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Abstract: A Neural network (NN) is a promising tool for the tomographic inversion of the ionosphere.
However, existing research has adopted an unbalanced cost function for training purposes and a
preset image for constraint purposes, resulting in the output image being dominated by measure-
ments. To address these problems, we proposed an NN-based tomographic model with a balance
cost function and a dynamic correction process (BCDC) for ionosphere inversion. The cost function
is composed of two balance terms corresponding to the measurements and the selected constraints,
respectively. The produced image in the forward process of the NN is corrected dynamically by fitting
each vertical profile with orthogonal basis functions (EOFs) and the Chapman function and then by
smoothing the voxels of each layer with a moving window approach horizontally. The corrected
image is then used to calculate the slant total electron content (STEC) parameter, which is further
translated into the term of the cost for the vertical and horizontal constraints. Experiments were
carried out to validate the BCDC method and compared with a recently developed tomographic
method and the international reference ionosphere (IRI) model. Results show that the parameters
derived from the BCDC model demonstrate good consistency with the observations. Comparing with
the reference methods, the BCDC method performs better in the validations of vertical profiles, F2

layer peak density (NmF2), STEC parameter and vertical total electron content map. Further analysis
also shows that a balance cost function is of benefit to achieve an image of better quality.

Keywords: ionospheric tomography; neural network; empirical orthogonal function; Chapman
function; smoothing constraint

1. Introduction

The ionosphere, stretching from 60 km above the surface to the upper atmosphere, is
full of electrons and ions, and has a strong impact on the passing electromagnetic signals,
including those of global navigation satellite system (GNSS). Thus, knowledge of the
ionospheric structure helps to improve the precision of navigation and position [1]. By
taking the advantages of slant total electron content (STEC) measurements, which can be
obtained using dual-frequency GNSS observations and defined as the integration of the
electron density along the satellite-to-receiver signal paths, the technique of ionospheric
tomography, first introduced by Austen et al. [2], is able to obtain a high-resolution three-
dimensional image (named tomographic image hereafter) for the ionospheric electron
density. As more and more GNSS satellites are being launched and the GNSS signals are
available at low-cost, all days, and all weathers, the ionospheric tomography technique
receives its growing popularity in the community of ionospheric research [3].

Usually, the ionospheric tomography technique decomposes the ionosphere into many
voxels, each of which represents an unknown of the electron density. Then, it builds a
mathematical model (named tomographic model hereafter) for these voxels using the
STEC measurements. After that, either an iterative algorithm, e.g., multiplicative algebraic
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reconstruction technique (MART) [4] and simultaneous iteration reconstruction technique
(SIRT) [5], or a non-iterative algorithm, e.g., generalized singular value decomposition [6],
is employed to solve the model, resulting a tomographic image indicating the electron
density for each voxel. However, due to the limit number and the uneven distribution of
the ground-based receivers, the tomographic model is often ill-posed [7], making the model
unstable [8], or the accuracy of the tomographic image relying on initial guesses, especially
for those voxels without GNSS signals passing [9]. Introducing additional constraints
into the tomographic model helps improve the ill-posed problem. Chen et al. [10] and
Seemala et al. [11] used the prior information extracted from an empirical model to restrain
the tomographic model. Zheng et al. [12] introduced the constraint of vertical total electron
content data into their tomographic model. He and Heki [13], and Wen et al. [14] restrained
their tomographic models by the constraints of the horizontal continuity or the similarity
among adjacent voxels. In fact, both solving algorithms and the additional constraints had
a strong impact on the resultant tomographic image. Wen et al. [15] proposed a data-driven
adjustment of the relaxed parameter to improve the classical algebraic reconstruction
technique (ART). Zhao et al. [16] improved the MART algorithm by using an adaptive
relaxation factor and proposed an adapted multiplicative algebraic reconstruction technique
(AMART). Gerzen and Minkwitz [17] introduced a successive correction method to improve
the simultaneous multiplicative column-normalized method (SMART).

With the merits of self-adaptation and self-learning, a neural network (NN) is good
at handing non-linear input–output problems, and hence is promising for application in
ionosphere tomographic inversion, which outputs electron density values for given posi-
tions. Ma et al. [18] first used a multilayer artificial neural network (ANN) to approximate
the function of the electron density distribution, and then proposed a tomographic model,
named Residual Minimization Training Neural Network (RMTNN), for the ionospheric
inversion. The model is trained by a back-propagation (BP) algorithm [19] at a cost function
of summating the difference between the estimated STEC and the measured STEC, and
the difference between the output electron density and the electron density measured
by ionosonde station. To correct the overestimated electron density at the bottom of the
ionosphere by the RMTNN model, Hirooka et al. [20] introduced an additional constraint
term for the cost function, which computes the difference between the output image and a
reference image where the election density is taken either from NeQuick model, ionosonde
observation or from low earth orbit (LEO) observations at low attitude. However, the
lack of ionosonde and LEO observations in many places makes the model very difficult
to utilize. Razin and Voosoghi [21] replaced the reference image with an image modeled
by empirical orthogonal functions (EOFs). To overcome the limitations and disadvantages
of the ANN and the BP algorithm, Razin and Voosoghi [22] replaced them with a wavelet
neural network (WNN) and a particle swarm optimization (PSO) algorithm, respectively.
Zheng et al. [23] replaced the reference image with an image produced by an improved
algebraic reconstruction technique based on the automatic search technology of relaxation
factor (IART-AS) [24] and by a vertical and a smoothing constraint. No matter what kind of
a reference image is adopted, the usage of a pre-produced image for reference limits the
evolution of the model during the training process. Besides, the cost functions in these
models are basically unbalance functions, making the role of constraints unremarkable
in practice.

This paper proposes an NN-based tomographic model, named balance cost and
dynamic correction neural network (BCDC) model, for ionosphere inversion. The key idea
of the BCDC is to build a cost function that balances the measurements and the constraints.
Besides, the reference image in the BCDC is a dynamic image that is repeatedly corrected by
the selected constraints. The rest of the paper is arranged as follows. Section 2 introduces
the principle and the implementation of the BCDC model, followed by a validation and
comparison section, a discuss section, and finally the conclusion section.
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2. The BCDC Model

The most important work of developing an NN-based tomographic model is to find a
suitable cost function for the NN. Training parameters are iteratively updated based on the
cost of the model that is evaluated by the cost function. Usually, the cost of the model (E)
composes of a measurement cost and a constraint cost, as shown by

E = CM + gCC (1)

where CM and CC refer to the measurement cost and the constraint cost, respectively, and g
is a balance parameter.

The measurement cost (CM) measures the discrepancy of STEC between the estima-
tions and the measurements, which can be computed by

CM =

√
∑n

i=1
(
Ŝi − SM

i
)2

n
(2)

where Ŝi and SM
i refer to the estimated and measured STEC for the ith signal path, respec-

tively, and n is the total number of signal paths.
In a voxel-based tomography model, the estimated STEC can be computed by

Ŝ =
m

∑
j=0

Ajxj (3)

where Aj denotes the length of a given signal path inside the jth voxel, xj refers to the
estimated electron density regarding to the jth voxel, and m is the total number of voxels.

The constraint cost measures the discrepancy of a variable between estimations and
references, as given by

CC =

√√√√∑m
j=1

(
ŷj − yR

j

)2

m
(4)

where ŷj and yR
j refer to the estimation and the reference, respectively, for the jth sample,

and m denotes the number of samples.
Existing research has selected the electron density of the ionosphere as the variable to

compute the constraint cost. Under this circumstance, the total cost would be less sensitive
to the constraint cost, which is much smaller than the measurement cost in several orders of
magnitude, making the role of the constraints unremarkable in practice. We will discuss it
later in this paper. To balance the two costs, we use the variable of STEC instead to compute
the constraint cost, which reads

CC =

√
∑n

i=1
[
Ŝi −

(
SR

i + ∆S
)]2

n
(5)

where SR
i indicates the STEC inferred from the reference image (named reference STEC

hereafter), ∆S refers to the difference between the reference STEC and the measurement
STEC, and the rests are the same as those appeared in Equation (2).

The constraint cost computed by Equation (5) ought to be of the same orders of
magnitude as the measurement cost since both are measured by the STEC variable. In
existing research [21–23], reference images can be taken directly from the outputs of other
algorithms or models. However, this causes a strong dependency on the reference algorithm
or model, which itself may contain errors. To prevent it, we take the image dynamically
corrected by of the selected constraints as the reference image during the parameters
training process. Hence, we named our model as a balance cost and dynamic correction
neural network (BCDC).
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Figure 1 describes the basic flows to implement the BCDC model. An NN with
multiple layers is established and pre-trained using electron density extracted from an
empirical ionosphere model. The forward propagation process of the NN produces an
image (referred as forward image hereafter) in each iteration. The forward image, on one
hand, is used to calculate the measurement cost by Equation (2), and, on the other hand,
is corrected using the vertical and horizontal constraints and then used to compute the
constraint cost by Equation (5). After that, the total cost of the model is evaluated using
Equation (1). Finally, the backward propagation process updates the training parameters
iteratively according to the total cost until a minimal total cost is achieved. We detail the
methods of the corrections for the forward image hereinafter.
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2.1. Corrections Using Vertical Constraints

Given a dataset, empirical orthogonal function (EOF) analysis decomposes the dataset
into a set of orthogonal basis functions [25] by which the original dataset can be replaced
with a few related coefficients. If the dataset is extracted from an empirical ionosphere
model, such as the International Reference Ionosphere 2016 (IRI-2016) [26], the EOFs
derived from the dataset must contain a priori on the vertical ionosphere, and hence can be
used to restrain the tomographic model. Therefore, we use the derived EOFs to describe
the vertical profile of the unknown ionosphere, as shown by

P =
N

∑
i=1

aiei (6)

where P represents a vertical profile of the unknown ionosphere, ei indicates the ith basis
function of the derived EOFs, ai and N are the coefficient of the ith basis function and the
total number of EOFs, respectively.

EOFs analysis is also known as principal component analysis [25]. Each basis function
of the EOFs represents a component of the original dataset. Research [25,27–29] showed
that the first few components contribute the majority of the original dataset’s variation.
Therefore, the N in the Equation (6) is often truncated into a small value (e.g., 3) in practice.
Note that a number of sampling points are available for a vertical profile in a voxel-based
tomographic model. Given the dominated EOFs, the coefficients in Equation (6) can be
evaluated by a linear fitting technology using least square method for each vertical profile
of the forward image. The evaluated coefficients are then used to correct the vertical profiles
of the forward image in return. In practice, the image corrected by the EOFs may be affected
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by the errors of inputs or the NN model, resulting a distorted shape on the vertical profiles
or even negative values on the electron density. We solve the problem by introducing a
new vertical constraint to model.

According to Chapman [30], the vertical ionosphere can be generally described by a
Chapman function as shown by x(h) = NmF2· exp

[
1− h−hm F2

H1 − exp
(
− h−hm F2

H1

)]
(h < hm)

x(h) = NmF2· exp
{

1
2

[
1− h−hm F2

H2 − exp
(
− h−hm F2

H2

)]}
(h > hm)

(7)

where x(h) is the electron density at height h, NmF2 and hmF2 are the peak density and the
peak height, respectively, of the F2 layer, H1 and H2 are the scale height for the bottom and
topside ionosphere, respectively.

Pajares et al. [31] reported that the scale height should be a variable rather than a
constant. To handle this, we divide each vertical profile into many pieces, each of which
contains a few adjacent voxels and share the same voxels with its successive piece except for
the first and the last voxels. After that, we fit each piece with the Chapman function using
a non-linear least square method, resulting an independent scale height for each piece, and
then average the fitted values for each voxel to further correct the vertical profiles. Figure 2
shows the result of the piecewise fitting and per-voxel averaging method on a selected
vertical profile. As shown, the unusual part of the vertical profile is fixed by the method
while the rest parts are maintained.
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2.2. Correction Using a Horizontal Constraint

Due to the uneven distribution of the signal paths and limited number of GNSS
stations, there ought to be many voxels not passed by the signal paths, resulting in no
constraint (or very weak constraint) on them. As argued in much research [13,14], the
distribution of the electron density should be physically continuous and smoothed. Thus,
we use the assumption of smoothing to restrain the tomographic model. After correction
by the vertical constraints, the electron density of each voxel is further corrected by,

Cj =
1

K + 1

(
Cj +

K

∑
k=1

Cjk

)
(8)

where Cj is the corrected value for the jth voxel, and Cj refers to the old value of the jth
voxel, Cjk is the kth neighbor of the jth voxel, and K is the total number of the neighbors.
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2.3. Pre-Training Process

The purpose of training in an NN is to obtain the parameters of the NN (i.e., weight
and bias) for each neuro. In the training process, NN parameters are usually randomly
initialized. Owing to the ill-posed problem of the ionospheric tomography, the choice of
initial values would impact the obtained parameters, hence affecting the image quality.
To get more reasonable initial values for the NN parameters, and to achieve a higher
quality image, we pre-train the NN model by using an image extracted from an empirical
ionosphere model, e.g., IRI-2016 [26]. Since every voxel is restrained by a value of electron
density, the pre-training process is a well-posed problem. The cost function of the pre-
training process is defined as

E =

√√√√∑m
j=1

(
x̂j − xe

j

)2

m
(9)

where x̂j denotes the electron density of the jth voxel in the forward image, and xe
j indicates

the electron density of the jth voxel from the empirical ionosphere model, and m is the total
number of voxels.

3. Validations and Comparisons
3.1. Data and Method

An area covering longitudes from 12◦ E to 34◦ E, latitudes from 30◦ N to 66◦ N, and
heights from 100 km to 1200 km, and a span of ten days, from 16 June 2015 to 25 June 2015,
were selected in this study. Figure 3 shows the study area and the distribution of GNSS
stations. In this area, 226 GNSS stations and five ionosonde stations are available. We
randomly chose 30 GNSS stations for cross-validation. Observations of vertical profile, peak
density of F2 layer (NmF2), peak height of F2 layer (hmF2) obtained from the five ionosonde
stations were used to validate the method. Furthermore, vertical total electron content
(VTEC) map products from International GNSS service (IGS) center and the Technical
University of Catalonia (UPC) were used in this validation. Figure 4 shows the Kp and Dst
indices during the selected days. As shown, the ionosphere was experiencing an evident
electromagnetic storm, where the Kp index is larger than 4 and the Dst index is smaller
than or very close to −100, at midnight of 22 June and at noon on 25 June. Thus, a duration
of four hours is selected for the nighttime (from 22:00 LT to 02:00 LT) and for the daytime
(from LT 11:00 to LT 15:00), respectively, per day in this study.
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The STEC measurements were obtained by a tool developed by Ionospheric Research
Group (http://www.ionolab.org (accessed on 1 January 2022)) using a method given by
Sezen et al. [32]. In the night, the plasmasphere has a significant contribution on the
measured STEC. Following the way of Hong et al. [27], we considered the vertical TEC
(VTEC) of the plasmasphere to be 3 TECU constantly during the whole day, and then
removed it from the STEC measurement after mapping the VTEC onto a slant path, as
shown by

scor = sobs −
vplas

sin α
(10)

where scor is the corrected STEC measurement, α is the elevation angle of the signal path,
vplas is the VTEC of the plasmasphere, i.e., 3 TECU constantly.

We divided the ionosphere into 22,770 (23 × 18 × 55) voxels with a voxel size of
2◦ × 2◦ × 20 km and built an NN with four layers using a sigmoid activation function. The
temporal resolution, the number of dominated EOFs and the balance parameter were set
to be 15 min, 3 and 1, respectively. The NN parameters are iteratively updated by a back
propagation algorithm [19]. The training process stops either at a minimal total cost or
after 2000 times of iterations. To make a comparison, we selected the method developed
by Farzaneh and Forootan [7] (named Slepian method hereafter), which selects spherical
Slepian function and EOFs as the horizontal and vertical constraints, and the model of
IRI-2016 [26] as references. Both the root mean square error (RMSE) and the improvement
of the RMSE (∆RMSE) are calculated, as shown by

RMSE =

√
∑m

j=0 (x̂j − xT
j )

2

m
(11)

∆RMSE =
(RMSEr − RMSEB)

RMSEr
× 100% (12)

where m refers to the number of samples, x̂ refers to the estimation, xT
j is the truth, RMSEr

and RMSEB are the RMSE of the reference method and the BCDC model, respectively.
Note that a positive value of the RMSEB shows an improvement of the BCDC model over
the reference method.

3.2. Results
3.2.1. STEC Cross-Validations

Figure 5 shows the RMSE of the STEC derived by the BCDC method, the Slepian
method and the IRI-2016 model at each moment. The BCDC method outperforms the

http://www.ionolab.org
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other two at any time, and the Slepian method performs better than the IRI-2016 model
most of the time. Table 1 compares the RMSE for all moments (called overall RMSE
hereafter) among the three methods. The BCDC performs the best, followed by the Slepian
method and the IRI-2016 model. The improvements of the overall RMSE achieved by
the BCDC method over the Slepian method and the IRI-2016 model reach to 48.6% and
60.6%, respectively.
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Figure 5. The RMSE (unit: TECU) of the STEC derived by the BCDC method, the Slepian method
and the IRI−2016 model at each moment by taking the STEC measurements of the cross-validation
stations as the truths.

Table 1. The RMSE (unit: TECU) and the ∆RMSE of the STEC derived by the BCDC, the IRI-2016,
and the Slepian method for all moments.

BCDC Slepian IRI-2016

RMSE 2.31 4.49 5.87
∆RMSE - 48.6% 60.6%

3.2.2. Vertical Profile Validations

There are five ionosonde stations in total in the study area. Figure 6 shows the number
of signal paths that pass the voxels above these ionosonde stations on each day. As shown,
the numbers of signal paths for the RO041 and DB049 are similar, and are larger than
that of the EB040, which is larger than those of the FF051 and the JR055. For balance, we
selected the vertical profiles obtained by the RO041, the EB040 and the JR055 to illustrate
the comparison. Figures 7 and 8 show a few samples of the vertical profiles derived from
the three methods during the geomagnetic quiet time and geomagnetic disturbed time,
respectively. Note that the topside profile above hmF2 are not measurements but estimations
via Chapman or other similar functions fitting. Nearly all the vertical profiles of the BCDC
method are closer to ionosonde than those of the Slepian method and the IRI-2016 model.
Besides, negative values are observed on the vertical profiles of the Slepian, while those are
disappeared in the BCDC method. This may be attributed to the adoption of the additional
constraint of Chapman function in the BCDC method.
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3.2.3. NmF2 and HmF2 Validations

The peak density of F2 layer (NmF2) and peak height of F2 layer (hmF2) are two
important parameters in determining the vertical structure of the ionosphere. Table 2
presents the overall RMSE and the ∆RMSE of the NmF2 parameter per station. The BCDC
outperforms the other two at all stations. The average improvements of the BCDC method
over the Slepian method and the IRI-2016 model reach to 33.1% and 42.1%, respectively.
Besides, the variation of the overall RMSE in the BCDC seems to be more stable than those
in the Slepian and the IRI-2016.

Table 2. The overall RMSE (unit: 1011 el/m3) and ∆RMSE of the NmF2 achieved by the three methods.

Stations Methods RMSE ∆RMSE Stations Methods RMSE ∆RMSE

DB049
BCDC 0.82 -

JR055
BCDC 0.77 -

IRI-2016 1.27 35.4% IRI-2016 1.0 29.9%
Slepian 0.93 9.7% Slepian 1.29 40.3%

EB040
BCDC 1.10 -

FF051
BCDC 0.97 -

IRI-2016 2.40 54.2% IRI-2016 1.27 23.6%
Slepian 1.98 44.4% Slepian 1.05 7.6%

RO041
BCDC 1.11 -

Average
BCDC 0.95 -

IRI-2016 2.24 50.4% IRI-2016 1.64 42.1%
Slepian 1.87 40.6% Slepian 1.42 33.1%

Table 3 presents the overall RMSE and the ∆RMSE of the HmF2 parameter for the three
methods. The BCDC method performs better than the Slepian method at DB049, JR055,
RO041 stations but worse at the other stations, resulting in an average improvement of
6.3% over the Slepian method. However, both the BCDC method and the Slepian method
perform worse than the IRI-2016 model. Nevertheless, their differences are less than 10 km,
which is the half of the vertical size of a voxel in this study.
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Table 3. The overall RMSE and ∆RMSE of the HmF2 parameter (unit: km) achieved by the three methods.

Stations Methods RMSE ∆RMSE Stations Methods RMSE ∆RMSE

DB049
BCDC 30.4 -

JR055
BCDC 26.6 -

IRI-2016 28.1 −8.2% IRI-2016 23.8 −11.8%
Slepian 37.4 18.7% Slepian 33.5 20.6%

EB040
BCDC 36.3 -

FF051
BCDC 37.6 -

IRI-2016 33.7 −7.7% IRI-2016 31.0 −21.3%
Slepian 34.9 −4.0% Slepian 35.5 −5.9%

RO041
BCDC 31.8 -

Average
BCDC 32.5 -

IRI-2016 29.9 −6.4% IRI-2016 29.3 −10.9%
Slepian 32.0 0.6% Slepian 34.7 6.3%

3.2.4. VTEC Validations

Figures 9 and 10 shows the VTEC map produced by IGS, UPC, BCDC, IRI-2016 and
Slepian during the geomagnetic quiet time and disturbed time, respectively. The VTEC
maps produced by the BCDC are closer to those by IGS and UPC than those by the other
two methods regardless of geomagnetic activity. Figure 11 compares the RMSE of the
VTEC map produced by the BCDC, the Slepian and the IRI-2016 at each moment by taking
that produced by IGS as the truth. The BCDC method performs better than the other two
most of the time. Table 4 lists the overall RMSE of the three methods by taking IGS and
UPC as the truths. Obviously, the BCDC method outperforms the other two. The overall
improvements of the BCDC method over the IRI-2016 model and the Slepian method reach
to 46.9%, 42.3% with respect to IGS and 41.6%, 32.8% with respect to UPC.
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Figure 11. The RMSE (unit: TECU) of the VTEC produced by the BCDC method, the Slepian method
and the IRI−2016 model at each moment by taking the VTEC produced by IGS and UPC as truths.
(a) IGS as the truth; (b) UPC as the truth.

Table 4. The overall RMSE (unit: TECU) and the ∆RMSE of the VTEC derived by the BCDC, the
IRI−2016, and the Slepian method with respect to UPC and IGS respectively.

IGS UPC
BCDC IRI-2016 Slepian BCDC IRI-2016 Slepian

RMSE 3.07 5.78 5.32 2.79 4.78 4.15
∆RMSE - 46.9% 42.3% - 41.6% 32.8%

4. Discussion

Balance cost function and the vertical constraint of EOFs are two main features of
the BCDC method. This section discusses the benefit of the balance cost function and the
choice of the number of the dominated EOFs.



Atmosphere 2022, 13, 426 13 of 16

4.1. Balance Cost Function

NN parameters are updated iteratively according to the model’s cost. Thus, how to
define the cost function is crucial to an NN-based tomographic model. Usually, the cost
function consists of a measurement cost and a constraint cost. In BCDC, the two costs are
well balanced to avoid the produced image being inclined either to the measurements or to
the constraints. To validate this, we compared the produced image with that by a model
with the same flows and configurations as the BCDC but using an unbalanced cost function.
For convenience, we refer the comparing model as unbalanced cost and dynamic correction
neural network (UCDC). The cost function of the UCDC (E′) is the same as it appears in
most work, which is defined as

E′ = CM + g

√√√√∑m
j=1

(
x̂j − xc

j

)2

m
(13)

where xc
j refers to the electron density of the jth voxel after corrections, and the rests are the

same as those in the above equations.
The constraint cost in UCDC is defined by the variable of election density. Note

that STEC is the integral of the electron density along a signal path, which is longer the
thickness of the ionosphere. Therefore, the value of STEC is always larger than the value
of the electron density in several orders of magnitude. Under this circumstance, the
measurement cost changes much faster than the constraint cost if the forward image is
fluctuated. Since the goal of the training is to minimize the total cost, the image produced
by the UCDC will be inclined to the STEC measurement. Figure 12 shows the RMSEs of
the estimated STEC for each station used for tomography and used for cross-validation.
Comparing with the BCDC, the RMSE of the estimated STEC by the UCDC is smaller,
which agrees with the conclusion of the image being inclined to the STEC measurement
in the UCDC method. However, smaller RMSE on the STEC parameter does not mean
better quality.
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Figure 13 shows the vertical profiles obtained by the two methods. Compared with
the BCDC, the vertical profiles obtained by the UCDC around or below the F2 layer seems
to own a wider shape and show a larger discrepancy with the observed profiles. This is
in accordance with the data shown in Figure 14. As the measurement cost dominates the
training, the impact of the constraint become weak. A weaker vertical constraint gives more
freedom to the model to adjust its vertical shape, making the vertical profiles distorted
to better fit the STEC measurements. Though a smaller RMSE on the STEC parameter is
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observed in UCDC, its image is distorted and thus unreasonable. Therefore, an NN-based
tomography model can benefit from a balance cost function.

Atmosphere 2022, 13, 426 14 of 17 
 

 

to own a wider shape and show a larger discrepancy with the observed profiles. This is in 
accordance with the data shown in Figure 14. As the measurement cost dominates the 
training, the impact of the constraint become weak. A weaker vertical constraint gives 
more freedom to the model to adjust its vertical shape, making the vertical profiles dis-
torted to better fit the STEC measurements. Though a smaller RMSE on the STEC param-
eter is observed in UCDC, its image is distorted and thus unreasonable. Therefore, an NN-
based tomography model can benefit from a balance cost function. 

 
Figure 13. Vertical profiles obtained by the BCDC and the UCDC at EB040 station (left column) and 
RO041 station (right column), respectively. 

4.2. Number of Dominated EOFs 
In the BCDC method, one of the corrections on the forward image is implemented by 

fitting each vertical profile with a few dominated EOFs. Decreasing the number of domi-
nated EOFs give less freedom to the variation of the vertical profile, and vice versa. In 
other words, fewer dominated EOFs means a stronger constraint on the vertical profile, 
hence a smaller distortion is expected on the vertical profile. Figure 14 compares the ver-
tical profiles that are obtained by three, five and ten dominated EOFs, respectively. Com-
paring to the ionosonde profiles, the vertical profiles achieved by ten EOFs show the larg-
est distortion, followed by those achieved by five EOFs and three EOFs. Therefore, the 
number of the dominated EOFs in the BCDC method should not be very large. 

  

Figure 13. Vertical profiles obtained by the BCDC and the UCDC at EB040 station (left column) and
RO041 station (right column), respectively.

Atmosphere 2022, 13, 426 15 of 17 
 

 

 
Figure 14. Vertical profiles obtained by the BCDC model using three (EOF-3), five (EOF-5) and ten 
(EOF-10) EOFs at EB040 and JR055 at 00:15 LT on June 25, 2015. 

5. Conclusions 
A new tomographic model for ionospheric inversion based on neural network, 

named balance cost and dynamic correction (BCDC), is proposed. The BCDC model at-
tempts to avoid the problem of undervaluing the selected constraints and the problem of 
the dependency on the preset images. The first problem is solved by using a cost function 
that well balances the measurement cost and the constraint cost. Tests show that an NN-
based tomographic model can be benefited from a balance cost function. The second prob-
lem is solved by using a dynamically corrected image rather than a preset image. The 
forward image is corrected according to the constraints of EOFs, Chapman function and 
horizontal smoothing. Tests show that the number of the dominated EOFs should not be 
too large as the vertical constraint might become weak if too many EOFs are adopted. 

A recently developed tomographic model, named Slepian in this paper, which also 
uses EOFs and horizontal smoothing as the constraints, as well as the IRI-2016 model, 
were selected as the references to compare with the BCDC method. Validations show that 
the BCDC method outperforms the other two in the comparisons of the STEC cross-vali-
dation, NmF2 parameters, vertical profiles and VTEC map. The BCDC method performs a 
bit better than the Slepian method, but both are worse than the IRI-2016 model in the 
comparison of the hmF2 parameter. Nevertheless, their differences are very small, which 
are less than the half size of a voxel vertically. 

In BCDC, the network is simple, which may limit the capability of finding a more 
accurate solution for the model. Our future research will extend this to a deep neural net-
work (DNN). Incorporating more measurements or more constraints into the model is 
will be considered in the near future. 

Author Contributions: H.Z. and J.Y. contributed the main ideas and wrote the manuscript, Y.D., 
Y.H. and Y.Z. implemented the Slepian method and processed some of the data. All authors have 
read and agreed to the published version of the manuscript. 

Funding:  This research was funded by the National Key Research and Development Program of 
China (2018YFB0505304) and the National Natural Science Foundation of China (41771416). 

Data Availability Statement: The data is supported from the EUREF Permanent GNSS Network 
(http://www.epncb.oma.be/ (accessed on 15 January 2022)) for the GNSS observation data and the 
ionosonde observation data were downloaded from the Lowell Global Ionosphere Radio Observa-
tory (GIRO) Data Center (http://giro.uml.edu (accessed on 15 January 2022)). 

Acknowledgments: This work was jointly supported by the National Key Research and Develop-
ment Program of China (2018YFB0505304) and the National Natural Science Foundation of China 
(41771416). 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 14. Vertical profiles obtained by the BCDC model using three (EOF-3), five (EOF-5) and ten
(EOF-10) EOFs at EB040 and JR055 at 00:15 LT on 25 June 2015.

4.2. Number of Dominated EOFs

In the BCDC method, one of the corrections on the forward image is implemented
by fitting each vertical profile with a few dominated EOFs. Decreasing the number of
dominated EOFs give less freedom to the variation of the vertical profile, and vice versa.
In other words, fewer dominated EOFs means a stronger constraint on the vertical profile,
hence a smaller distortion is expected on the vertical profile. Figure 14 compares the
vertical profiles that are obtained by three, five and ten dominated EOFs, respectively.
Comparing to the ionosonde profiles, the vertical profiles achieved by ten EOFs show the
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largest distortion, followed by those achieved by five EOFs and three EOFs. Therefore, the
number of the dominated EOFs in the BCDC method should not be very large.

5. Conclusions

A new tomographic model for ionospheric inversion based on neural network, named
balance cost and dynamic correction (BCDC), is proposed. The BCDC model attempts
to avoid the problem of undervaluing the selected constraints and the problem of the
dependency on the preset images. The first problem is solved by using a cost function that
well balances the measurement cost and the constraint cost. Tests show that an NN-based
tomographic model can be benefited from a balance cost function. The second problem is
solved by using a dynamically corrected image rather than a preset image. The forward
image is corrected according to the constraints of EOFs, Chapman function and horizontal
smoothing. Tests show that the number of the dominated EOFs should not be too large as
the vertical constraint might become weak if too many EOFs are adopted.

A recently developed tomographic model, named Slepian in this paper, which also
uses EOFs and horizontal smoothing as the constraints, as well as the IRI-2016 model, were
selected as the references to compare with the BCDC method. Validations show that the
BCDC method outperforms the other two in the comparisons of the STEC cross-validation,
NmF2 parameters, vertical profiles and VTEC map. The BCDC method performs a bit better
than the Slepian method, but both are worse than the IRI-2016 model in the comparison of
the hmF2 parameter. Nevertheless, their differences are very small, which are less than the
half size of a voxel vertically.

In BCDC, the network is simple, which may limit the capability of finding a more
accurate solution for the model. Our future research will extend this to a deep neural
network (DNN). Incorporating more measurements or more constraints into the model is
will be considered in the near future.

Author Contributions: H.Z. and J.Y. contributed the main ideas and wrote the manuscript, Y.D., Y.H.
and Y.Z. implemented the Slepian method and processed some of the data. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2018YFB0505304) and the National Natural Science Foundation of China (41771416).

Data Availability Statement: The data is supported from the EUREF Permanent GNSS Network
(http://www.epncb.oma.be/ (accessed on 15 January 2022)) for the GNSS observation data and the
ionosonde observation data were downloaded from the Lowell Global Ionosphere Radio Observatory
(GIRO) Data Center (http://giro.uml.edu (accessed on 15 January 2022)).

Acknowledgments: This work was jointly supported by the National Key Research and Develop-
ment Program of China (2018YFB0505304) and the National Natural Science Foundation of China
(41771416).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Su, K.; Jin, S.; Hoque, M.M. Evaluation of Ionospheric Delay Effects on Multi-GNSS Positioning Performance. Remote Sens. 2019,

11, 171. [CrossRef]
2. Austen, J.R.; Franke, S.J.; Liu, C.H.; Yeh, K.C. Application of computerized tomography techniques to ionospheric research.

In Proceedings of the International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and
Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Oulu, Finland, 9–14 June 1986; pp. 25–35, Part 1.

3. Rius, A.; Ruffini, G.; Cucurull, L. Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys.
Res. Lett. 1997, 24, 2291–2294. [CrossRef]

4. Raymund, T.D.; Austen, J.R.; Franke, S.J.; Liu, C.H.; Klobuchar, J.A.; Stalker, J. Application of computerized tomography to the
investigation of ionospheric structures. Radio Sci. 1990, 25, 771–789. [CrossRef]

5. Pryse, S.E.; Kersley, L.; Rice, D.L.; Russell, C.D.; Walker, I.K. Tomographic imaging of the ionospheric mid-latitude trough. Ann.
Geophys. 1993, 11, 144–149.

http://www.epncb.oma.be/
http://giro.uml.edu
http://doi.org/10.3390/rs11020171
http://doi.org/10.1029/97GL52283
http://doi.org/10.1029/RS025i005p00771


Atmosphere 2022, 13, 426 16 of 16

6. Bhuyan, K.; Singh, S.B.; Bhuyan, P.K. Tomographic reconstruction of the ionosphere using generalized singular value decomposi-
tion. Curr. Sci. India 2002, 83, 1117–1120.

7. Farzaneh, S.; Forootan, E. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and
Empirical Orthogonal Function Approach. Surv. Geophys. 2018, 39, 289–309. [CrossRef]

8. Yao, Y.B.; Zhai, C.Z.; Kong, J.; Zhao, Q.; Zhao, C. A modified three-dimensional ionospheric tomography algorithm with side
rays. GPS Solut. 2018, 22, 107. [CrossRef]

9. Chen, C.H.; Saito, A.; Lin, C.H.; Yamamoto, M.; Suzuki, S.; Seemala, G.K. Medium-scale traveling ionospheric disturbances by
three-dimensional ionospheric GPS tomography. Earth Planets Space 2016, 68, 32. [CrossRef]

10. Chen, B.Y.; Wu, L.X.; Dai, W.J.; Luo, X.; Xu, Y. A new parameterized approach for ionospheric tomography. GPS Solut. 2019,
23, 96. [CrossRef]

11. Seemala, G.K.; Yamamoto, M.; Saito, A.; Chen, C.H. Three-dimensional GPS ionospheric tomography over Japan using constrained
Least Squares. J. Geophys. Res. 2014, 119, 3044–3052. [CrossRef]

12. Zheng, D.Y.; Yao, Y.B.; Nie, W.F.; Liao, M.; Liang, J.; Ao, M. Ordered Subsets-Constrained ART Algorithm for Ionospheric
Tomography by Combining VTEC Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7051–7061. [CrossRef]

13. Wen, D.B.; Liu, S.J.; Tang, P.Y. Tomographic reconstruction of ionospheric electron density based on constrained algebraic
reconstruction technique. GPS Solut. 2010, 14, 375–380. [CrossRef]

14. He, L.M.; Heki, K. Three-dimensional tomography of ionospheric anomalies immediately before the 2015 Illapel earthquake,
Central Chile. J. Geophys. Res. Space 2018, 123, 4015–4025. [CrossRef]

15. Wen, D.B.; Yuan, Y.B.; Ou, J.K.; Zhang, K.; Liu, K. A hybrid reconstruction algorithm for 3-D ionospheric tomography. IEEE Trans.
Geosci. Remote Sens. 2008, 46, 1733–1739. [CrossRef]

16. Zhao, H.S.; Yang, L.; Zhou, Y.L.; Ming, D. A AMART Algorithm Applied to Ionospheric Electron Reconstruction. Acta Geod.
Cartogr. Sin. 2018, 47, 57–63. [CrossRef]

17. Gerzen, T.; Minkwitz, D. Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in
comparison to other algebraic methods. Ann. Geophys.-Ger. 2016, 34, 97–115. [CrossRef]

18. Ma, X.F.; Maruyama, T.; Ma, G.; Takeda, T. Three-dimensional ionospheric tomography using observation data of GPS ground
receivers and ionosonde by neural network. J. Geophys. Res. Space 2005, 110, A05308. [CrossRef]

19. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. In Parallel Distributed
Processing; Rumelhart, D., Mclelland, J., Eds.; MIT Press: Cambridge, MA, USA, 1986; Volume 2, pp. 318–362.

20. Hirooka, S.; Hattori, K.; Takeda, T. Numerical validations of neural network based ionospheric tomography for disturbed
ionospheric conditions and sparse data. Radio Sci. 2011, 46, 1–13. [CrossRef]

21. Razin, M.R.G.; Voosoghi, B. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography. Adv.
Space Res. 2016, 58, 339–348. [CrossRef]

22. Razin, M.R.G.; Voosoghi, B. Ionosphere tomography using wavelet neural network and particle swarm optimization training
algorithm in Iranian case study. GPS Solut. 2017, 21, 1301–1314. [CrossRef]

23. Zheng, D.Y.; Yao, Y.B.; Nie, W.F. A new three-dimensional computerized ionospheric tomography model based on a neural
network. GPS Solut. 2020, 25, 10. [CrossRef]

24. Zheng, D.Y.; Yao, Y.B.; Nie, W.F.; Yang, W.; Hu, W.; Ao, M.; Zheng, H. An Improved Iterative Algorithm for Ionospheric
Tomography Reconstruction by Using the Automatic Search Technology of Relaxation Factor. Radio Sci. 2018, 53, 1051–1066.
[CrossRef]

25. Hannachi, A. Empirical Orthogonal Functions. In Patterns Identification and Data Mining in Weather and Climate; Springer
Atmospheric Sciences; Springer: Cham, Switzerland, 2021; pp. 31–69. [CrossRef]

26. Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From
ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [CrossRef]

27. Hong, J.; Kim, Y.H.; Chung, J.K.; Ssessanga, N.; Kwak, Y.-S. Tomography reconstruction of ionospheric electron density with
empirical orthonormal functions using Korea GNSS network. J. Astron. Space Sci. 2017, 34, 7–17. [CrossRef]

28. Dvinskikh, N.I. Expansion of ionospheric characteristics fields in empirical orthogonal functions. Adv. Space Res. 1988, 8, 179–187.
[CrossRef]

29. Aa, E.; Ridley, A.; Huang, W.G.; Zou, S.; Liu, S.; Coster, A.J.; Zhang, S. An Ionosphere Specification Technique Based on Data
Ingestion Algorithm and Empirical Orthogonal Function Analysis Method. Space Weather 2018, 16, 1410–1423. [CrossRef]

30. Chapman, S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth.
Proc. Phys. Soc. 1931, 43, 26–45. [CrossRef]

31. Hernandez-Pajares, M.; Garcia-Fernandez, M.; Rius, A.; Notarpietro, R.; Von Engeln, A.; Olivares-Pulido, G.; Aragón-Àngel, À.;
García-Rigo, A. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation
Satellite Systems-LEO occultation missions. J. Geophys. Res. Space 2017, 122, 9003–9014. [CrossRef]

32. Sezen, U.; Arikan, F.; Arikan, O.; Ugurlu, O.; Sadeghimorad, A. Online, automatic, near-real time estimation of GPS-TEC:
IONOLAB-TEC. Space Weather 2013, 11, 297–305. [CrossRef]

http://doi.org/10.1007/s10712-017-9446-y
http://doi.org/10.1007/s10291-018-0772-4
http://doi.org/10.1186/s40623-016-0412-6
http://doi.org/10.1007/s10291-019-0893-4
http://doi.org/10.1002/2013JA019582
http://doi.org/10.1109/TGRS.2020.3029819
http://doi.org/10.1007/s10291-010-0161-0
http://doi.org/10.1029/2017JA024871
http://doi.org/10.1109/TGRS.2008.916466
http://doi.org/10.11947/j.AGCS.2018.20160540
http://doi.org/10.5194/angeo-34-97-2016
http://doi.org/10.1029/2004JA010797
http://doi.org/10.1029/2011RS004760
http://doi.org/10.1016/j.asr.2016.04.029
http://doi.org/10.1007/s10291-017-0614-9
http://doi.org/10.1007/s10291-020-01047-1
http://doi.org/10.1029/2018RS006588
http://doi.org/10.1007/978-3-030-67073-3_3
http://doi.org/10.1002/2016SW001593
http://doi.org/10.5140/JASS.2017.34.1.7
http://doi.org/10.1016/0273-1177(88)90238-4
http://doi.org/10.1029/2018SW001987
http://doi.org/10.1088/0959-5309/43/1/305
http://doi.org/10.1002/2017JA023876
http://doi.org/10.1002/swe.20054

	Introduction 
	The BCDC Model 
	Corrections Using Vertical Constraints 
	Correction Using a Horizontal Constraint 
	Pre-Training Process 

	Validations and Comparisons 
	Data and Method 
	Results 
	STEC Cross-Validations 
	Vertical Profile Validations 
	NmF2 and HmF2 Validations 
	VTEC Validations 


	Discussion 
	Balance Cost Function 
	Number of Dominated EOFs 

	Conclusions 
	References

