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Abstract: China is currently the country with the largest carbon emissions in the world, to which,
the power industry contributes the greatest share. To reduce carbon emissions, reliable and timely
forecasting measures are important and necessary. By using different frequency variables, in this
study, we used the mixed-data sampling (MIDAS) regression model to forecast the annual carbon
emissions of China’s power industry compared with a benchmark model. It was found that the
MIDAS model had a higher prediction accuracy than models such as the autoregressive distributed
lag (ARDL) model. Moreover, our results showed that the MIDAS model could conduct timely
nowcasting, which is useful when the data have some releasing lag. Through this prediction method,
the results also demonstrated that the carbon emissions of the power industry have a significant
relationship with GDP and thermal power generation, and that the value of carbon emissions would
keep increasing in the years of 2021 and 2022.
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1. Introduction

Carbon emissions are one of the main by-products of industrial production and human
life, of which, energy consumption is the main source. The increase in the Earth’s average
temperature caused by carbon emissions has had a serious impact on ecological balance and
climate stability. Therefore, energy conservation and emission reduction are consistent and
urgent tasks worldwide. China is currently the country with the largest carbon emissions
in the world. As the largest developing country, China’s carbon emissions show unique
characteristics. First, China is the world’s largest carbon emitter in terms of total emission
amounts. As a result, there has been much more pressure for energy conservation and
emission reduction than in other countries, especially since China is still a developing
country in terms of industrialization and urbanization. Secondly, from the perspective of
structure, although the power industry also accounts for the highest proportion of carbon
emissions in China compared with other major carbon emissions, the difference is that
the carbon emissions of China’s power industry are still growing, whereas those of other
countries are starting to decrease. It can be seen in Figure 1a,b, which shows the largest
four countries in terms of carbon emissions across the world [1], that the power industry
carbon emissions of the other three countries have peaked, but those of China have not.

This is mainly because China’s electricity is mainly generated by coal-fired thermal
power plants, which omit a large amount of carbon dioxide and other greenhouse gases
(GHG). Although thermal power plants have the advantages of a stable power supply,
relatively lower impact from weather fluctuations, and less potential damage to the power
grid, their carbon emissions have led to long-term high carbon emissions by the power
industry. According to China’s National Bureau of Statistics (Beijing, China), China’s
thermal power plants make up 74% of all power plants [2].
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Figure 1. (a) The distribution of carbon emissions in China and the USA. (b) The distribution of
carbon emissions in Russia and India.

In September 2020, China proposed specific targets for carbon emission reductions,
namely “peaking carbon dioxide emissions by 2030 and achieving carbon neutrality by
2060” [3]. As mentioned above, based on the characteristics of China’s carbon emissions,
to achieve this goal, controlling the carbon emissions of the power industry is key. The
power industry is the foundation of economic growth, so carbon emissions are closely
related to GDP. On the basis of this hypothesis, our first attempt was to use GDP as an
independent variable to predict the carbon emissions of the power industry. Moreover, the
carbon emissions of the power industry are directly related to the amount of electricity
generated by thermal power plants. Since these amounts can be controlled by a plan, if the
relationship between carbon emissions and the electricity produced by the thermal power
plant can be estimated, this will have more practical significance for the daily management
of carbon emissions. Therefore, we first used GDP and thermal power generation as
separate independent variables to predict the carbon emissions of the power industry, and
then simultaneously used GPD and thermal power generation as multiple independent
variables to predict the power industry’s carbon emissions.

The carbon emission data are released yearly, whereas the data on GDP and thermal
power generation are published quarterly and monthly, respectively. To predict carbon
emissions by using the data on GDP or thermal power generation, the first obstacle we faced
was the difference in data frequency. Generally, if the data of the dependent variable and
the independent variable are of different frequencies, mathematical processing is required
to downgrade them to the same frequency, or else the low-frequency data are raised to
high-frequency data by means of interpolation, data fitting, etc. The approach of adding up
or averaging the low-frequency data will lose more useful original information and cause
distortion in the predictions, which is one of the disadvantages of this approach. Moreover,
for data with the same frequency, because there are usually time lags in releasing the data,
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it is difficult to make timely dynamic predictions or to update the predictions according
to the latest data releases and establish an automatic prediction index. To solve these
difficulties, Ghysels et al. [4] proposed the mixed-frequency model, which combines low-
frequency data with high-frequency data by imposing a weighted function, and showed
an improvement in the prediction of mixed-frequency data. Giannone et al. [5] found that,
when current quarterly data were used to generate nowcasts of quarterly GDP data, the
latest updated data and timely information helped to improve the forecasting accuracy.
Today, when big data and machine learning are widely used, and the immediacy and
accuracy of forecasts are increasingly required, the application of mixed-frequency models
for carbon emission forecasting can be a useful model.

To carry out a comparative study, this research also used the ADRL model to predict
the carbon emissions of the power industry to determine whether MIDAS had a better
performance than the traditional model. The remainder of this article is arranged as follows:
Section 2 reviews the methods of forecasting carbon emissions and expounds on the relevant
literature and research on carbon emissions in China; Section 3 introduces the main princi-
ples and main applications of the MIDAS model and establishes the index of prediction
accuracy; Section 4 describes the data sources and the preliminary processing of the data;
and Section 5 compares and analyzes the performance of different models in forecasting.
Finally, the conclusions and discussion end the article in Sections 6 and 7, respectively.

2. Literature Review

Carbon emissions are closely related to industrial development and people’s lives. To
reduce carbon emissions, we must first investigate the source of carbon emissions, then
analyze the relationship between emissions and major economic variables, and then predict
carbon emissions on the basis of this relationship. Many attempts to measure and predict
carbon emissions have been made by many studies in the literature. Fang et al. [6] pro-
posed an improved Gaussian process regression model to predict the total carbon dioxide
emissions of several countries and found that some countries will still have increased
emissions but others will be well controlled in the short term. Wu et al. [7] studied the
impact of economic growth on carbon emissions in the BRICS countries (Brazil, Russia,
India, China, and South Africa) by using a multi-variable grey model, and found that
the impact of economic growth in Brazil and Russia on carbon emissions was getting
smaller, whereas carbon emissions from India, China, and South Africa would increase.
Chang et al. [8] proposed an algorithm based on combined quantum harmony search
(QHS) to predict carbon emissions from fossil fuels. Köne et al. [9] used trend analysis
to forecast the energy-related carbon emissions of the world’s top 25 emitting countries.
Zhao et al. [10] used a MIDAS model and back propagation (BP) to study the impact of
quarterly economic growth on annual carbon emissions, and the empirical results showed
that economic growth has both negative and positive effects on carbon dioxide emissions
across 15 quarters. Hosseini et al. [11] used multiple linear regression (MLR) and multiple
polynomial regression (MPR) analyses to predict Iran’s carbon dioxide emissions in 2030
under two scenarios.

China is currently the country with the largest carbon emissions in the world, and
there are many studies focusing on China’s carbon emissions. Fang et al. [12] used the
stochastic impacts by regression on population, affluence, and technology (STIRPAT) model
to predict whether China’s energy-related industries would peak in 2030, and the results
showed that 26 provinces in China are likely to peak. Li et al. [13] combined the extreme
learning machine and support vector machine algorithm (SVM-ELM) model and the grey
prediction model (GM) to predict the carbon emissions of energy consumption in Beijing
and its surrounding areas, which showed that the proportion of energy consumption has a
serious impact on carbon emissions.

Some studies have conducted further research on carbon emissions, concentrating
on industry carbon emissions. Lin et al. [14] used the logarithmic mean Divisia index
(LMDI) decomposition method to analyze the carbon emissions of the chemical industry
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and believed that the factors of energy intensity and energy structure are beneficial for
reducing the carbon emissions of the chemical industry. Fatima et al. [15] conducted a
decomposition analysis of the change in China’s industrial carbon emissions and found that
energy intensity and carbon emission effects were the most important factors for reducing
carbon emissions. Yang et al. [16] used the ARIMA model to predict the carbon emissions of
the aviation industry in Shanghai, China, and the results showed that the carbon emissions
of the aviation industry will increase by 6.41% in June 2021. Zhang et al. [17] decomposed
the main factors of carbon dioxide emissions from China’s logistics industry by establishing
an extended LMDI model.

As mentioned above, most of the research has focused on exploring the relationship
between economic growth and carbon emissions, but fewer studies have deeply explored
the source of carbon emissions, especially from the perspective of industry. Moreover,
despite it being the biggest carbon emission industry in China, little research has focused
on predicting the carbon emissions of the power industry. Moreover, much research
has used data with the same frequency, which is insufficient for including the necessary
information and demonstrating timeliness. The main innovation of this present study is
that it used data with different frequencies and the MIDAS model to predict the carbon
emissions of China’s power industry for the first time, which enhanced the accuracy and
timeliness of the predictions. Since the thermal power generation can be controlled and
arranged by the authorities, this method could provide a practical path for managing
carbon emissions in this industry.

3. Methodology
3.1. ARDL Model

In this study, we chose the ARDL model as a comparison or benchmark model for the
MIDAS model, mainly because the MIDAS model was developed from the ARDL model.
The general expression of an ADRL model is:

Yt = β0 +
q

∑
j=1

β jYt−j +
p

∑
i=0

aiXt−i + ut (1)

In the above formula, Yt is the low-frequency dependent variable in period t, Xt is
the high-frequency independent variable, Yt−j is the dependent variable lag in period j,
Xt−i is the independent variable lag in period i, and p and q are the largest lag order of the
independent and dependent variables, respectively, which is also written as an ARDL (q, p)
model. The ARDL model is mostly used to predict the relationship between different time
series. Some studies have used this model for the long-term relationships among monetary
supply, income, nominal interest rates, foreign interest rates, and foreign exchange rates [18],
and another study used this model to explore the long-term relationships between energy
and economic growth in some countries [19]. Recently, many studies have used the
ARDL model to study the relationships among economic growth, policy, and carbon
emissions [20,21]. Since there are many high-frequency lag polynomials in the model
that need to be estimated, some constraints, such as weight average, are often applied to
estimation models, which led to the concept of the MIDAS model.

3.2. The MIDAS Model

As mentioned above, the MIDAS model was derived from ARDL model and is widely
used when dependent variables and independent variables with different frequencies are
used in the same model. Unlike other models, the MIDAS model can make full use of
the information of high-frequency variables, restrict the coefficient to be evaluated, and
improve the prediction accuracy of low-frequency variables. It was originally designed
to predict stock market volatility. Accordingly, the MIDAS model was initially only a
basic model with one independent variable, and then gradually developed into a multiple
independent variate model.



Atmosphere 2022, 13, 423 5 of 14

3.2.1. The Basic MIDAS Model

The basic equation of the MIDAS model is:

Yt = β0 + β1B
(

L1/m; θ
)

X(m)
t + εt (2)

where Yt is the low-frequency dependent variable, X(m)
t−1 is the high-frequency independent

variable, and m is the frequency ratio between the high-frequency data and the low-
frequency data. If Yt represents annual data and Xt represents monthly data, then m equals
4; if Yt represents quarterly data and Xt represents monthly data, then m equals 3, and so
on. B

(
L1/m

)
is a weighted lag polynomial, which is the essence of this MIDAS model,

and its expression is B
(

L1/m; θ
)
= ∑K

k=0 B(k; θ)Lk/m. L1/m is a lag operator and satisfies

L1/mx(m)
t = x(m)

t−1/m. β0 and β1 are the parameters or coefficients to be estimated, and εt
represents the i.i.d. error. The basic MIDAS model is described as the MIDAS (m, K) model.

MIDAS models are usually divided into constrained models and unconstrained mod-
els. Constrained models are those that apply a weighted lag polynomial because the
selection of constraints is often subjective, which may lead to deviations in the estimated
or predicted results. The unconstrained MIDAS model proposed by Foroni et al. [22],
also known as the U-MIDAS model, does not need to impose constraints by using a lag
polynomial and can directly use the least squares method for regression. The unconstrained
MIDAS model is as follows:

Yt = β0 +
K

∑
k=0

βkxtm−k + εt (3)

Constrained MIDAS models use very parsimonious distribution lags to describe the
response of dependent variables to high-frequency independent variables, reducing the
number of parameters from being too large and thus decreasing the difficulty of estimation.
Expressing the coefficients of the lagged independent variables as a distributed lag function
helps us to characterize the dependent variables. The weight function is used to constrain
the variable coefficients. Ghysels [23] suggested the Almon polynomial, the exponential
Almon polynomial, the beta polynomial, and other weighted polynomial functions. The
expression of the Almon polynomial is expressed as:

ω(k; θ) = θ0 + θ1k + θ2k2 + · · · θpkp/ ∑K
k=1

(
θ0 + θ1k + θ2k2 + · · · θpkp

)
(4)

The exponential Almon polynomial is expressed as follows:

ω(k; θ) = exp
(

θ0 + θ1k + θ2k2 + · · · θpkp
)

/ ∑K
k=1 exp(θ0 + θ1k + θ2k2 + · · · θpkp) (5)

The beta polynomial is expressed as follows:

ω(k; θ1, θ2) = f (k/K, θ1; θ2)/
K

∑
k=1

f (k/K, θ1; θ2) (6)

In these three equations, K is the lag order of the independent variables and θ is the
parameter of the polynomials.

Since the MIDAS model was proposed, it has made rapid progress. Götz et al. [24]
combined the smooth transition model and the frequency mixing model to propose a model
called the smooth transition mixing model (STMIDAS), which showed improvements
in predictive ability for non-stationary series. Guérin et al. [25] proposed the Markov
mixed data sampling regression model (MSMIDAS), which used state changes in the
MIDAS parameters to predict economic activity in the United States. Foroni et al. [22]
introduced MIDAS regression with unrestricted linear lag polynomials (U-MIDAS), which
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is particularly useful when the difference in the sampling frequency of the explanatory
variable and the explained variable is small. Breitung et al. [26] introduced a non-parametric
model into a MIDAS model to predict inflation problems.

In the initial and early stages, MIDAS was mainly used to predict characteristic
financial market indicators by applying financial high-frequency data. Ghysels et al. [27]
developed a MIDAS regression model for predicting stock returns. Forsberg et al. [28] found
that the MIDAS model had the ideal overall forecasting properties for measure volatility
based on stock returns. Alper et al. [29] used MIDAS to predict the weekly volatility of stock
markets in 10 emerging markets, and the results showed that the prediction accuracy was
higher than that of the generalized autoregressive conditional heteroskedasticity (GARCH)
model. Körs [30] forecasted the volatility of stocks in 8 countries beyond 1 month, showing
that the MIDAS model can be a sophisticated tool for predicting future volatility. With the
development of the model, the MIDAS model was gradually applied in the prediction of
macroeconomic indicators. Kuzin et al. [31] used MIDAS and vector autoregression (VAR)
models to forecast GDP in the Euro area and found that MIDAS had more advantages
for short-term forecasting. Pan et al. [32] used a time-varying parameter MIDAS model
(TVP-MIDAS) to predict the real GDP growth of the United States by using crude oil prices
and proved that it outperformed the ordinary least squares (OLS) regression model or
the constant coefficient model. Li et al. [33] used Internet search data as high-frequency
data, implementing the MIDAS model to predict China’s consumer price index (CPI), and
proved that search data are strongly correlated with CPI. Gunay et al. [34] used different
variables, such as quarterly GDP, monthly exports, and daily Brent crude oil prices, to
predict the performance of the Chinese economy during COVID-19. MIDAS has also been
used for carbon emissions. Chevallier [35] used the dynamic conditional correlation-mixed
data sampling (DCC-MIDAS) model to demonstrate the negative impact of COVID-19 on
US financial markets and carbon emissions.

3.2.2. Multiple Independent Variables MIDAS Model

It is often necessary to combine multiple independent variables to predict a macroeco-
nomic indicator. If there are two or more high-frequency independent variables in MIDAS,
we obtain the M(n)-MIDAS (m, K) model, which can be used to identify different coefficients
between low-frequency variables and high-frequency variables. The M(n)-MIDAS (m, K)
model with n explanatory variables can be expressed as:

Yt = β0 +
n

∑
i=1

βiBi

(
L1/m; θi

)
X(m)

i,t + εt (7)

In the equation above, the number of independent low-frequency variables increases
to n, compared with Equation (2).

3.2.3. The h-Step Ahead MIDAS Model

Generally, the release of statistical data has a lag. For example, the release time of
quarterly GDP is generally in the first month after the end of the quarter, and the release
time of the other annual data will be longer. In fact, the annual carbon emission data used in
this article have a lag period of more than half a year. Compared with the same-frequency
prediction model, the MIDAS model has the advantages of real-time prediction and gradual
revision. Supposedly, when quarterly GDP is used to forecast annual carbon emissions,
the first quarter’s GDP can be used to forecast carbon emissions for the current year, and
when the second quarter’s GDP is announced, the previous two quarters’ data can be used
immediately to revise the result. In this way, the latest information can be absorbed more
frequently, and the forecasting can be updated and revised in real time. The formula for
the h-step forward MIDAS model is:

Yt = β0 +
n

∑
i=1

βiBi

(
L1/m; θi

)
X(m)

i,t−h/m + εt (8)
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where h is the advanced steps of the high-frequency data, indicating that the low-frequency
variable is predicted at h steps forward. When h = 0, it means that both the high-frequency
data and low-frequency data have been obtained, which is a real-time nowcast. In this
study, h = 0 means that the forecast of the current year’s carbon emissions is based on the
data of GDP and thermal power generation of four quarters of the same year. When h = 1,
it means the data of the first three quarters were used, whereas h = 2 means that the data of
the first two quarters were used, etc. When h = 4, the data of the current year were used to
predict the carbon emissions of the next year, which is a long-term forecast.

3.3. Accuracy Index

In this study, we used the root mean square error (RMSE) as the measure to identify
the forecast error and relative accuracy. The formula for calculating RMSE is:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)
2 (9)

The mean absolute proportional error (MASE) and the mean absolute percentage error
(MAPE) can be used as auxiliary evaluation criteria.

MAPE =
1
m

m

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (10)

MASE =
1
m ∑m

i=1|ŷi − yi|
1

m−1 ∑m
i=2|yi − yi−1|

. (11)

4. Data

In this article, the carbon emissions of the power industry are low-frequency variables
and are also the dependent variables. The high-frequency quarterly GDP data and the
monthly thermal power data were used as the independent variables. To compare the
prediction effects, we also applied the ARDL model, which used the annual GDP data and
annual thermal electricity data as well. All the data ranged from January 1992 to December
2020. We divided the data into two parts, allocating the data from 1992 to 2012 as the
test set and the data from 2013 to 2020 as the prediction set. The low-frequency carbon
emissions of the power industry come from the European carbon emissions database [1],
and the annual and quarterly data of GDP and the annual and monthly data of thermal
power generation come from the National Bureau of Statistics of China (Beijing, China) [2].
The definitions of the variables and the data source are shown in Table 1 below.

Table 1. Variable definitions and data sources.

Symbol Variable Definitions Frequency Observations Data Source

CO2 CO2 emissions of the power industry yearly 29 European Commission [1]

GDPY GDP based on year yearly 29 National Bureau of
Statistics of China [2]

ThermalPwY Electricity generated by thermal
power stations per year yearly 29 National Bureau of

Statistics of China

GDPQ GDP per quarter quarterly 116 National Bureau of
Statistics of China

ThermalPwM Electricity generated by thermal
power stations per month monthly 348 National Bureau of

Statistics of China

4.1. Data Pre-Processing

Since quarterly data and monthly data often have seasonal characteristics, they were
first processed to eliminate seasonal effects by the X-12 method. The graphs before and
after processing are shown below. Figure 2a compares the ThermalPwM monthly data



Atmosphere 2022, 13, 423 8 of 14

before and after processing, and Figure 2b compares the GDP quarterly data before and
after processing.
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Figure 2. (a) Graphs showing the ThermalPwM data before and after de-seasoning. (b) Graphs
showing GDPQ before and after de-seasoning.

It can be seen that the curve processed for the seasonal effect is smoother, which
improves the stability of the data and paves the way for the next step.

4.2. Stationary Test

By convention, we first took the natural logarithm of the seasonally processed data,
and then took the first-order difference. Generally, the first-order differenced data represent
the growth rate of the indicators, which is dlnCO2 = d(loge(CO2)) in this case. The other data
were processed in the same way. The first-order differenced data are as shown in Table 2.

Table 2. Definitions of first-order differenced data and statistical characteristics.

Symbol Definitions Observations Min Max Mean SD

dlnCO2
Growth rate of CO2 emissions by the

power industry 28 −0.01735 0.16883 0.06484 0.05032

dlnGDPY Yearly GDP growth rate 28 0.02944 0.30999 0.12931 0.06559

dlnthermalPwY Yearly growth rate of electricity from
thermal power stations 28 −0.02669 0.16638 0.07719 0.04709

dlnGDPQ Quarterly GDP growth rate 115 −0.010157 0.09889 0.03302 0.02301

dlnthermalPwM Monthly growth rate of electricity
from thermal power stations 347 −0.018903 0.18882 0.00668 0.04262

As a preliminary measure, in order to determine the relationship between carbon
emissions and both GDP and thermal power, we put the annual data of carbon emissions,
GDP, and thermal power in a graph, as shown in Figure 3 below. It can be seen that there
is a similar trend among the three variables, and the correlation is relatively strong. At
the same time, it shows that thermal power has a certain lead relative to carbon emissions,
which encouraged us to make precise predictions.
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The MIDAS model requires data to be a stationary time series, so a stable ADF test
was conducted on the differentiated data. The results are shown in Table 3 below. It can be
seen that the data were stable.

Table 3. Stationary test results.

Symbol ADF Testing p-Value Result

dlnCO2 −4.125755 0.0161 Stationary **
dlnGDPY −1.810576 0.0674 Stationary *

dlnthermalPwY −3.062216 0.0418 Stationary **
dlnGDPQ −4.241424 0.0009 Stationary ***

dlnthermalPwM −19.30022 0.0000 Stationary ***
Note: The symbols ***, **, and * represent significance at the significant levels of 1%, 5%, and 10%, respectively.

5. Empirical Analysis
5.1. Model Estimation

In order to make comparisons and forecasts, we used a total of five models, which are
as follows: the first model is the ARDL model using the annual GDP data to predict the
carbon emissions of the power industry, the second model is the ARDL model using the
annual power data to predict the carbon emissions of the power industry, the third model is
the MIDAS model using quarterly GDP data to predict the annual carbon emissions of the
power industry, the fourth model is the MIDAS model using the monthly data of thermal
power to predict the annual carbon emissions of the power industry, and the fifth model is
the multivariable MIDAS model used to predict the carbon emissions of the power industry
by using the quarterly GDP data and the monthly thermal power data. As mentioned
above, the RMSE, MAPE, and MASE were calculated to determine the best lag value of k.
Models 1 to 5 were specificized as follows:

Model 1:

dlnCO2 t = β0 + ∑q
j=1 β j dlnCO2 t−1 + ∑p

i=0 ai dlnGDPYt−i + ut (12)

Model 2:

dlnCO2 t = β0 + ∑q
j=1 β j dlnthermalPwYt−1 + ∑p

i=0 ai dlnthermalPwY + ut (13)

For the ARDL models, the lag order was automatically selected by the software.
Model 3:
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dlnCO2 t = β0 + β1B
(

L1/4; θ
)

dlnGDPQ(4)
t + εt (14)

Model 4:

dlnCO2 t = β0 + β2B
(

L1/12; θ
)

dlnthermalPwM(12)
t + εt (15)

Model 5:

dlnCO2 t = β0 + β1B
(

L1/4; θ
)

dlnGDPQ(4)
t + β2B

(
L1/12; θ

)
dlnthermalPwM(12)

t + εt (16)

For MIDAS, the Almon polynomial was selected as the weight function, and the
accuracy index was used to determine the optimal lag value k.

As can be seen from Table 4, if the ARDL model was used for prediction, the RMSE
values of annual GDP and annual power generation, as independent variables, were 0.05
and 0.056, respectively; accordingly, the best lag for these was found for ARDL (5,1) and
ARDL (5,4). The RMSE of Model 1 was relatively lower than that of Model 2, indicating that
using GDP is more accurate than using annual power. For the MIDAS model, the RMSE
values of quarterly GDP and monthly power were 0.04139 and 0.0414, respectively, which
are basically the same, but both are lower than those of the ARDL model, indicating that the
MIDAS model had advantages in predicting annual CO2 emissions. At the same time, for
the multivariable model, that is, the model using both quarterly GDP and monthly power
generation data, the RMSE reached the lowest level among the five models, indicating
that the M(n)-MIDAS (m, K) model has the greatest advantage for predicting annual
CO2 emissions.

Table 4. Accuracy indices of different models.

Model
1 2 3 4 5

ARDL MIDAS

Variable dlnGDPY dlnthermalPwY dlnGDPQ dlnthermalPwM dlnGDPQ
dlnthermalPwM

RMSE 0.050012 0.055784 0.041391 0.041428 0.037131
MAPE 286.7752 270.9444 259.2398 269.2595 197.0581
MAE 0.045379 0.04354 0.034088 0.03489 0.030401
Lag ARDL(5,1) ARDL(5,4) K1 = 2 K2 = 18 K1 = 13, K2 = 26

For each of the models, the evaluated results and the coefficient of the equation are
shown in Table 5.

If we compare Model 1 with Model 5, it can be seen that, both in the ARDL model and
the MIDAS model, GDP and power had a positive effect on carbon dioxide emissions. From
the perspective of the R-square value, Model 2 had the best simulation results, followed by
Model 5 and Model 1, but the RMSE values of Model 1 and Model 2 were not the best. The
R-square values of Model 3 and Model 4 are lower, indicating that the two models need
other explanatory variables, and there may be a problem of variable omission, whereas the
R-square of Model 5 is acceptable and the model has the lowest RMSE.

If we take all these points together, Model 5 is the optimal model among the five
models, demonstrating that the carbon emissions of the power industry are related not
only to thermal power generation but also to GDP, because power is closely related to
economic development. At the same time, Model 5 is also able to make instant predictions,
as it can predict the carbon dioxide emissions of the coming year in advance, based on the
quarterly and monthly data disclosed within the year, without waiting for full disclosure of
the annual data, which solves the data disclosure lag problem.
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Table 5. Coefficients of the models.

Variable

Models

ARDL MIDAS

1 2 3 4 5

dlnCO2 (−1) −0.491435
(0.357392)

−0.683536 **
(0.171498) — —

dlnGDPY 1.145907 **
(0.485071) — — —

dlnGDPY (−1) −0.444184
(0.407048) — — —

dlnthermalPwY — 0.581409 ***
(0.071905) — —

dlnthermalPwY (−1) — 0.691681 **
(0.168351) — —

dlnGDPQ — — 2.931045 **
(2.825309) — 0.365510

(0.300701)

dlnthermalPwM — — 0.543143 ***
(0.179435)

0.722755 **
(0.227343)

Intercept 0.117435 **
(0.040799)

0.08185 **
(0.012126)

0.027616
(0.022987)

0.025505
(0.017184)

0.008504
(0.033976)

AIC −3.450208 −6.778780 −3.433334 −3.783747 −4.082098
R-squared 0.629634 0.991101 0.312447 0.515689 0.731822

Note: The symbols *** and **, represent significance at the levels of 1% and 5%, respectively.

5.2. Nowcasting and Forecasting

At the time of writing, China’s monthly thermal power generation and quarterly GDP
for 2021 have been fully announced, but the power industry’s 2021 carbon emissions have
not been released. Based on the principle of the h-step models mentioned above, carbon
emissions in 2021 can be estimated by using the GDP for the first, second, third, and fourth
quarters of 2021, as well as monthly electricity production for the whole year. At the same
time, carbon emissions in 2022 can be estimated by using the data for the whole year of
2021. The estimated results are as shown in Table 6.

Table 6. Nowcasting and forecasting of carbon emissions of the power industry.

Steps Year of 2021
(Mt CO2/Year)

Year of 2022
(Mt CO2/Year)

h = 0 5166.04 —
h = 1 5069.03 —
h = 2 5072.39 —
h = 3 5187.45 —
h = 4 5225.81 5201.84

As can be seen from Table 6, in forecasts of carbon emissions in 2021, according to the
different h steps (from h = 0 to h = 4), the value of carbon emissions in 2021 has been revised
quarterly, but are basically stable at around 5100 Mts. Among the different steps, when
h = 0, the model uses all data from four quarters for GDP and 12 months of data on thermal
power generation, so we chose 5166.04 Mt as the nowcasting value for the 2021 carbon
emissions. Meanwhile, when h = 4, the model uses the data from last year to forecast the
current year, so the 2022 carbon emissions are forecasted to be 5201.84 Mt. If the estimated
values are included, we can construct a graph of China’s carbon emissions from 1992 to
2022, as shown in Figure 4.

According to Figure 4, the carbon emissions of China’s power industry have been and
will still be maintaining a growth trend, despite the impact of COVID-19, which began in
2020; there was even a sharp increase in 2021 compared with 2020.
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Figure 4. The carbon emissions of China’s power industry from 1992 to 2022.

6. Conclusions

Applying the MIDAS model, in this study, we used data with different frequencies to
build a framework for predicting carbon emissions from China’s power industry. When
comparing MIDAS with a basic model, we found that the MIDAS model had a higher
prediction accuracy than the ARDL model, and the MIDAS model with multiple inde-
pendent variables had a higher prediction accuracy than the MIDAS models with single
independent variables.

For the quarterly GDP and monthly thermal power generation data, we found that
thermal power generation showed a strong correlation with the carbon emissions of the
power industry, and had a certain leading predictive forecast ability, which could help
governments to deeply explore the sources of carbon emissions and to implement the
necessary policy to restrain thermal power or replace it with other kinds of energy.

The MIDAS model has the function of real-time prediction. This function allows the
model to keep revising the forecast result with the latest data, which helps to establish a
timelier carbon emission prediction system. In this study, we forecasted that the carbon
emissions of China’s power industry in 2021 and 2022 will maintain an upward trend. This
is mainly due to the fast economic recovery from the pandemic and the strong demand
for energy in China in 2021. According to China’s National Bureau of Statistics, the total
thermal power generation in 2021 has increased by 6.48% compared with 2020, whereas
the GDP growth rate in 2021 was 8.1%, compared with the value of 2.2% in 2020. From a
global perspective, carbon emissions are also likely to rebound, which was estimated by
recent research [36].

In conclusion, by constructing a framework for forecasting carbon emissions in a single
industry, this study suggests a new method that improves the accuracy and timeliness of
forecasting and can be used to enrich the tools of carbon emissions forecasting. Especially
for China, this prediction framework is useful for in-depth explorations of the sources of
carbon emissions and for meeting the reduction goals as scheduled.

7. Discussion and Recommendations

For a long time, China’s electricity supply has been mainly based on coal-fired power
plants, which not only drive up carbon emissions but also cause air pollution. In fact, the
proportion of the installed capacity of coal power in Chinahas gradually decreased in recent
years. As of the end of 2020, it accounted for 49.07%, which was lower than 50% for the first
time [2] but was still relatively high. Especially when the carbon emissions of the power
industry in other countries have shown a downward trend, the carbon emissions of China’s
power industry continue to grow. China is striving to be a developed country in the first half
of this century, while research shows that, in general, the more developed the country, the
greater its carbon dioxide pollution [37]. Considering that China’s electricity demand is still
likely to be very large in the recent future, measures urgently need to be applied to reduce
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it. In the future, carbon emissions from the power generation industry can be reduced in
the following ways. First of all, it is necessary to develop new energy and renewable energy
for power plants, such as hydropower, nuclear power, wind power, and other types of
power plants. Secondly, it is necessary to carry out technological transformation of thermal
power plants to improve their energy utilization efficiency.

From a longer-term perspective, to achieve the goal of carbon neutrality, in addition
to reducing carbon emissions, it is vital to carry out the step of carbon absorption and
carbon storage. Advances in technology and sustainability will provide more possibilities.
Moreover, environmentally friendly sources of alternative energy for industry should be
applied. For example, it could be helpful to increase forestry coverage or to cultivate
specific plants such as bamboo to increase carbon absorption [38,39]. China has a vast land
area and has great potential in this field. Alternatively, through carbon capture technology,
carbon in the air can be captured and converted into raw materials for the manufacture of
fertilizers or other chemicals [40].
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