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Abstract: This article analyses the results of year-round automatic ozone monitoring in seven cities of
the Baikal region (southeastern Siberia). We reveal that significant differences in the spatiotemporal
variability of the average daily ozone concentrations depend on different anthropogenic loads. In large
cities with heavy industry, which are located in the Angara River valley, the ozone concentrations were
minimal and changed little during the year: less than 5 µg/m3 in the Angarsk city and 20–30 µg/m3

in the Irkutsk city. In the settlements of a less polluted region, the Selenga River valley, the ozone
concentrations were significantly higher, and the annual ozone variability was typical of East Siberia:
the maximum in spring (60 to 70 µg/m3) and the minimum in autumn and winter (10 to 30 µg/m3).
The maximum ozone concentrations were observed in rural conditions (Listvyanka station), up
to 80–100 µg/m3 during the spring maximum. Nitrogen oxides had the main influence on ozone
depletion in the surface atmosphere of the cities, especially in winter, the season of maximum burning
of fossil fuels (negative correlation can reach −0.9). In cities with heavy industry, the effect of NOx

on ozone was weaker. Perhaps other anthropogenic impurities can also affect ozone suppression in
these cities, which have not yet been studied.

Keywords: ozone concentrations; air pollutants; automatic monitoring

1. Introduction

In recent decades, spatiotemporal dynamics of concentrations of tropospheric, espe-
cially ground-level ozone, have been attracting increasing interest. Ozone is the strongest
oxidizing agent, elevated concentrations of which (over 40–60 ppbv) can cause direct harm-
ful effects on human health and terrestrial vegetation, including crop yields [1,2]. Moreover,
tropospheric ozone is one of the strongest greenhouse gases and, hence, its growth can
contribute to global warming. Tropospheric and ground-level ozone participates in many
atmospheric chemical reactions, including anthropogenic and natural air pollutants [3–5].

The ozone concentrations in the ground layer of the atmosphere vary greatly in
space and time, both daily and seasonally. This may result from photochemical reactions
involving sunlight and precursor gases such as nitrogen oxides (NOx), volatile organic com-
pounds, methane, and carbon monoxide [6]. These precursors can be both of natural origin
(wildfires, biogenic hydrocarbon emissions and biogenic NOx released from soils) and of
anthropogenic origin (combustion of fossil fuels and biofuels as well as emissions from
various production processes). The variability of ozone concentrations near the ground
surface is especially great where it easily interacts with various surfaces and vegetation.

According to some estimates [7,8], from the pre-industrial revolution to the present
time, average concentrations of tropospheric ozone have increased from 10–15 ppbv to
40–60 ppbv. An increase in the emissions of anthropogenic pollutants (carbon monoxides,
nitrogen oxides and hydrocarbons) and their involvement in photochemical reactions with
the formation of ozone are considered the sources of this growth. However, numerous
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data indicating the opposite ozone-destroying effect of air pollution (particularly NO) have
been also obtained in recent decades [9–11]. In this regard, for a better understanding of
the spatiotemporal dynamics of ground-level ozone, as well as its chemical transforma-
tions, it is important to introduce modern high-resolution (possibly automatic) methods
for monitoring ozone and air pollutants that affect it in areas with different degrees of
anthropogenic impact.

In particular, automatic monitoring of ozone in the Baikal region was previously car-
ried out at three permanent monitoring stations characterizing areas with different degrees
of air pollution: Irkutsk—urban conditions (constant anthropogenic impact), Listvyanka—
rural conditions (periodic impact of regional sources) and Mondy—remote mountain
station (2000 m above sea level) representing background conditions (almost complete
absence of anthropogenic impact) [12–15]. The most prolonged series of automatic observa-
tions of ozone (over 15 years) was obtained from the alpine background station, Mondy,
using an automatic optical (absorption UV spectrometry) method. The obtained results
indicated that during all 15 years, its concentrations in background alpine areas (Mondy)
were the most stable compared to other areas and were always higher than in urban and
rural areas. The stability of ozone concentrations in background areas was violated only
during wildfires, leading to the release of large amounts of CO, which caused sharp in-
creases in the ozone concentrations. Its lowest concentrations were observed in urban
conditions, in Irkutsk [16].

In recent years (since 2014–2015), the state system of automatic monitoring of air
pollution, including ozone has been developing in the largest cities of the south of Siberia.
More than 20 automatic monitoring stations have been installed in the most polluted
cities of the region, which conduct continuous year-round measurements of the main
pollutants with a 20-min time resolution. The data on the average daily concentrations of
pollutants at these stations are open access on the website of The Russian Federal Service
for Hydrometeorology and Environmental Monitoring (Roshydromet), Moscow [17]. This
allows us to make broader comparisons of the spatiotemporal dynamics of ozone in the
studied region and its relationship with other air pollutants and meteorological factors.

This article presents for the first time such analysis for the Baikal region (Figure 1), the
southern part of which experiences anthropogenic impact due to surrounding industrial
centres. We use the 2021 data from the maximum available automatic stations that are in
the public domain.
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2. Monitoring Sites and Methods

In terms of the impact of pollution on the dynamics of ozone in the study area, two
industrial sites are of the greatest interest: the Irkutsk–Angarsk site in the valley of the
Angara River flowing from Lake Baikal and the Selenga River site flowing into Lake Baikal
from the Buryatia side. Figure 1 shows the location of the main source cities of air pollution
and the monitoring stations.

The state network of automatic monitoring stations is concentrated in the following
large cities of the region: Angarsk—two stations, Irkutsk—five stations, Ulan-Ude—three
stations, and one station each in the smaller towns of Baikalsk, Selenginsk and Gusinoosersk.
Due to the location of the urban monitoring stations in the ground atmospheric layer (about
3–5 m depending on shelter structure), they are not only affected by the large industrial
sources of air pollution (coal-fired thermal power stations and plants) but also experience
short-term effects of various low-altitude and small sources, especially vehicles. Therefore,
concentrations of pollutants can be very variable even within one city and vertically. The
data on the average daily concentrations of the studied pollutants at urban automatic
monitoring stations were taken from the Roshydromet website that is open access [17].
For measuring ozone concentrations at these sites, the automatic ozone analysers “O342e”
(Environnement SA, Poissy, France, http://www.environnement-sa.com, accessed on 24
March 2022), were used. The concentration range was from 0 to 2.0 mg/m3, relative
accuracy—±25.

Unlike the stations of the state network (urban), the Listvyanka station, supervised
by the Limnological Institute SB RAS, Irkutsk, Russia (www.lin.irk.ru, accessed on 19
March 2022), has a special location. It is situated outside the settlement on the top of the
coastal hill 200 m high above the lake level. Therefore, local low-altitude anthropogenic
sources, in particular, vehicles, do not affect it, but it is subject to the periodic influence of
regional transport of high-altitude plumes of emissions from large coal-fired thermal power
plants, primarily from Irkutsk [18]. To measure ozone at this station, an F-105 optical ozone
analyser (OPTEK, Saint Petersburg, Russia) was used. The division value of the analyser
was 1 µg/m3, and the relative error of readings was 10%. The time resolution of the records
was 5 min. In addition to the ozone measurements, other pollutants transported with
plumes from thermal power plants are analysed at this station automatically, in particular,
NOx (P-310, OPTEK, Saint Petersburg, Russia), which allows us to observe their effect on
the ozone concentrations in real-time. The standard meteorological parameters were also
measured automatically by ultrasonic meteorological station “Meteo-2M” designed by the
Institute of Atmospheric and Ocean Optics (Tomsk, Russia). Meteorological parameters
for the study period (2021) at the Listvyanka station are shown in Table 1. The dry season
from February to April with very low precipitation amount and low humidity was of
special interest as good conditions for the photogeneration of ozone having the maximum
concentrations in March and April.

http://www.environnement-sa.com
www.lin.irk.ru
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Table 1. Meteorological conditions at the Listvynaka station in 2021.

Meteorological Parameters
Months

I II III IV V VI VII VIII IX X XI XII

Air
tempe-rature,

(◦C)

Average −16.6 −15.1 −6.2 0.4 5.5 10.1 13.0 13.7 8.2 2.8 −3.7 −10.5

Absol. Maxim. −4.7 −1.6 9.4 10.7 16.1 22.1 28.8 25.5 20.6 12.8 9.7 −0.7

Absol.
Minim. −28.3 −31.0 −23.9 −2.4 −2.7 2.4 5.6 6.3 −0.3 −7.3 −16.5 −27.4

Air humidity, (%) 79 73 66 64 71 77 87 88 78 73 75 76

Wind speed, (m/s) 4.6 3.7 3.5 3.3 3.3 2.7 2.0 2.9 3.4 3.2 3.7 4.9

Prevailing
wind direction N SSE N N N N SSE N N N N N

Precipitation,
(mm) 27 9 8 14 107 64 148 11 64 11 10 16

3. Results
3.1. Spatial Variabilities of Ozone Concentrations in the Region

The variability of the average daily ozone concentrations at seven stations in the
region for 2021 is shown in Figure 2. Among them, six stations characterize the ozone
concentrations in urban conditions (in the ground atmospheric layer), and one station
(Listvyanka)—the ozone concentration at the rural station situated at an altitude of 650 m
above sea level (200 m above the lake level) and outside settlements.

The lowest ozone concentrations were observed in the large cities situated in the
valley of the Angara River: Irkutsk and Angarsk (Figure 2a). These cities accommodate
the largest coal-fired thermal power plants in the region, and there is a large number of
vehicles. Furthermore, an oil refinery complex is also a serious source of pollutants as
well as a large aluminium smelter in Shelekhov (near Irkutsk). This likely caused almost
zero ozone concentrations in Angarsk during 2021, and there was practically no annual
variation. In Irkutsk, the ozone concentrations were slightly higher, and there was a visible
annual variation with the maximum value in spring. The highest ozone concentrations
were recorded at the Listvyanka station situated outside settlements on the hill, 200 m high
above the lake. The station experiences only the periodic impact of high-altitude transport
of plumes from the high-altitude emissions of remote thermal power plants (mainly from
Irkutsk) but is not affected by the influence of the local sources and vehicles.

In the cities of the Selenga valley (Figure 2b), the ozone concentrations were much
higher than in the Angara valley but slightly lower than at the rural Listvyanka station.
At the same time, based on the satellite monitoring data, the total ozone concentrations
above both valleys (Angara and Selenga) had the same values and similar annual variabil-
ities (Figure 3). This may suggest that the anthropogenic impact on ground-level ozone
concentrations take place in these areas only in the ground layer and does not spread to
higher layers.

Very low concentrations of ozone in Baikalsk appeared to be surprising. This town
does not have large sources of air pollution, except for a small thermal power plant, though
the Trans-Siberian Railway and highway passing near the city can also affect the likely
behaviour of ozone. At the same time, the location of the town on the shore of a large water
body (Lake Baikal) can be a natural factor of the ozone in the near-water layer of the air.
Low concentrations of ozone above the water area of the lake based on satellite data are
shown in [19]. However, other authors recorded high concentrations of ozone both in the
ground layer and from the 30 m meteorological mast at the station about 2 km from the lake
shore [20–22]. In the summer of 2015, 2016 and 2018, they observed that the average daily
concentrations of ozone ranged from 35 to 65 µg/m3. Moreover, with the intense smoke
from wildfires, the significant increase in the ozone concentration and its daily dynamics
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had an average value of 72 µg/m3 in the ground layer and a maximum concentration of up
to 147 µg/m3 on the mast top (30 m).
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Figure 2. The annual variability of the ozone concentrations: (a) in the cities of the Angara River
valley and at Lake Baikal; (b) in the cities of the Selenga River valley for 2021. (MPC is the maximum
permissible concentration, average daily values.)
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Most likely, the unusually low concentrations of ozone in the cities of Angarsk and
Irkutsk, as well as on the shore of Lake Baikal, are associated with processes occurring in
the ground layer of the atmosphere. In the higher altitude layers of these cities, the ozone
concentrations can be higher and reach approximately the same concentrations as in the
cities of the Selenga River valley or at the rural station. There are no differences in the total
ozone concentrations (based on satellite data) between these areas (Figure 3).

3.2. Ozone Concentrations and Air Pollution

It has long been known that plumes of emissions from thermal power plants con-
sume the surrounding ozone during propagation in the atmosphere, leading to oxidation
of NOx [8–10]. This was especially obvious during the joint high-resolution automatic
recording of the concentrations of these gases. As an example, Figure 4 demonstrates a syn-
chronous five-minute recording of these gases during the propagation of the plume from the
remote thermal power plant at night on 27–28 November 2021 above the Listvyanka station.
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Figure 4. An example of a five-minute recording of the concentrations of ozone and nitrogen oxides
at the Listvyanka station (a) during the transport of the plume from the remote thermal power plant
above the Listvyanka monitoring station on 27–28 November 2021 and the scattering diagram (b).

Average daily concentrations of ozone in the cities of the Baikal region also demon-
strate an obvious inverse relationship with the daily concentrations of nitrogen dioxide in
the cold season of 2021. Furthermore, different directions take place both in short-term
(daily average) fluctuations and seasonal trends (Figure 5).

The greatest effect of nitrogen oxides on the ozone concentrations occurs in the cold
season, firstly, due to their greater emission by heating systems in winter and, secondly,
due to deterioration of conditions for the dispersion of vehicle emissions in the ground
atmospheric layer during anticyclone weather in the cold period of the year. Table 2 shows
correlations of the concentrations of O3 and NO2, which confirm the significant negative
effect of nitrogen oxides on ozone in the cold season and the weakening of this effect in
summer. The correlation of O3 and NO2 is substantially weaker in Angarsk than in other
cities, possibly because in this city, in addition to the thermal power plant and vehicles,
there is also another significant source of pollution, which is an oil refinery.
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Figure 5. Variability of daily average concentrations of O3 and NO2 in Irkutsk (a) and Ulan-Ude (b)
from January to April 2021.

Table 2. Correlation coefficient of average daily concentrations of ozone and nitrogen dioxide at
atmospheric monitoring sites in 2021.

Angarsk Irkutsk Listvyanka Selenginsk Ulan-Ude Gusinoozersk

January −0.14 −0.62 −0.58 −0.92 −0.42

February −0.29 −0.60 −0.45 −0.64 −0.82 −0.45

March −0.42 −0.62 −0.75 −0.90 −0.64

April −0.25 −0.44 −0.58 −0.92 −0.61

May −0.12 +0.10 −0.38 −0.06 −0.53 −0.27

June +0.24 −0.26 −0.40 −0.01 −0.02 +0.01

July −0.18 −0.24 −0.16 −0.14 −0.05 −0.32

August −0.14 +0.14 −0.52 −0.39 −0.64 −0.35

September −0.08 −0.01 −0.70 −0.29 −0.52 −0.53

October −0.68 −0.34 −0.38 −0.57 −0.76 −0.82

November −0.18 −0.49 −0.41 −0.75 −0.62 −0.73
Note: Values significant at the level of 95% are highlighted in bold.

The results presented above demonstrate that ozone concentrations in the near-ground
atmospheric layer are lowest in the most polluted industrial centres of the Angara valley
(Irkutsk and Angarsk). Even in summer when the conditions for the dispersion of air
pollutants improve, the ozone concentrations remain low in these cities. In the cities
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of the Selenga valley, the situation is obviously different: the ozone concentrations are
much higher, and a typical annual variability is clearly visible. In this area, the emissions
of pollutants into the atmosphere are approximately ten times lower (~25,000 tons per
year) than in the Angara valley (>200,000 tons per year) [23]. This seems to be the main
reason for the difference in the behaviour of ozone in these industrial areas. In the annual
variability, the ozone minimum is observed in winter when the combustion of fossil fuels
increases and the vertical mixing in the ground atmospheric layer deteriorates due to
temperature inversions, leading to the accumulation of anthropogenic pollutants in the
ground atmospheric layer [24]. Perhaps this causes a more intensive consumption of
ground-level ozone for the oxidation of numerous pollutants and the formation of its
vertical inversion.

Low ozone concentrations in the area of Baikalsk situated near the water area of the
southeast shore of Lake Baikal appeared to be unexpected. The impact of the anthropogenic
factor on the lake shores is minimal compared to the industrial areas, and such low ozone
concentrations in Baikalsk require additional research.

In addition to the anthropogenic factors, meteorological factors also influence the
spatiotemporal dynamics of ozone [25]. For instance, the Selenga valley has a drier and
sunnier climate than the Angara valley or the shore of Lake Baikal. This contributes to an
increase in the influx of solar irradiance, especially ultraviolet (due to lower air humidity
and low precipitation amounts), and the growth of ozone photogeneration [14]. Although
it is generally accepted that the spring maximum of the ground-level ozone in the region is
associated with the descending of ozone-enriched air masses from the stratosphere [26,27],
there is evidence that photogeneration may make a greater contribution to its growth
in this season, which is associated with an increase in day length and a small amount
of precipitation. In particular, presented in [15] are synchronous measurements of the
concentrations of the ground-level ozone and solar irradiance, which revealed that solar
irradiance is the most important factor of the ozone generation in the ground atmospheric
layer of rural and background areas in spring and summer. The ozone generation starts
in the morning when the irradiance intensity reaches about 200 W/m2 and continues up
to the same values in the evening. In other words, the ozone maximum on sunny days
is shifted by three to six hours (depending on the day length) relative to the maximum
solar irradiance.

Based on the 2021 data (Figure 6), the ozone maximum at the Listvyanka station was
also at 18 o’clock (local time) in spring months which have the longest sunny days and
very low precipitation amount (Table 1). The minimum was in January (the minimum day
length) as well as in the early morning hours in summer and autumn due to weaker ozone
photogeneration during longer nights and more cloudy and rainy weather.
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4. Summary

The presented data on the spatiotemporal variability of average daily ozone con-
centrations in settlements with varying degrees of anthropogenic pressure indicate the
suppression of ozone in the ground atmospheric layer of large cities, primarily due to the
ozone oxidation of nitrogen oxides released during coal combustion by heating systems in
the cold season. The minimum ozone concentrations throughout the year were observed
in the most polluted cities with heavy industry (less than 5 µg/m3 in Angarsk and 10 to
25 µg/m3 in Irkutsk). In the settlements of a less polluted area, the valley of the Selenga
River, the ozone concentrations were higher, and its annual variability was more typical of
East Siberia: the maximum values in spring (60 to 70 µg/m3) and the minimum values in
autumn and winter (10 to 30 µg/m3). The maximum ozone concentrations were observed
in rural conditions (Listvyanka station), up to 80–100 µg/m3 during the spring maximum.
In the settlements of the Selenga valley and rural areas, there was a high negative correla-
tion between O3 and anthropogenic NO2 (up to −0.90), especially in winter, the season of
maximum fossil fuel combustion. In cities with heavy industry, the effect of NOx on ozone
was much weaker. Possibly, in these cities, ozone suppression was not only due to nitrogen
oxides but also due to other anthropogenic pollutants that have not yet been studied. The
excess of the Russian national hygiene standard for ozone, the average daily permissible
concentration (MPC = 30 µg/m3), was practically not observed in the industrial cities of
the Angara valley for less than five days. In the settlements of the Selenga valley, the excess
was recorded from 200 to 270 days. In 2021, MPCs were mostly exceeded at the rural sites:
more than 300 days of the year. It should be noted that the presented monitoring data on
the ozone concentrations in urban areas refer only to the ground layer of the atmosphere.
Additional studies of the vertical distribution of ozone in cities are required to understand
the real extent of anthropogenic influence on ozone. To date, such data are absent.
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