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Abstract: Decision makers (DMs) who are involved in urban planning are often required to allocate
finite resources (say, money) to improve outdoor thermal comfort (OTC) levels in a region (e.g., city,
canton, country). In this paper, for the first time, we address the following two questions, which are
directly related to this requirement: (1) How can the statistical properties of the spatial risk profile of an
urban area from an OTC perspective be quantified, no matter which OTC index the DM chooses to
use? (2) Given the risk profile, how much and where should the DM allocate the finite resources to
improve the OTC levels? We answer these fundamental questions by developing a new and rigorous
mathematical framework as well as a new class of models for spatial risk models. Our approach is
based on methods from machine learning: first, a surrogate model of the OTC index that provides both
accuracy and mathematical tractability is developed via regression analysis. Next, we incorporate
the imperfect climate model and derive the statistical properties of the OTC index. We present the
concept of spatio-temporal aggregate risk (STAR) measures and derive their statistical properties. Finally,
building on our derivations, we develop a new algorithm for spatial resource allocation, which is useful
for DMs and is based on modern portfolio theory. We implemented the tool and used it to illustrate its
operation on a practical case of the large-scale area of Singapore using a WRF climate model.

Keywords: outdoor thermal comfort (OTC); urban climate; surrogate model; spatial risk models;
machine learning

1. Introduction

An accurate assessment of the environmental risk of urban climate events is of great
importance for populations, authorities, and decision makers (DMs) [1,2]. Spatial risk
assessment provides DMs with the necessary information to make informed decisions and
allocate resources in a meaningful way that aims at improving the overall welfare of the
population. The allocation of resources is central to the DMs’ operation and may have
long-term implications, and should, therefore, be accurately modeled [3–5].

While there are a myriad of aspects that DMs should take into account, one aspect
which is widely accepted as important is the perception of thermal comfort experienced by
the population [6,7]. The thermal comfort of the population affects multiple aspects of life
and directly and indirectly contributes to the well-being of the population [8]. In particular,
outdoor thermal comfort (OTC) is a key indicator of people’s well-being, productivity,
and happiness in general [9–11]. Therefore, in this work, we concentrate on OTC as a key
indicator of people’s well-being and acknowledge its contribution to key performance
indicators of a city. To reflect this, a myriad of different indices have been developed;
see [12] for an overview. The OTC indices can be divided into two main categories: rational
or empirical indices. The rational indices are based on heat transfer and energy balance
principles of a typical human body in relation to its physical environment [13]. The second
type of indices is based on empirical studies of the subjective experience of OTC in relation
to meteorological phenomena [9,10]. While rational indices are based on fundamentals of
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physics and bio-meteorology, thereby making them more favorable than their empirical
counterparts, they may be more complicated and less intuitive to understand. They also
lack mathematical tractability and can only be evaluated through numerical calculations;
see, for example, the evaluation of physiological equivalent temperature (PET) in [14].

1.1. Literature Review on OTC-Informed Urban Planning

We begin by stating that, currently, there are no works that address the problem of
resource allocation and aims at improving OTC levels at different spatial locations jointly.
In our previous works, we have developed a framework to score and rank different urban
designs, but the important aspect of (spatial) resource allocation was not addressed and the
analysis concentrated on small-scale developments [15–17]. While our work is the first to
address this problem, there have been some works on related topics that investigated the
concept of improving OTC levels via different intervention strategies, and here we review
some of them. The evaluation of the quality of urban spaces from an OTC perspective
has been the focus of many previous works; see, for example [18–22]. In [23], the authors
investigated the OTC perception of subjects and their physical wellbeing. In [24], the
authors reviewed the effects of green spaces and plants on the micro-climate, urban heat
islands, and human outdoor thermal comfort. In [20], the authors conducted detailed CFD
simulations under a large range of wind conditions and evaluated the OTC under each
scenario. In [21], the authors examined the effect of plant types, arrangements, and their
orientation on OTC. More recently, in [25], the authors developed a method to optimize
the OTC levels by setting the optimal parameters of building heights, street widths, and
orientations. While those studies provide many important insights regarding the impact of
different techniques and technologies on OTC improvements, an important gap still remains
when considering the problem of improving OTC on a large geographical scale (i.e., a city
or country). Those are still open questions which have been not been fully addressed. For
example, in [26], the authors provide an overview on how machine learning-based methods
could be used in order to help DMs make “geographically differentiated” allocations of
resources in a systematic way. In [27], the authors developed a method to create climate
zoning based on the relationship between spatial temperature distribution and the various
associated factors using observed data and numerical simulations.

Those papers make progress in mapping geographical areas and their OTC quality.
Still, an open question remains: How should DMs allocate their financial resources in order
to improve OTC on a large geographical scale? It could be that some regions experience
worse OTC levels than others. Should such regions receive more resources in order to
improve their OTC levels? Or, perhaps, would the finite resources be better used if allocated
to regions where the OTC levels are mediocre, aiming, thus, at improving those areas while
neglecting the regions with low- and high-quality OTC levels?

Similar to [26,27], we are also interested in the concept of “geographically differen-
tiated” allocations of resources. We, however, develop a novel systematic approach for
addressing this problem using the notions of risk modeling and resource allocation methods.

1.2. The Proposed Framework—Spatial Resource Allocation for OTC Enhancement

Ultimately, the DM (say, a government agency) is required to allocate finite financial
resources in order to improve OTC levels in a geographical area. A common approach for
allocating the resources would be to partition the physical domain into a finite number
of regions, and allocate the money to each region according to some decision mecha-
nism. The problem of spatial resource allocation is common in many areas of engineer-
ing, including wireless communication [28,29], logistics and planning [30], transportation
networks [31,32], and many others. Much less attention has been given to spatial resource
allocation in the context of urban-climate management. To address this open question, we
develop a spatial risk model and link it to a spatial resource allocation method, which is
based on similar concepts to the ones used in modern portfolio allocation (MPA), known as
the Markowitz mean-variance model [33,34]. In order to be able to develop such a tractable
mathematical framework for resource allocation, we need to be able to express the OTC
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equations in closed form. This can be obtained by using a machine learning technique
known as surrogate models. Surrogate models refers to a model of a model; that is, instead of
using the original model, we replace it with a simpler and mathematically tractable one.
This way, we can gain the desired mathematical tractability at the expense of possible loss
of accuracy. The loss of accuracy can be easily calculated (via model validation techniques)
and then can be incorporated into the model, thus retaining all statistical information
available. One more important aspect which is usually overlooked or ignored is the simple
fact that no model is perfect [35]. Even the most advanced state-of-the-art climate models
are still simplifications of reality and incur estimation errors [36]. Validating the model is
paramount in order to quantify the magnitude and statistical properties of the estimation
error of the various climate variables [37]. Then, incorporating the errors from both sources
(that is, the surrogate and climate models) is required, if one wishes to accurately quantify
the OTC spatial risk. Other works which have taken climate and climate model uncer-
tainty into consideration in urban design decision making include [15,16,37]. However,
these works did not consider the use of a surrogate model and only considered climate
model uncertainty.

A graphical illustration of the framework that contains the aforementioned compo-
nents is depicted in Figure 1.

Figure 1. A graphical illustration of the spatial risk and resource allocation system model.

1.3. Goals of This Paper

The goals of this paper are threefold:

1. Develop a generic and accurate regression-based surrogate model that is suitable for a
wide range of OTC index models;

2. Introduce and develop the notions of spatial risk measures in the context of urban
climate and provide a unified framework for spatial risk profile estimation;

3. Develop a spatial (geographically differentiated) resource allocation scheme to im-
prove the overall OTC levels in a region of interest.

We summarize the main contributions that we make in this paper:
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C1. We develop a surrogate model for any OTC index that is based on multiple non-linear
regressions with interactions (Section 2);

C2. We derive the statistical properties of the OTC index under both climate and surrogate
model uncertainty (Section 3);

C3. We present two risk measures and derive their properties for the OTC index (Section 4);
C4. We show how to spatially aggregate the risk in order to obtain the risk of a spatial

domain (Section 4);
C5. We develop a new algorithm for spatial resource allocation that is based on the

aggregate risk model (Section 5).

1.4. Mathematical Notations

We now introduce much of the notations we will use in the rest of the paper and recall
certain important notions. The symbols R and C denote the real and integer numbers, respec-
tively. Random variables are denoted by upper case letters and their realizations by lower
case letters. In addition, bold will be used to denote a vector or matrix quantity, and lower
subscripts refer to the element of a vector or matrix. We denote the distribution of random
variable X by X ∼ pX(x). The operator E[x] :=

∫
xp(x)dx is the statistical mean of the

random variable X, and the operator Var[X] := E
[
(X−E[X])2

]
is the statistical variance

of the random variable X. The notation x ∼ N
(
µ, σ2) denotes a normally distributed R.V.

with the mean and variance given by µ and σ2, respectively. The notation x ∼MVN (µ, Σ)
denotes a multivariate normally distributed R.V., with the mean vector and covariance
matrix given by µ and Σ, respectively. The notation z ∼ χ2(k, λ) denotes the non-central
chi-squared distribution with degrees of freedom k and non-centrality parameter λ. The
symbols used throughout the paper are presented in Table 1.

Table 1. Table of Notations.

Variable Meaning

Z Physical region of interest.

T Time duration, with t ∈ T as the time stamp.

xi(z, t) The i-th climatic variable at location z and time t.

xs(z, t) Vector of the climatic variables at location z and time t.

y(z, t) Spatio-temporal OTC index process.

x̂i(z, t) Estimated value of the i-th climatic variable.

x̂s(z, t) Estimated vector of climatic variables.

ζ(x, t) Climate model estimation error.

ρ(y) Risk measure.

T(y) Aggregation function.

Λ(ȳ, α) Utility function

∆(ȳ, α) Marginal OTC intervention impact.

ρ̄(y(z ∈ Za, t ∈ Ta)) Spatio-temporal aggregate risk (STAR) measure.

2. Generic Representation of OTC Indices via a Surrogate Model

As mentioned before, there are hundreds of OTC indices and it would be impossible
to analyze each one separately. Instead, we are interested in a single modeling approach
which can encompass as many indices as possible, making our approach general. In order
to achieve that we develop a generic representation of any OTC model via a statistical



Atmosphere 2022, 13, 439 5 of 28

regression model, known as surrogate model. Having a single family of regression models
will simplify the analysis, allow for interpretability, and provide mathematical tractability.
Any OTC index can be expressed as a mapping from an input space (usually high-
dimensional) to an output space (one-dimensional). More specifically, as it is commonly
used in machine learning, we treat the OTC model as a black box which contains a set of n
input climatic variables, x ∈ Rn, and other non-climatic variables (e.g., personal parame-
ters), ξ ∈ Ξ, and a single output variable, y ∈ R. The OTC index model can be understood
as a mapping from the input space to the output space g(x, ξ) : Rn × Ξ 7−→ R. We now
provide a formal definition of the OTC index model.

Definition 1 (Generic OTC index model). Let x := [x1, . . . , xn] ∈ Rn denote the climatic
variables, and let ξ := [ξ1, . . . , ξm] ∈ Ξ denote non-climatic variables. Let y ∈ R be the OTC index
value; then, a generic OTC index model can be expressed as:

y = g

x1, . . . , xn︸ ︷︷ ︸
x

, ξ1, . . . , ξm︸ ︷︷ ︸
ξ

,

where g(x, ξ) : Rn × Ξ 7−→ R is the mathematical representation of the OTC index model.

We now provide two examples which illustrate how this definition applies for two
widely used OTC indices, the PET and heat index.

Example 1 (PET index model [14]). The ubiquitous PET model requires a 10-dimensional
input vector, where x ∈ R4 is the 4 climatic variables (mean radiant temperature (MRT), air
temperature (AT), relative humidity (RH), and wind speed (WS)), and ξ ∈ Ξ is the 6 personal
variables (age, sex, weight, height, metabolic activity level, and clothing level) [14]. The PET model
g(x, ξ) : R4 × Ξ 7−→ R is complex and cannot be expressed in a simple analytic way, and can only
be evaluated numerically; see [14] for details.

Example 2 (Heat index model [38]). The heat index (HI) model requires a 2-dimensional input
vector, where x ∈ R2 is the 2 climatic variables (air temperature and relative humidity) [38,39]. The
heat index model g(x, ξ) : R2 7−→ R is tabulated (look-up table), which means that for different
combinations of air temperature and relative humidity values, the value of the HI can be expressed.

2.1. Surrogate Model for OTC Indices

Since there are a myriad of OTC indices, it would be a good idea to develop a
single model which is able to represent all the models in the same way. While this
model might be an approximation of the original OTC model, it will posses the following
desirable properties:

1. A single model which is able to accurately represent many OTC models;
2. A single model with the ability to develop a mathematically tractable model for the

spatial risk model.

To achieve this goal, we now present the concept of a surrogate model.

Definition 2 (Generic surrogate OTC index model). The generic surrogate OTC index model,
f (xs; Ψ), of the generic OTC index model (See Definition 1), g(x, ξ), is given by:

y = g(x, ξ)

= f (xs; Ψ) + ε,
(1)

where xs ∈ Rm ⊂ x, m ≤ n, Ψ is a vector of model parameters, and ε ∼ N
(
µ, σ2

ε

)
is a

normal random variable accounting for the mismatch between the OTC index model g(x, ξ) and the
surrogate model f (xs; Ψ). The model is depicted in Figure 2.
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Figure 2. Generic surrogate OTC index model; see Definition 2. The model is developed such that
the discrepancy between the OTC index model values and the surrogate OTC index model values
is minimized.

Next, we define the specific family of regression models, f (xs; Ψ), which will be
used for the generic surrogate OTC index model and is based on a second-order polynomial
regression with coefficient interactions.

Definition 3 (Surrogate OTC index model via 2-order (quadratic) polynomial). The generic
surrogate OTC index model is modeled as a 2-order (quadratic) polynomial regression, given by:

f (xs; Ψ) :=
m

∑
i=1

m

∑
j=1

αi,jxixj +
m

∑
i=1

βixi + c

= xT
s Qxs + xT

s q + c,

(2)

where the second line is a compact vector notation defined as:

Q :=

α1,1 · · · α1,m
2

... · · ·
...

α1,m
2 · · · αm,m

 ∈ Rm×m,

q :=

 β1
...

βm

 ∈ Rm.

(3)

The model coefficients are grouped into Ψ :=
[
α1,1, . . . , αm,m, β1, . . . , βm, c, σ2

ε

]
∈ R(m2+m+2).

2.2. Estimation of Surrogate Model Coefficients

We now present the estimation procedure for the model coefficients Ψ. We use the
maximum likelihood estimator (MLE), which calculates the values Ψ̂ that maximize the

likelihood function L(y; Ψ) for a given dataset D :=
{

x(n)s , y(n)
}N

n=1
.

Lemma 1 (Estimation of surrogate model coefficients, q̃, σ2
ε ). The model parameters estimators

are given by:

̂̃q =
(

XT
s Xs

)−1
XT

s y,

σ̂2
ε =

1
n

n

∑
n=i

(
y(n) − X(n)

s ̂̃q)2
.



Atmosphere 2022, 13, 439 7 of 28

Proof. See Appendix A.

Proposition 1 (OTC index estimation). Given the climatic variables xs, the estimated OTC index
values are given by:

ŷ = xs ̂̃q,

where the estimated model parameters ̂̃q are presented in Lemma 1.

Example 3 (Surrogate model of the PET index). We present the performance of the OTC index
surrogate model based on Proposition 1. We use a dataset which was collected in Singapore and
contains the four climatic variables (the order of the vector is: MRT, AT, RH, and WS). The climatic
variables are presented as time series in Figure 3. We then generated the six personal variables (age,
sex, weight, height, metabolic activity level, and clothing level) using Monte Carlo draws. The PET
index was calculated and used as a training set to estimate the parameters of the surrogate model as
per Proposition 1. The time series of the true PET index values and the surrogate model-based one
are presented in Figure 4. Clearly, the surrogate model provides very accurate estimates of the true
PET values.

Figure 3. Four climatic variables time series over 5000 min.
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Figure 4. Comparison of time series of the true PET index values and the surrogate model of the PET
index for 5000 min. The smaller figure presents a higher resolution of the comparison over 300 min.

3. Statistical Properties of OTC Indices under Climate Model Uncertainty

In the previous section, we estimated the parameters of the surrogate model for the
OTC index, where the data was provided by high-accuracy weather stations. In practice,
we use a climate model to estimate the climatic variables in both space and time. Urban
climate models, such as EnviMet, ANSYS Fluent for micro-scales or weather research
forecast (WRF) for meso-scales, and other models, are physics-based models. Such models
exhibit different levels of inaccuracy, which we generically define as uncertainty. We do not
aim at distinguishing the different types of uncertainties; instead, we are only interested in
the output accuracy of the climate model. We do not restrict the use to any specific climate
model, but allow the usage of any model as long as the uncertainty has been quantified
by the user, as in, for example, [40,41]. To this end, we model the overall behavior of the
climate model as a “truth plus error” model, which is widely used [37]. As such, we assume
that the true value of the physical phenomenon is xs, while the output of the climate model
is given by x̂s. The discrepancy between the two is given by a RV ζ, as is presented in the
following definition.

Definition 4 (Imperfect climate model). The output variables of the climate model are modeled
as an additive error model:

xi︸︷︷︸
“true” climate
variable value

= x̂i︸︷︷︸
estimated climate

variable value

+ ζi︸︷︷︸
estimation

error

, i ∈ {1, . . . , m},
(4)

where xi is the true climate variable value and x̂ is the climate variable estimate from the climate
model. The term ζi represents the inaccuracy (estimation error) of the climate model. We further
assume that the error term is temporally, spatially, as well as modally independent:

ζi
i.i.d∼ N

(
0, σ2

ζi

)
. (5)

The value σ2
ζ depends on the accuracy of the climate model and can be calculated

using multiple calibration procedures [42].
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We express the collection of climate variables in a compact vector form, xs := [x1, . . . , xm]
T ,

and express the climate model uncertainty as:

xs = x̂s + ζ, (6)

where ζ ∼MVN (0, Σ), and Σ is a diagonal matrix with elements
{

σ2
ζi

}m

i=1
on its main diagonal.

3.1. Joint Surrogate OTC Index and Climate Model

We now utilize the results from the previous section, integrate them with the climate
model uncertainty, and derive the statistical properties of the OTC index while taking the
climate model uncertainty into consideration.

Definition 5 (Surrogate model for OTC indices under climate model uncertainty). The
surrogate model for OTC indices under climate model uncertainty is given by:

y = f (xs; Ψ) + ε, (OTC surrogate model, Definition 2)
f (xs; Ψ) := xT

s Qxs + xT
s q + c, (OTC surrogate regression model, Definition 3)

xs = x̂s + ζ, (Imperfect climate model, Definition 4)

where: 
Ψ := [α1,1, . . . , αm,m, β1, . . . , βm, c], (Surrogate model parameters)
ε ∼ N

(
0, σ2

ε

)
, (OTC surrogate model error)

ζ ∼MVN (0, Σ) (Climate model uncertainty)

3.2. Distribution of OTC Index under Climate Model Uncertainty

We now present the distribution of the OTC index under climate model uncertainty,
where we condition (that is, assume to be known) the following two components:

1. The estimated surrogate model parameters, Ψ̂, σ̂2
ε ;

2. The climate model estimated values x̂s and the climate model estimation error Σ.

The distribution is presented in the following.

Theorem 1 (Distribution of OTC index under climate model uncertainty). The OTC index
value, y, follows a generalized chi-squared distribution as follows:

y|x̂s; Ψ̂, Σ ∼ χ̃2(ω, k, λ, µ, s),

where {ω, k, λ, µ, s} are defined in Appendix B.

Proof. See Appendix B.

Now that we have derived the distribution of the OTC index, we present its statistical
properties, which will be useful in the following section, where we develop the risk model.
For notation tractability, we drop the conditioning on model parameters

(
x̂s, Ψ̂, σ̂2

ε , Σ
)

, and
it is understood that those parameters are known.

3.3. Statistical Properties of OTC Index under Climate Model Uncertainty

Here, we present some of the statistical properties of the OTC index which will be
used in the following section, which include the mean and variance of the OTC index.

Proposition 2 (Statistical properties of OTC index under climate model uncertainty). The
mean and variance of the OTC index value, y, as presented in Theorem 1, are given by:
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µy = E[y] = ∑
i∈λ 6=0

ωi(ki + λi) + µ,

σ2
y = Var[y] = 2 ∑

i∈λ 6=0

ω2
i (ki + 2λi) + s2.

Example 4. We now illustrate, in Figure 5, the result in Theorem 1 for the PET index. We set the
estimated climatic variables to x̂s = [50, 25, 80, 1]T (the order of the vector is: MRT, AT, RH, and
WS). We also present the mean and variance values as presented in Proposition 2.

Figure 5. The PDF and CDF of the OTC index under climate model uncertainty. The mean, µy, and
variance, σ2

y , are calculated according to Proposition 2.

3.4. Spatial-Temporal Representation of the OTC Index

Until now, we have considered the surrogate modeling of the OTC index based on
the available climatic variables (perfect and imperfect). We now use those results and
present the previous results, which are relevant to the domain of the climate model output,
which is both spatial and temporal. The physical domain (site) is defined on some pre-
defined spatial domain which is of interest to the designer, and a duration of time (usually
a 24-h profile). To this end, we define the spatio-temporal space that the climate model
is simulating:

1. The spatial area is denoted by Z ⊂ R2. Examples include a whole city or a residential
neighborhood;

2. The time duration of interest is denoted by T ⊂ [0, ∞). Examples include a whole
year or a single day;

3. The estimated climate values at location z ∈ Z , time t ∈ T , are denoted in a similar
manner to Equation (6), with the inclusion of spatial and temporal indicators x̂s(z, t).

Based on these definitions, we can re-write the generic surrogate OTC index model of
Definition 5, in both space and time, as:
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
y(z, t) = f (xs(z, t); Ψ) + ε(z, t), (Spatio-temporal OTC index)
f (xs(z, t); Ψ) = xT

s (z, t)Qxs(z, t) + xT
s (z, t)q + c, (Spatio-temporal surrogate model)

xs(z, t) = x̂s(z, t) + ζ(z, t), (Spatio-temporal climate model)

As this set of equations depicts, there is one set of model parameters for the whole
spatio-temporal domain, making our regression-based surrogate model parsimonious. It
is important to note that while this set of equations reflects the spatio-temporal model,
the parameters of the model that belong to the surrogate model are common and need
be estimated once, based on the training dataset, which is described in Lemma 1. In
addition, we can express the mean and variance, as per Proposition 2, as a function of the
spatio-temporal domain: µy(z, t) and σ2

y (z, t).
In the following section, we utilize the surrogate model in order to derive spatial

risk models.

4. Spatial Risk Models for OTC

In the previous sections, we derived the distribution of the OTC index under the
climate model uncertainty. We now use those results in order to calculate the spatio-
temporal risk that stems from the climatic conditions. Before we do that, we first need to
understand that is meant by “risk measures”.

4.1. Risk Measures

Mathematically, a risk measure is a mapping from a class of random variables to the
real line (i.e., R). The properties of risk measures and the means for their application depend
on the context of the problem and the requirements of the decision makers. Risk measures
are valuable, as they translate the high-dimensional spatio-temporal climate model data
into easy-to-understand real-valued numbers. Many developments have been derived
over the last few decades. One important concept is known as coherent risk measures. The
concept of the “coherence” of risk measures was introduced in the seminal paper of Artzner,
and initiated a rigorous and axiomatic analysis of risk assessments. Under coherent risk
measures theory, the mathematical properties of risk measures were derived from a set
of four intuitive axioms: monotonicity, subadditivity, positive homogeneity, and translation
invariance [43]. We now present the most basic definition of risk measures.

Definition 6 (Risk measure [44]). A risk measure is a function (mapping) of a random variable
Y to the extended real line, R := R∪ {+∞} ∪ {−∞}. That is, given a random variable y ∈ Y , a
risk measure is the mapping ρ(y) : Y → R.

This definition is quite broad, and it is clear that there are infinite number of risk
measures to choose from, since any combination of risk measures is, in itself, a risk measure,
making the choice of a “good” risk measure complicated. One simple and intuitive choice of
a risk measure is the mean-variance risk measure, which combines the expected value as well as
its dispersion. This combinations is easy to follow and has been studied for many years
since the seminal work of Markowitz on portfolio allocation [34].

Definition 7 (Mean-variance risk measure [44]). The mean-variance risk measure of a random
variable Y is defined as:

ρMV(y) := E[y] + cVar[y],

where c ≥ 0 is the risk aversion parameter and is a known constant.

The main idea of mean–variance models is to characterize the uncertain outcome by
two scalar characteristics:

1. The mean E[y], describing the expected outcome;
2. The dispersion measure Var[y], which measures the uncertainty of the outcome.
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A different risk measure that is widely used is the value-at-risk (VaR), which calculates
the probability that the risk is above a pre-defined allowed level.

Definition 8 (Value-at-risk (VaR) [44]). The value-at-risk (VaR) of a random variable Y and a
probability level α ∈ (0, 1) is defined as the α-percentile of the distribution of y:

ρVaR(y; α) = F−1
Y (α)

:= inf
t∈R
{t : FY(t) ≥ α},

where FY is the CDF of y.

The VaR is simply the α-quantile of the R.V. y, and is the most widely used risk measure
in insurance applications, where one is interested in modeling the losses due to extreme
events [45]. Before we analyze the risk measures of the OTC index, we present a simple
illustration of the aforementioned risk measures.

Example 5 (Scalar risk measures). Consider a R.V. Y, which follows a Gamma distribution, i.e.,
Y ∼ Γ(k, θ), where we set k = 2 and θ = 3. Then, E[y] = kθ = 6 and Var[y] = kθ2 = 18. This is
depicted in Figure 6, in addition to the VaR measure for α = 0.9: ρVaR(y; α = 0.9) = F−1

Y (0.9) =
11.67.

Figure 6. Graphical illustration of the mean-variance (µ, σ) and VaR risk measures; see Definitions 7 and 8.

Now that we have defined the notion of risk measures, we are ready to extend this
definition to the case where many OTC values are aggregated either spatially, temporally,
or both.

4.2. Aggregate Spatial Risk Models for OTC

Spatial-temporal aggregation refers to the aggregation of all the OTC values of the
elementary units (e.g., squares of 300 × 300 m2) in a specified region and over a specified
period of time. This operator enables us to analyze a whole region of interest and compare
it to another one. There are different aggregation functions which we could consider.
Generically, an aggregation function is a mapping from a high-dimensional space Za × Ta ⊆
Z × T to the real-line: T(y) : R|Za | ×R|Ta | → R. We now define the generic representation
of aggregated risk; see more details on the topic in [46].



Atmosphere 2022, 13, 439 13 of 28

Definition 9 (Generic aggregate OTC risk). The generic aggregate risk measure is defined as:

ρ̄(y(z ∈ Za, t ∈ Ta)) := ρ(T(y(z ∈ Za, t ∈ Ta))),

where ρ(y) : Y → R (see Definition 6), T(y) : R|Za | ×R|Ta | → R is an aggregation function, and
Za ⊆ Z and Ta ⊆ T are the spatial and temporal subsets, respectively.

There are many different choices of the aggregation function, including the summation,
average, minimum, maximum, and more. The aggregation function acts as a statistical
summary of the spatio-temporal data. In this work, we concentrate on the intuitive choice
of a summation function, defined next.

Definition 10 (Spatio-temporal aggregate risk (STAR) measure for OTC). The Spatio-temporal
aggregate risk (STAR) measure is defined as:

ρ̄(y(z ∈ Za, t ∈ Ta)) := ρ(ȳ),

where ȳ := ∑
z∈Za

∑
t∈Ta

y(z, t) and Za ⊆ Z and Ta ⊆ T .

We now derive the distribution of ȳ, which is obtained by summing independent
generalized chi-squared RVs and is presented in the following Theorem.

Theorem 2 (Statistical properties of STAR). The STAR is a random variable ȳ, as defined in
Proposition 4, and follows a generalized chi-squared distribution as follows:

ȳ ∼ χ̃2(ω, k, m, s),

where {ω, k, m, s} are defined in Appendix C. The mean and variance can be calculated similarly to
Proposition 2.

Proof. See Appendix C.

This result is important since it tells us than when we aggregate the spatial-temporal
values, the sum of the values follows a generalized chi-squared distribution, which we have
already analyzed, and therefore, makes a very convenient mathematical structure.

We express two risk measures of STAR, as per Definitions 7 and 8.

Theorem 3 (Statistical properties of STAR). The STAR is a random variable ȳ, which follows a
generalized chi-squared distribution as follows:

ȳ ∼ χ̃2(ω, k, m, s),

where {ω, k, m, s} are defined in Appendix C.

Proposition 3 (STAR under mean-variance risk measure). Under the mean-variance risk
measure, we have that the STAR is given by:

ρ̄MV(y(z ∈ Za, t ∈ Ta)) = E[ȳ] + cVar[ȳ]

= E
[

∑
z∈Za

∑
t∈Ta

y(z, t)

]
+ cVar

[
∑

z∈Za

∑
t∈Ta

y(z, t)

]
= ∑

z∈Za

∑
t∈Ta

E[y(z, t)] + c ∑
z∈Za

∑
t∈Ta

Var[y(z, t)]

= ∑
z∈Za

∑
t∈Ta

µy(z, t) + c ∑
z∈Za

∑
t∈Ta

σ2
y (z, t),
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where µy(z, t) and σ2
y (z, t) can be calculated according to Proposition 2.

Proposition 4 (STAR under VaR risk measure). Under the VaR risk measure, we have that the
STAR is given by:

ρ̄Var(y(z ∈ Za, t ∈ Ta)) := ρVar

(
∑

z∈Za

∑
t∈Ta

y(z, t)

)
= ρVar(ȳ)

= F−1
Ȳ (α),

where FȲ is the CDF of ȳ.

5. Spatial Resource Allocation for OTC Improvement

Now that we have shown how to derive the spatial risk measures, we turn our
attention to developing a spatial resource allocation framework which uses the previous
results. In many practical problems, the DM (say, a government agency) is given a sum of
money to invest in improving the OTC throughout a pre-specified region. This could be a
city, a canton, or even a country; see [15] for an example where the cost of implementation
was integrated into the overall objective function. Here, we extend this concept to allocating
the resources to multiple spatial sites. A practical and common approach for allocating
the money is to partition the physical domain into a finite number of regions, and allocate
the money to each region according to some decision mechanism. For example, in [47],
the authors presented a list of more than 80 heat-mitigation strategies which could be
implemented. The strategies aiming at improving OTC levels are grouped into seven
categories: vegetation, urban geometry, water bodies, materials, shading, transport, and
energy. In [48], the authors evaluated the costs and benefits of different mitigation strategies.
They concentrated on the impact of two aspects: the electrification of vehicle fleets and
district cooling. They used the PET as the OTC index and showed how to combine economic
costs with thermal comfort jointly as the objective function. To decide which strategy to
implement in each spatial sector, a decision mechanism needs to be formulated and solved.
This decision mechanism, which we call the spatial resource allocation, is presented next.

Let K, be the number of spatial regions; we then partition the spatial domain Z into K
disjoint regions, such that:

Z =
K⋃

k=1

Z k
a , (exhaustive)

φ = Z l
a
⋂
Z j

a, ∀l 6= j, (exclusive),

(7)

where φ denotes the empty set.
Each region will be allocated a portion of the money, denoted by {αk ∈ R+}K

k=1, such

that
K
∑

k=1
αk = 1, meaning that all the money will be used. Next, we define how much a region

would benefit if an α amount was invested in it. To do so, we need to introduce a function
which quantifies this improvement (through some physical and technological intervention).
In many practical cases, we are interested in reducing the OTC index levels. This is relevant
to many hot countries and regions, and we, therefore, interpret the improvement as a
reduction of OTC levels; in the following, we define the impact of the intervention in such
a way. In cases where the DM is interested in increasing the OTC index levels (e.g., cold
regions), the next definition can be trivially adapted to accommodate for such cases.

Definition 11 (Marginal OTC intervention impact). The marginal OTC intervention impact is
defined as the change (i.e., reduction) in OTC level which results from an intervention of level α
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when the non-intervention level (i.e., baseline) is ȳ. That is, if the current OTC level is ȳ, then the
α-impact is defined as follows:

∆(ȳ, α) := ȳ︸︷︷︸
baseline

− Λ(ȳ, α)︸ ︷︷ ︸
Improvement

,

where Λ(ȳ, α) is the utility function, which provides a measure of improvement. Then, its risk
measure is given by ρ(∆(ȳ, α)).

A practical example of a utility function will be presented in more detail in Example 6,
but we keep the notion of a utility function generic, and it is up to the DM to use the
appropriate utility function. Now that we have defined the α-impact on the STAR value ȳ,
we move to defining the resource allocation problem, where we are interested in finding
the set of weights such that the aggregate risk is minimized.

Definition 12 (Optimal resource allocation for spatial risk minimization). The optimal spatial
resource allocation is given by minimizing the aggregate STAR measure, after the intervention has
been implemented, as follows:

{α1, · · · , αK} = arg min
α

K

∑
k=1

ρ(∆(ȳk, αk)),

s.t.
K

∑
k=1

αk = 1.

In the following, we concentrate on the mean-variance risk measure, which complies
with the celebrated Markowitz optimal portfolio allocation theory [33,34]. To this end,
we need to calculate the first two moments of ∆(ȳ, αk). This is difficult to obtain in cases
where the utility function is non-linear. Therefore, we present here a general method to
approximate the first two moments in such cases by using the Taylor series expansion,
presented next.

Proposition 5 (Calculation of moments via Taylor series expansion). The first and second
moments of the marginal OTC intervention impact in Definition 11 can be approximated using
Taylor series expansion, presented next.
Expectation of ∆(ȳ, α) :

E[∆(ȳ, α)] ≈ E
[

∆
(
µȳ, α

)
+ ∆′

(
µȳ, α

)(
ȳ− µȳ

)
+

1
2

∆′′
(
µȳ, α

)(
ȳ− µȳ

)2
]

= ∆
(
µȳ, α

)
+

1
2

∆′′
(
µȳ, α

)
σ2

ȳ ,
(8)

where E
[
ȳ− µȳ

]
= 0, so that the second term disappears and E

[(
ȳ− µȳ

)2
]
= σ2

ȳ .
Variance of ∆(ȳ, α) :

Var[∆(ȳ, α)] ≈
(
∆′
(
µȳ, α

))2
σ2

ȳ , (9)

where ∆′
(
µȳ, α

)
, ∆′′

(
µȳ, α

)
are the first and second derivatives of ∆

(
µȳ, α

)
, with respect to µȳ.

We are now ready to present the optimal spatial resource allocation optimization
problem.

Lemma 2 (Optimal spatial resource allocation under the mean-variance risk measure). The
optimal spatial resource allocation under the mean-variance risk measure is given by:



Atmosphere 2022, 13, 439 16 of 28

{α1, · · · , αK} = arg min
α

K

∑
k=1

∆
(
µȳ, α

)
+

1
2

∆′′
(
µȳ, α

)
σ2

ȳ︸ ︷︷ ︸
≈E[∆(ȳ,α)]

+c
(
∆′
(
µȳ, α

))2
σ2

ȳ︸ ︷︷ ︸
≈Var[∆(ȳ,α)]

.

s.t.
K

∑
k=1

αk = 1.

Solving the optimization problem in Lemma 2 is not difficult, since we assume that
the utility function is concave. This means that the objective function is concave, and so
is the constraint set, and the optimization problem can be easily solved via Lagrange
multiplier [49].

To illustrate this result, we now provide an example which shows how to implement
the spatial resource allocation for the simplest case, that is, when the spatial domain contains
two regions (K = 2). Since the optimization problem, in this case, is only two-dimensional,
we are able to visualize this scenario.

Example 6 (Optimal spatial resource allocation for two regions). We assume that the utility
function is given by the following exponential function:

Λ(a; α, γ) = α(1− exp(−γa))/γ,

where γ 6= 0 is a known constant. This is depicted in Figure 7 and is widely used due to its flexibility
by varying the values of γ.

Its first and second derivatives, with respect to the input variable ‘a’, are given by:

Λ′(a, b; γ) = α exp(−γa),

Λ′′(a, b; γ) = −αγ exp(−γa).
(10)

Then, we have that the objective function in Lemma 2 is given by:

∆
(
µȳ, α

)
+

1
2

∆′′
(
µȳ, α

)
σ2

ȳ + c
(
∆′
(
µȳ, α

))2
σ2

ȳ = ȳ− α
(
1− exp

(
−γµȳ

))
/γ

− 1
2

αγ exp
(
−γµȳ

)
σ2

ȳ

+ c
(
α exp

(
−γµȳ

))2
σ2

ȳ .

Let us assume that K = 2; then, their mean and variance values are
(

µȳ1 , σ2
ȳ1

)
and

(
µȳ2 , σ2

ȳ2

)
,

respectively. The optimal allocation optimization problem reads:

{α1, α2} = arg min
α

(
µȳ1 − α1

(
1− exp

(
−γµȳ1

))
/γ

− 1
2

α1γ exp
(
−γµȳ1

)
σ2

ȳ1

+ c
(
α1 exp

(
−γµȳ1

))2
σ2

ȳ1

+ µȳ2 − α2
(
1− exp

(
−γµȳ2

))
/γ

− 1
2

α2γ exp
(
−γµȳ2

)
σ2

ȳ2

+ c
(
α2 exp

(
−γµȳ2

))2
σ2

ȳ2

)
,

s.t. α1 + α2 = 1.

(11)

This optimization can be easily solved by setting α2 = 1− α1, taking the derivative, setting
it to 0, and solving for α1. In this example, we set

{
µȳ1 = 40, σ2

ȳ1
= 2, µȳ2 = 30, σ2

ȳ2
= 1

}
. The

values of α1 for different values of risk weight (c in Lemma 2) are presented in Figure 8. In
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Figure 9, we present the mean-variance plot under the optimal solution for different values of c; see
Definition 12.

Figure 7. The exponential utility function with γ = {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

Figure 8. Illustration of the optimal choice of the weights for different risk attitudes (c ∈ (0, 250)).
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Figure 9. Illustration of the mean and variance under the optimal choice of the weights for different
risk attitudes (c ∈ (0, 250)).

6. Results: Spatial OTC Risk and Resource Allocation in Singapore

In this section, we demonstrate how to apply the framework for a practical problem
of resource allocation for OTC improvement in Singapore. We first provide details of
the climate model we use and quantify its uncertainty. We then move to developing the
surrogate model for the heat index, which is a widely used OTC index. Finally we will
show how the resource allocation scheme we developed is applied for this practical setting.

6.1. Climate Model Simulation Set-Up

The climate model we use is the multilayer urban canopy model (MLUCM) embedded
in WRF version 3.8.1, and it incorporates building effect parametrization (BEP) and the
building energy model (BEM) [50,51]. The details of the model set-up can be found
in [40,52].

6.2. Validation and Uncertainty Estimation of Climate Model

In order to calculate the uncertainty of the WRF simulations according to Definition 4,
we conducted a validation procedure where the output of the WRF variables were compared
against the network of 15 meteorological stations provided by the Meteorological Service
Singapore (MSS). The WRF simulations and meteorological stations’ observations were
averaged over 24 h for the entire month of April 2016. We now present the calculation of
the uncertainty for the air temperature and relative humidity, since they are required for the
OTC index we shall use.

6.2.1. Air Temperature Estimation

We compared the air temperature WRF simulations against observations from weather
stations at 2-m height. The results show that the simulated and observed means agree
during early hours of the day and during nighttime, except for the rural stations, while
during the afternoon, the means deviate and the temperature is either under or over the
predicted, except for rural stations. Negative bias exists for the urban stations and positive
bias values are observed for the rural stations. The mean average error (MAE) is 0.6 °C and
the root mean squared error (RMSE) is 0.74 °C.
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6.2.2. Relative Humidity Estimation

The RH is underestimated by the model during early morning and nighttime for
most of the stations. A negative bias exits for both urban and rural stations, indicating the
under-prediction of relative humidity. The mean average error (MAE) for all stations was
6%, and the root mean squared error (RMSE) was 6.61%. We can, therefore, express the
bi-variate climatic model for AT and RH as per Definition 4 as follows:

x1(z, t) = x̂1(z, t) + ζ1(z, t), (Air temperature),

x2(z, t) = x̂2(z, t) + ζ2(z, t), (Relative humidity),

where x̂1(z, t), x̂2(z, t) are the WRF estimated AT and RH values, respectively. The model
errors are given by:

ζ1(z, t) i.i.d∼ N (0.6, 0.5476),

ζ2(z, t) i.i.d∼ N (6, 43.6).

6.3. Surrogate Model for the Heat Index

In this study, we use the heat index as the OTC index; see Example 2 for details. For
the training data, we used the tabulated values of [38,39]. We then used the surrogate
model developed in Section 2 to interpolate the HI for the missing values. This is presented
in Figure 10, where the green dots represent the known tabulated values, and the surface
represents all possible combinations of input–output HI values.

Figure 10. Heat index surrogate model—the green dots are the tabulated values of the HI according
to [38,39]. Those values are interpolated according to the surrogate model in Definition 3.
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Once the surrogate model has been estimated, we can use it for estimating the HI
values, based on the WRF simulations for Singapore on a spatio-temporal domain. In
Figure 11, we present the spatial heat maps of the time averaged AT, RH, and HI.

Figure 11. Mean air temperature (top panel), mean relative humidity (middle panel), and mean heat
index (lower panel) of Singapore, averaged over the period of the simulation (30 days).

6.4. Spatial Resource Allocation

We now turn our attention to the resource allocation problem, which was presented in
Section 5. First, we spatially partitioned Singapore into seven zones; see Figure 12. This
partition is only used for illustration purposes, and in practice, should be determined by
the DM according to their criteria.
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Figure 12. Spatial partition of Singapore to seven non-overlapping allocation zones.

We then used the results of Theorem 3 to derive the statistical properties of each zone.
In particular, we used the same concept of Proposition 2 to calculate the mean and variance
of each zone separately; these are presented in Figure 13.

Figure 13. Mean and variance values of the seven allocation zones according to Theorem 3.

We used the utility function in Example 6, solved the optimization problem of Lemma 2,
and obtained the seven allocation weights. It is important to note that the choice of the
free parameter c is at the discretion of the DM. In Figure 14, we present the solution of
the optimization problem and the values of the seven weights for different choices of
c = [3, 5, 10, 50]. To understand those results, we need to remember that c controls the
balance between the mean and the variance values; see Definition 7. The larger c is, the more
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high values of variance are penalized by the objective function, which shifts the allocation
of the resources towards Zones 2, 3, and 4, since their variance values are smaller relative
to the other zones. Clearly, for c = 0, the variance would not be taken into account, and
only the mean would be considered. In this case, Zone 5 would receive a weight of one,
since its mean value is the smallest.

Figure 14. Spatial resource allocation of the seven zones for different values of c according to
Lemma 2.

7. Conclusions

In this paper, we developed a rigorous mathematical framework and a new class of
statistical models for spatial risk models. We addressed the modeling and quantification
of the spatial risk profile of an urban area from an OTC perspective using the concept of a
surrogate model. We then estimated the spatial risk profile and used that to develop a new
framework for resource allocations for OTC level reduction. We presented the concept
of spatio-temporal aggregate risk (STAR) measures and derived their statistical properties.
Finally, using the STAR measures, we developed a new algorithm for spatial resource
allocation that is useful for practical decision making. We provided a practical example
and illustrated how the framework we developed could be used in practice in the case
of the large-scale area of Singapore using the WRF climate model. The results show the
importance of the framework and its ability to mitigate and reduce the urban climate risk.
The framework can be implemented and used by DMs in order to optimally utilize their
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resources. Future work includes the development of the framework into a tool which can
be used by DMs via a simple and intuitive interface.
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Appendix A. Proof of Lemma 1

We re-write Equation (2) in a compact form:

xT
s Qxs + xT

s q + c = Xsq̃,

where:

q̃ :=
[
vec(Q)T qT c

]T
∈ RL+m+1,

Xs :=



x(1)1 . . . x(1)m x(1)1 x(1)1 . . . x(1)m x(1)m 0 . . . 0 0
... . . . . . . . . . . . . . . . 0 . . . 0 0

x(n)1 . . . x(n)m x(n)1 x(n)1 . . . x(n)m x(n)m 0 . . . 0 0
0 . . . . . . . . . . . . . . . x(1)1 . . . x(1)m 0
0 0 . . . . . . . . . . . . . . . . . . 0 1


∈ Rn×(L+m+1),

where L = (m+2−1)!
2!(m−1)! , and where n! denotes the factorial of n.

Then, Equation (1) can be expressed as:

y = Xsq̃ + ε,

where y :=
[
y(1), . . . , y(n)

]T
and ε :=

[
ε(1), . . . , ε(n)

]T
. Based on this representation, we

express the MLE for Ψ, denoted by Ψ̂, as follows:

Ψ̂ = arg max
Ψ∈Rm

L(y; Ψ)

= arg max
Ψ

p(y; Ψ)

= arg max
Ψ

N

∏
n=1

p
(

y(n); Ψ
)

= arg max
Ψ

N

∏
n=1
N
(

y(n); X(n)
s q̃, σ2

ε

)
,
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where X(n)
s is the n-th row of Xs. Next, taking the derivative, setting it to 0, and solving

provides the resulting estimators.

Appendix B. Proof of Theorem 1

We incorporate the OTC surrogate model error, ε, by augmenting it into the climatic
variables xs, as follows:

xa :=
[
xT

s ε
]T ∈ R(m+1)

Qa :=

[
Q̂ 0m×1

01×m 0

]
∈ R(m+1)×(m+1)

qa :=
[
q̂T 1

]T ∈ R(m+1).

(A1)

Therefore, using Definition 5, we have that:

y Definition 5
= xTQ̂x + q̂Tx + ĉ + ε

Equation (A12)
= xT

a Qaxa + qT
a xa + ĉ.

(A2)

We have, from Equation (6), that:

xs ∼MVN (x̂s, Σ), (A3)

and since xsε, we can express xa as:

xa ∼MVN (µa, Σa),

µa :=
[
x̂T

s 0
]T

Σa :=
[

Σ 0m×1
01×m σ̂2

ε

]
.

(A4)

Next, we define the following (whitening) transformation:

z := Σ−1/2
a (xa − µa), (A5)

so that z ∼MVN (0, I) is a multivariate standard normal distribution, and we have that:

xa := Σ1/2
a z + µa. (A6)

Therefore, following Equation (A2), we have that:

y = xT
a Qaxa + qT

a xa + ĉ

=
(

Σ1/2
a z + µa

)T
Qa

(
Σ1/2

a z + µa

)
+ qT

a

(
Σ1/2

a z + µa

)
+ ĉ

= zT
(

Σ1/2
a

)T
QaΣ1/2

a z + µT
a QaΣ1/2

a z + zT
(

Σ1/2
a

)T
QaΣ1/2

a µa + µT
a Qaµa + qT

a

(
Σ1/2

a z + µa

)
+ ĉ

= zT
(

Σ1/2
a

)T
QaΣ1/2

a z +
(

2µT
a QaΣ1/2

a + qT
a Σ1/2

a

)
z + µT

a Qaµa + qT
a µa + ĉ

= zT
(

Σ1/2
a

)T
QaΣ1/2

a︸ ︷︷ ︸
Q̃

z +
(

2µT
a QaΣ1/2

a + qT
a Σ1/2

a

)
︸ ︷︷ ︸

q̃T

z + µT
a Qaµa + qT

a µa + ĉ︸ ︷︷ ︸
c̃

= zTQ̃z + q̃Tz + c̃.

(A7)

Next, we factorize Q̃ via an eigen-decomposition as follows:

Q̃ = UΛU−1, (A8)
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where U is an orthogonal square (m + 1) × (m + 1) matrix of eigen-vectors whose i-th
column is the eigen-vector ai, and Λ is a diagonal matrix whose diagonal elements are the
corresponding eigenvalues, Λi,i = λi :

Λ = diag{λ1, · · · , λm+1} =



λ1 . . . 0
... . . .

...
0 λj 0
... . . .

...
0 . . . λm+1

. (A9)

This means that v := UTz is a standard multivariate normal distribution, and we can
re-write y in Equation (A7) as a function of v, as follows:

y = vTUTUΛU−1Uv + q̃Tz + c̃

= vTΛv + q̃U︸︷︷︸
q̄T

v + c̃

= vTΛv + q̄Tv + c̃

= ∑
i∈λ 6=0

(
λiv2

i + q̄ivi

)
+ ∑

j∈λ0

q̄jvj + c̃

= ∑
i∈λ 6=0

λi

vi +
q̄i

2λi︸ ︷︷ ︸
γi


2

+ ∑
j∈λ0

q̄jvj + c̃− 1
4 ∑

i∈λ 6=0

q̄2
i

λi︸ ︷︷ ︸
ζ

= ∑
i∈λ 6=0

λiγ
2
i + ζ,

(A10)

where λ 6=0 and λ0 are the sets of non-zero and zero eigenvalues, respectively.
Since γi follows a normal distribution, γ2

i follows a chi-squared distribution with one
degree of freedom and ζ follows a normal distribution as follows:

γ2
i ∼ χ2

1,
(

q̄i
2λi

)2

ζ ∼ N

c̃− 1
4 ∑

i∈λ 6=0

q̄2
i

λi︸ ︷︷ ︸
µ

, ∑
j∈λ0

q̄2
j︸ ︷︷ ︸

s

.

To summarize, the RV y is a linear combination of non-central χ2 random variables (i.e.,
∑

i∈λ 6=0

λiγ
2
i ) and a normal random variable, ζ. Therefore, y follows a generalized chi-squared

distribution [53,54], denoted:

y ∼ χ̃2(ω, k, λ, µ, s),

where ω is a vector containing all the unique non-zero eigenvalues λi ∈ λ 6=0; their degrees
of freedom k are the numbers of times the eigenvalues occur, and their non-centrality λ and
µ and s are the parameters of ζ.
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Appendix C. Proof of Lemma 3

To prove this result, we need to derive the law of a linear combination of generalized
chi-squared random variables:

ȳ :=
N

∑
i=1

(
xT(n)Qx(n) + qTx(n) + c

)
= xT

a Qaxa + qT
a xa + Nc,

(A11)

where: 

xa :=
[
xT(1), · · · , x(n)

]T

Qa :=


Q 0
... . . .

...
0 Q


qa :=

[
qT , · · · , qT]T .

(A12)

Equation (A12) has the same structure as Equation (A2), and we, therefore, conclude
that Y follows a generalized chi-squared distribution, denoted:

ȳ ∼ χ̃2(ω, k, m, s),

with parameters as follows:

γ2
i ∼ χ2

1,
(

q̄i
2λi

)2

ζ ∼ N

c̃− 1
4 ∑

i∈λ 6=0

q̄2
i

λi︸ ︷︷ ︸
m

, ∑
j∈λ0

q̄2
j︸ ︷︷ ︸

s

.
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