, and alkali metal salts (not present in the test
site environment), and the sensor is also partially sensitive to NO2. The limitation of this
study, which is the lack of NO2 monitoring, makes it impossible to determine the impact of
this compound on MQ131 performance. However, as in the case of SensoriC O3 3E 1, some
influence of this factor cannot be excluded.

4.5. Attempts to Test the Equivalence of Sensor Measurements

The regression models described in Section 4.3 were applied to calibrate the ozone
sensors. For SensoriC O3 3E 1 and Aeroqual SM50 sensors, the simplest models were used
and no additional environmental parameters were considered. Calculations for SensoriC
sensors were performed only for data from the first 9 months of sensor operation when
the sensor performance was stable and outputs were characterised by low scatter and high
linearity. For the SM50, separate models were used for each period of operation due to the
offsets that took place. For low-cost sensors, SP3-61-00 and MQ131, models that include
temperature and humidity were selected. This considered the equations developed for the
dataset for the entire study period.

The resulting values were then used to calculate the 8 h averages and to determine
the measurement uncertainty using orthogonal regression, according to the methodology
in [65]. The results of the tests are presented in Table 3.

The expanded relative uncertainties at the target value of 120 µg/m3 were below 15%
for the SM50, O3 3E 1 and two units of MQ131, and below 20% for one MQ131 and SP3-
61-00 sensors. However, for all cases, the slopes of the models were significantly different
from one and the intercepts were significantly different from zero. For this reason, the data
were corrected using the values obtained for the slopes and intercepts. After corrections,
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the best results were achieved for the SM50, where the expanded uncertainty was around
8%. Measurements with SensoriC O3 3E 1 sensors had an uncertainty of about 11%, and
the uncertainties for MQ131 units were in the range of 11.8–14.3%. Thus, these results met
the requirements for fixed measurements according to the EU Directive 2008/50/EC. For
the SP3-61-00 sensors, the uncertainties were at the 17% level, showing that the results of
such measurements could be considered as indicative measurements.

Table 3. Results of the equivalence tests of sensor measurements.

Sensor SensoriC O3 3E 1 a SM50 OZU b SP3-61-00 c MQ131 d

Unit 1 2 3 1 2 3 1 2 3 1 2 3

Slope 0.956 0.970 0.964 0.982 0.985 0.988 0.908 0.911 0.906 0.943 0.965 0.939

Evaluation of uncorrected data

Uncertainty of slope 0.004 0.004 0.004 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004

Intercept 1.183 0.902 1.184 0.846 0.738 0.563 3.823 3.756 3.884 2.515 1.890 2.854

Uncertainty of intercept 0.224 0.199 0.214 0.113 0.111 0.106 0.222 0.224 0.212 0.203 0.177 0.196

Number of data pairs 4248 4248 4248 8606 8606 8606 8281 8273 8255 5843 d 8264 8273

Bias at limit value,
µg/m3 −4.1 −2.6 −3.1 −1.3 −1.1 −0.8 −7.2 −6.89 −7.45 −4.4 −2.3 −4.4

Combined uncertainty,
µg/m3 7.84 6.42 7.08 4.99 4.84 4.58 11.7 11.6 11.5 7.91 7.55 9.14

Expanded relative
uncertainty, % 13.1 10.7 11.8 8.3 8.1 7.6 19.4 19.3 19.1 13.2 12.6 15.2

Evaluation of uncorrected data

Slope 1.002 1.001 1.001 1.000 1.000 1.000 1.010 1.010 1.010 1.004 1.002 1.004

Uncertainty of slope 0.004 0.004 0.004 0.002 0.002 0.002 0.005 0.005 0.005 0.004 0.004 0.004

Intercept −0.094 −0.047 −0.068 −0.002 −0.019 −0.014 −0.484 −0.474 −0.452 −0.161 −0.100 −0.181

Uncertainty of intercept 0.234 0.205 0.222 0.115 0.112 0.107 0.244 0.246 0.234 0.215 0.184 0.208

Bias at limit value,
µg/m3 0.2 0.1 0.1 0.0 0.0 0.0 0.8 0.8 0.7 0.3 0.2 0.3

Combined uncertainty,
µg/m3 7.06 6.07 6.66 4.91 4.79 4.57 10.3 10.3 9.79 7.08 7.48 8.59

Expanded relative
uncertainty, % 11.8 10.1 11.1 8.2 8.0 7.6 17.1 17.2 16.3 11.8 12.5 14.3

a Calculations performed for a dataset only from the first 9 months of stable operation; b calculations performed
using models developed for separate time periods; c calculations performed using models that include temperature
and humidity throughout the study period; d calculations performed only for a limited dataset due to the initial
module malfunction.

It should be highlighted that the performed tests do not cover all the requirements
for measurement systems that are specified in the EU Directive and the Guide to the
Demonstration of Equivalence. However, the results obtained showed great potential in
the use of sensor technology in the monitoring of ozone.

5. Conclusions

Today, a variety of sensors are available to measure tropospheric ozone. These sen-
sors have different principles of operation, design, and price. This paper presented the
results of a long-term comparison of four sensors that belong to the groups of low- and
medium-cost devices.

In general, medium-cost sensors had a high linearity of response and the trend of the
readings was similar to the data from the reference device. These devices were assembled
into factory-made measurement modules, and the measurements incorporated algorithms
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to compensate for interferents such as water vapour. There was also good reproducibility
between the units, which is a valuable feature for sensor networks, as the calibration
coefficients from one device can be applied to others.

However, during this long-term study, problems in the stability of sensors operation
were observed. In the case of the electrochemical sensors SensoriC O3 3E 1 by CityTechnol-
ogy, a very good agreement with the reference data (R2 > 0.9) was observed only during
the first 9 months of operation. After this time, a gradual deterioration of performance was
observed, which was probably related to ageing processes.

Very strong correlations with the reference data (R2 > 0.94) were also observed for
Aeroqual SM50 OZU units with metal oxide semiconductor sensors. However, throughout
the study, occasional offsets were encountered, especially after a period of sensor shutdown.
Such behaviour forces regular checking and recalibration of the sensors, which may not be
easy with extended measurement networks.

The low-cost devices that were tested in this study also belonged to the semiconductor
gas sensors group but did not have any built-in compensating algorithms. The raw sensor
signals were non-linearly related to the readings of the reference device. The quality of fit
of the power models was moderate: R2 for FIS SP3-61-00 sensors was at the level of 0.6–0.7,
and 0.4–0.7 for MQ131 sensors from Winsen. Improvements in the fit were observed for
calibration models that included data from temperature and relative humidity sensors.
In the case of models for SP3-61-00 units, the R2 values were raised to above 0.82, while
for MQ131 sensors up to a level above 0.86. The use of additional parameters or more
powerful algorithms for processing low-cost sensor data may therefore be beneficial but
may also be a limitation, e.g., when using sensors in citizen science, due to some extra costs
and computational effort. The low-cost sensors also had poorer reproducibility than the
medium-cost devices, which is a limiting factor for their use in sensor networks due to the
need for individual calibration.

This study has shown that the measurement uncertainty of ozone sensors meets the
requirements of the EU Directive 2008/50/EC for indicative measurements and, in some
cases and with appropriate data quality control, even for fixed measurements. Therefore,
such devices can be used to create sensor networks, supplementing the existing regulatory
monitoring infrastructure and improving the spatial and temporal resolution of O3 data.
The results of this study can help researchers select sensors for ozone measurement systems
and determine procedures for their use and calibration. Future studies will be aimed at
testing such a system in the area of Wroclaw and evaluating the exposure of citizens to high
ozone concentrations.
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(b) unit No. 2, (c) unit No. 3; Figure S3: Power-law fitting results for 1-h averaged data from the
entire study period for MQ131: (a) unit No. 1, (b) unit No. 2, (c) unit No. 3; Table S2: Coefficients of
determination for SensoriC O3 3E 1 (City Technology) calibration models; Table S3: Coefficients of
determination for SM50 OZU (Aeroqual) calibration models; Table S4: Coefficients of determination
for SP3-61-00 (FIS) calibration models; Table S5: Coefficients of determination for MQ131 (Winsen)
calibration models.
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