
����������
�������

Citation: Li, J.; Zhang, J.; Wang, X.;

Wang, G. Long Term Observation of

Fractional Vegetation Cover in

Qingyang of Gansu Province and Its

Response to Climate Change.

Atmosphere 2022, 13, 288. https://

doi.org/10.3390/atmos13020288

Academic Editor: Alfredo Rocha

Received: 17 January 2022

Accepted: 5 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Long Term Observation of Fractional Vegetation Cover in
Qingyang of Gansu Province and Its Response to
Climate Change
Jing Li 1,2,3 , Jianyun Zhang 1,2,3, Xiaojun Wang 1,2,3 and Guoqing Wang 1,2,3,*

1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic
Research Institute, Nanjing 210029, China; lij@nhri.cn (J.L.); jyzhang@nhri.cn (J.Z.); xjwang@nhri.cn (X.W.)

2 Yangtze Institute for Conservation and Development, Nanjing 210098, China
3 Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China
* Correspondence: gqwang@nhri.cn

Abstract: Vegetation is seen as a sensitive indicator of global change because of its crucial role in
connecting the atmosphere, soil, and water. Fractional vegetation cover (FVC), in turn, is an important
indicator of vegetation status. Qingyang is a typically ecologically sensitive region, with a range of
changes in vegetation in the last decade as a result of climatic and non-climatic factors. However,
the exact impact of climate change and human activities remains unclear. Satellite observations can
help to clarify that impact, allowing us to assess trends in vegetation change in the last two decades
(2000–2019). In this study, daily and composite time series vegetation variations were derived from
moderate resolution imaging spectroradiometer (MODIS) data and the impact of climate and human
activity factors was examined for different administrative districts. By deploying multiple regression
models, the research revealed that human activity has contributed 46% to the FVC variation, while
the remaining 54% was led by climate factors. In areas where FVC was increasing, human activity
contributed 55.89% while climate factors contributed 44.11%. In areas where FVC was decreasing,
human activity and climate factors contributed 24.58% and 75.42%, respectively. The study also
looks at the impacts of El Nino/IOD events in FVC dynamics in the study site. The FVC inversion
result from MODIS proved capable of capturing long-term and seasonal vegetation patterns and
thus provide a valuable archive for decadal-scale vegetation dynamics in the study area. Moreover,
the improvement in FVC was a dual effect of climatic and human activities, while the latter owns a
higher contribution especially for the implementation of ecological construction projects.

Keywords: vegetation; climate change; human impact; Qingyang

1. Introduction

Land use/land cover change (LUCC) is one of the core components of global change
research. Land cover plays an essential role in terrestrial life support systems and serves
as an important monitoring indicator to reflect the state of the regional ecological envi-
ronment [1,2]. Moreover, as the link between different layers of the earth system, it also
has a great influence on the components of those layers. Land use is one of the direct
ways human activities act on the natural environment and is also the most direct and
leading driving factors of land cover change throughout history [3,4]. LUCC is generally
regarded as the most obvious phenomenon of global changes and will have a great effect
on terrestrial ecosystems and functions in the next 30 to 40 years, and closely related to the
humanistic process [5].

Vegetation is considered the most important component of terrestrial ecosystems but
is also highly sensitive to climate change. Fractional vegetation cover (FVC) is commonly
regarded as the fraction of green vegetation seen from the nadir of the total statistical
area [6–8]. Long-term observation of surface vegetation cover and its variation can have

Atmosphere 2022, 13, 288. https://doi.org/10.3390/atmos13020288 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13020288
https://doi.org/10.3390/atmos13020288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-1505-1797
https://orcid.org/0000-0002-9985-1627
https://orcid.org/0000-0002-9121-9571
https://doi.org/10.3390/atmos13020288
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13020288?type=check_update&version=2


Atmosphere 2022, 13, 288 2 of 19

great practical significance. It can reflect trends in climate change to a certain degree while
also indicating surface space change, the forces behind that change, and the condition of
the regional ecosystem [9,10]. This is in large part why analysis of the relationship between
vegetation variation and climate change has become a focus of research worldwide.

The inseparable relationship between climate change and vegetation is mainly man-
ifested in two ways: the adaptability of vegetation to climate and the feedback effect of
vegetation on climate. Climate is the most important factor that determines the type and
distribution of vegetation, while vegetation is the most distinctive and comprehensive
reflector of climate. However, as economies expand rapidly and human activities inten-
sify, the global climate is undergoing significant changes. Overconsumption of natural
resources, accelerating urbanization, and the discharge of large amounts of CO2, and other
greenhouse gases into the atmosphere, have led to a series of serious issues, including
rising temperatures and environmental pollution [11,12]. The severe consequences pose
threats to ecosystems, societies, infrastructures, and industry, as well as national interests
and security. Therefore, global changes, in combination with other anthropogenic stressors
will induce vegetation types and coverage to a regional and global extent [13–15]. The
scale of influence is expanding and a clear manifestation at the regional scale has been
observed and verified. Given that the global climate may further warm, it is crucial to
explore the variation trend of regional climate-related factors. Many researchers have
shown that vegetation cover variation is a consequence of the dual effects of climate change
and anthropogenic activities. At the same time, vegetation variation can show the influence
of human activities to a certain extent. Despite several studies focused on the assessment
of vegetation dynamics at different locations or time scales, the quantitative relationship
between vegetation variation and climatic factors and human activities remains to be fully
assessed [14,16,17]. It is noteworthy to explore the related driving factors of vegetation
growth and to which extent the vegetation dynamic has been influenced by climatic and
anthropogenic factors, respectively.

The Loess Plateau has been a focus of national efforts to foster the environment and
introduce sustainable development. It is well-known in the world due to serious soil
erosion. The Loess Plateau is also fragile in the ecological environment because of its
sensitivity to climate change [18]. The area has been subjected to poor use of land resources
driven by relatively backward socio-economic and traditional inefficient agro-pastoral
economic development patterns. Expansion in the heavy industry further aggravated the
destruction of natural resources and resulted in severe environmental pollution.

Within that area, Qingyang is rich in resources ecologically fragile. It has a wealth of
oil, coal, and natural gas and is growing rapidly with the development of those industries
over the last decades. This has enabled high-speed growth in the local economy, as well as
undeniable negative effects, such as pollution and destruction of the ecosystem.

Those changes are reflected in FVC variation, which can be assessed using a com-
bination of remote sensing, GIS, and other techniques. Furthermore, several large-scale
FVC products have been created based on different sensors, including SPOT VGT, MERIS,
AVHRR using different estimation methods [19–23]. These long-term and reliable obser-
vations can help us better understand how to explore and utilize climate resources and
land resources rationally, find pathways to protect the ecosystem, and further effectively
promote the sustainable development of society and those resources.

In our research, we derived the long-term record of FVC in Qingyang using MODIS
images, looking at the temporal and spatial distribution characteristics of FVC. With the
help of meteorological inversion data, the relationship between FVC and climatic factors
was analyzed. Furthermore, the contribution of climate change and human activities
to vegetation variation was quantified. Our research could provide spatial information
support for the assessment of Loess Plateau ecosystem change, and analytical support for
environmental monitoring programs.
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2. Materials and Methods
2.1. Study Site

Qingyang is a provincial city in the eastern part of Gansu Province (Figure 1). It bor-
ders Shaanxi province and Ningxia Hui autonomous region and covers 27,119 km2 [24].
Qingyang administers Huan, Huachi, Qingcheng, Heshui, Ning, Zhengning, and Zhengyuan
counties and Xifeng. It is also a typical example of a rapidly growing mid-size city in north-
west China. The city is rich in oil, gas, coal, and other mineral resources and the main
industries are oil production, refining, and transportation, which contribute 11.5%, 50.1%,
and 38.4%, respectively to the local economy. In 2019, Qingyang had a total population of
2.28 million and a GDP of 74.29 billion yuan.

Figure 1. Location of the Qingyang city in Gansu Province, China.

In recent decades, the city has undergone rapid urbanization and industrialization [25].
It is also ecologically vulnerable to extreme environmental changes as a result of climate
change and low vegetation cover [26].

2.2. Data Sources

The 250-m moderate-resolution imaging spectro-radiometer (MODIS) grid was down-
loaded for the year 2000–2019 from NASA. The MOD09 and MYD09 products were de-
ployed. Daily red and near-infrared (NIR) surface reflectance was acquired from the product
with a spatial resolution of 250 m in Hierarchical Data Format (HDF). Daily quality assess-
ment (QA) flags were used to collect to identify the state of atmosphere and acquisition
position (e.g., presence of clouds, cirrus, aerosol concentration). The 6S radiative transfer
model was processed for atmospheric correction to obtain the surface reflectance [27]. Data
preparation was conducted in three steps. First, cloud removal was conducted by visual
interpretation. Second, time series was conducted to refill the introduced gaps. Third,
monthly aggregation was calculated.

The GPM Core Observatory was launched as the TRMM successor in February 2014
in a collaboration between the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA). It provides global rain and snow
observations with a spatial resolution of 0.1◦ × 0.1◦ and a temporal resolution of half-
hourly [28]. Our study focused on the daily final product of level 3 IMERG (integrated
multi-satellite retrievals for GPM) data at a spatial resolution of 0.1◦ × 0.1◦. The data can
be accessed from NASA (https://disc.gsfc.nasa.gov/datasets?keywords=GPM&page=1,
accessed on 6 June 2021).

The ERA-Interim reanalysis data was deployed in our research. The ERA-Interim re-
analysis dataset is produced by the European Center for Medium-Range Weather Forecasts
(ECMWF). It contains the latest global atmospheric product in multiple spatial and tempo-
ral resolutions. We used the monthly temperature data at four time periods (UTC 00:00,
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06:00, 12:00, 18:00) with a spatial resolution of 0.125 degrees. Bilinear interpolation was
used to resample the ERA-Interim data to match the spatial resolution of MODIS images.

In order to analyze the impact of human activity on vegetation variation, data on
population (containing the total, rural and urban population) and gross domestic product
(GDP) were also factored into the analysis. These data were collected from the statistical
yearbooks published by the local government.

2.3. Methodology
2.3.1. FVC Calculation

The NDVI is one of the most accepted parameters in the ecological studies [29–31]. It
can be expressed as [32]

NDVI = (rnir − rr)/(rnir + rr) (1)

where rnir and rr stand for the surface reflectance in the near-infrared and red spectral
range, respectively. NDVI value ranges from −1 to 1 [33].

In this study, the dimidiate pixel model was used to calculate the FVC for the study
site and based on assumption that the ground object information only consisted of mixed
pixels of vegetation and soil information [34,35]. The NDVI value can be expressed as

NDVI = FVC × NDVIveg + (1 − FVC)× NDVIsoil (2)

where NDVIveg stands for the NDVI value for vegetation only of the mixed pixel, while
NDVIsoil is the NDVI value of the pure soil part of the mixed pixel. Then, the FVC can be
calculated from the following formula:

FVC = (NDVIi − NDVIsoil)/(NDVIveg − NDVIsoil) (3)

where NDVIi is the NDVI value of the selected pixel. Due to the influences from various
factors, such as atmosphere and vegetation phenology, the value of NDVIveg, NDVIsoil can-
not be fixed [36,37]. We have considered using the MODIS land cover product (MOD12Q1)
to retrieve the vegetation type for the study site. However, MOD12Q1 only has two values
in Qingyang city, which is too coarse to determine the specific vegetation type. Therefore,
in our research, NDVIveg is determined by the 95% quantile of the highest value of NDVI
from each scene during summer for each year. In our research, NDVIveg is determined
by from the 95% quantile of the highest value of NDVI from each scene during summer
for each year. NDVIveg is taken as the 5% quantile of the lowest value of each scene of all
images in the calculation for the whole year.

2.3.2. Temporal Decomposition

The Census X-11 method was used to calculate a temporal decomposition of monthly
FVC for each pixel [38,39]. This is an iterative algorithm using simple moving averages.
The method decomposed the time series X(t) into three additive components (S(t), T(t), I(t)),
which can be expressed as

X(t) = S(t) + T(t) + I(t) (4)

where S stands for the seasonal component, T refers to the trend component, and I means
irregular component.

The bandpass-filtering methods were based on the utilization of successive filters,
containing a simple moving average, seasonal moving average, and Henderson filter [40].
Every component is calculated with an iterative procedure with an alternate computation
of the trend component from seasonally adjusted records, and the seasonal component
from the corrected trend series [41,42].

2.3.3. Seasonality Analysis

We also compared information on regional FVC seasonality in different periods, with
the first period from 2000 to 2002 and the latter from 2003 to 2019. Using the approach
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suggested by Chan and Ripley [43], harmonic functions were first applied from each pixel
time series. Then the changes in seasonal phase and amplitude (∆FVC) were estimated
based on peak vegetation activity through the year. The seasonal phase shifts were calcu-
lated from the subtraction between the month in which FVCmax occurred during 2003–2019
and the referring month during 2000–2002. Accordingly, ∆FVCmax was calculated as the
subtraction from two corresponding values of FVCmax.

2.3.4. Multiple Linear Regression (MLR) Models

The vegetation variation is influenced both by climate variables such as changes
in temperature and precipitation, and human activities which can both be positive and
negative. The human variables include human internal migrations, overgrazing [44],
ecological restoration projects leading to afforestation, and returning farmland [45,46]. We
used MLR modeling to separate the influence of climate and human activities on vegetation
variation. For each pixel, we assume the variation in FVC is due to three factors: climate
variables, non-climate variables (regarded as human impacts), and random error (which
should be normally distributed with a mean value of zero). We assumed that the random
errors had no trend. Therefore, the trends identified in residuals were attributed to human
activities. Climate factors (temperature and precipitation) were set as the independent
variable while the FVC was treated as a dependent variable. Then the predicted FVC
(FVCpre) was calculated as,

FVCpre = A × T + B × P + C (5)

where T and P stand for monthly average value of temperature and precipitation, A, B, and
C were regression coefficients. The residual FVC (FVCres) can be expressed as,

FVCres = FVCobs − FVCpre (6)

where FVCobs stands for the inversion result, the residual stands for the FVC value in-
fluenced by human activities and the prediction FVC value means the value dominated
by climate factors. Similar methods have been implemented in previous studies such as
Wessels et al. [47] and Chun et al. [48].

3. Results and Discussion
3.1. Spatial Pattern of Monthly FVC Variation

The spatial distribution of FVC monthly variation indicates strong periodicity (Figure 2).
In general, the southeast part has the highest FVC while the northeast has the lowest value
of the whole area over the year. Higher variations of FVC were observed in the southeast,
followed by the central part and northwest. The greening trend was first observed in March
from the southeast. Gradually, the area of high vegetation increased and moved northwest.
The largest coverage area of high FVC was in July and August. During this period, the FVC
value for the southeast part of Qingyang was higher than 0.6, the central part was higher
than 0.4, the most northern part was around 0.2. The least variation value between these
three regions was observed over the year. A browning trend was observed from September
and gradually moved from the northwest to the southeast.

Vegetation has a certain growing circle and regularity. In the Loess Plateau in China,
the vegetation turns green in spring and grows most luxuriant in summer, and leaves begin
to fall in autumn. This cyclical change was well reflected in the time series observation
(Figure 3). The FVC value presented a significant increase from April and peaked in August,
declining to 0.2 in December. There was no obvious variation trend from January to March,
where there was the lowest FVC value of the year. The same trends were observed in each
administrative district.
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Figure 2. Spatial distribution of FVC monthly variation in Qingyang.

Figure 3. Seasonal pattern of FVC in Qingyang.

3.2. Variation of Annual FVC and Its Spatial Pattern

The annual records of FVC for Qingyang showed a significant increase from 2000 to
2019 with an average value of 30.71%. The minimum FVC of 20.97% was in 2000 while
the maximum of 35.71% was in 2018. In general, the five-year moving average showed an
increasing trend from 2000 to 2010 for the Qingyang area. A significant increasing trend
was found from 2000 to 2003, 2009 to 2010, and 2015 to 2020. Smooth changes were found
from 2003 to 2006, 2010 to 2015. Similar, trends were observed in each administrative
district (Figure 4).
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Figure 4. Annual records of FVC in Qingyang from 2000 to 2019.

The spatial distribution of average FVC for the whole year around and growing season
were obtained using long-term series monthly mean FVC images (Figure 5). Latitude
zonality of FVC distribution was found on both annual and growing season records, with
the FVC value increasing from the northwest to the southeast. Higher FVC was found
during the growing season in almost every part of Qingyang.

Figure 5. Spatial distribution of historical FVC average value for (a) annual (b) growing season from
2000 to 2019.

The percentage of covered area for different FVC range at annual and season periods
was listed in Table 1. The lowest average FVC was observed in the north of Huan county
both in the annual and growing season. Especially for FVC under 20%, it covers 19.95 and
2.48% of the whole area, respectively. Large differences between annual and growing
seasons in FVC were at the range of 40 to 60%, with covering areas of 14.23% and 39.14%,
respectively. The variation is mainly distributed in Huachi, Qingchen, Zhenyuan counties,
and Xifeng. High FVC with a value of more than 60% amounted to 23.86% of the whole
area, which is about seven times the annual result and was detected mainly in Heshui,
Zhengning, and Ning counties.
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Table 1. Percentage of coverage area for different FVC for annual and growing season mean.

FVC Annual Growing Season

<10% 0.62 0.00
10–20% 19.33 2.48
20–30% 34.87 11.85
30–40% 26.10 22.66
40–50% 9.15 25.27
50–60% 5.08 13.87
>60% 4.85 23.86

The annually spatial variations of vegetation trends are shown in Figure 6. The data
showed a similar spatial distribution pattern with the higher FVC in the southeast and
the lower FVC in the north. The greening trend was clearly revealed over the 20 years of
the record. In 2000, 82.28% of the area had an FVC lower than 0.3 with a coverage area of
22,314.73 km2. A remarkable improvement was observed from 2003. Just 11,018.7 km2 had
an FVC < 0.3, less than half the area observed for 2000. By 2019, the area with FVC < 0.3
decreased to 9545.98 km2 or 35.20% of the whole area. At the same time, the area with FVC
> 0.6 increased from 268.92 km2 in 2000 to 1236.45 km2 in 2019, the difference of 967.53 km2.

Figure 6. Annually spatial variation records of Qingyang from 2000 to 2019.

The linear regression slope and significant value of τ are shown in Figure 7. A similar
spatial trend was obtained from both coefficients. For the slope coefficient, 96.71% of
pixels showed a positive trend while 3.29% were negative. For Kendall’s τ coefficient,
95.63% of the grids were positive and 4.37% were negative. Browning mainly occurred
in the southeast part of Zhengyuan and Zhengning counties. Negative trends were also
observable in distinct locations along the north boundary of Huan county.
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Figure 7. Linear regression slope and Kendall’s τ (p < 0.001) derived from monthly FVC between
2000 to 2019.

3.3. Temporal Decomposition of FVC

The Census X-11 method was applied to monthly FVC and the decomposition result
is shown in Figure 8. Five trend breakpoints were observed around July 2002, July 2003,
August 2008, March 2012, and March 2018. A rapid decrease was found in 2003 while a
significant increasing trend was observed around the other four breakpoints. No seasonal
breakpoints were identified. In addition, multiple sudden upward shifts interrupting the
downward trend were found during 2012–2013 and 2015–2016.

Figure 8. Decomposition result of FVC variation from 2000 to 2019 in Qingyang including (a) input
time series, (b) trend component, (c) seasonal cycle, and (d) irregular signal.



Atmosphere 2022, 13, 288 10 of 19

From a temporal perspective, the month during which FVCmax was found followed
a northwest to southeast gradient. From 2000 to 2002, there was an earlier onset in the
south and later onset in the northeast during the year. For the 2003–2019 period, there
was a variation in the onset, and most of the area had an earlier onset compared to the
previous time. Several discrete points in the eastern part of Huan county had a forward
onset compared to the surrounding areas.

Forward and backward shifts of the peak month are shown in Figure 9c. Overall,
negative shifts in the pixels were much higher than positive shifts. Positive (+) shifts were
mainly in the southwest corner of Qingyang, covering Ning and Zhengning counties, and
Xinfeng. Negative (−) shifts dominated most of Huan county and the eastern part of
Qingyang, including the eastern areas of Heshui, Ning and Zhengning counties.

Figure 9. (a) Month with maximum vegetation activity derived from peak FVC from 2000–2002 and
(b) 2003–2019. (c) Estimating seasonal phase shift (‘−’ dedicates an earlier while ‘+’ means a later
occurrence of FVCmax, and (d) seasonal amplitude change of FVCmax.

Seasonal amplitude changes were calculated (Figure 9d), reflecting increasing green-
ness across the whole area. An area in the east Ziwuling forest was blank because there
were no seasonal amplitude changes in this area. Our results indicate that the ∆FVC corre-
sponded well with the spatial patterns of the monotonic greening and browning shown in
Figure 7.

3.4. Quantifying the Contribution from Climate Factors and Human Activities

The long-term variation trend of FVC in Qingyang is shown in Figure 10a. Of the
whole area, 95.43% demonstrated a positive trend, with most staying around 3 × 10−3/a to
5 × 10−3/a, covering 63.63% spatial area. The trend of 2 × 10−3/a to 3 × 10−3/a and 0 to
1.5 × 10−3/a followed, covering 13.33% and 12.65%, respectively. The area with a negative
trend occupied 4.57% of the whole area.

We used the MLR models to determine the FVC trends dominated by climate variables
and human impacts (Figure 10). On the condition of climate variables dominated, the
comparative result of FVC variation were demonstrated in Figure 10b. Over the entire
Qingyang region, 98.73% of the grids displayed a positive trend, with 57.63% located at
0 to 2 × 10−3/a, and the coverage area increased by 39.15% compared to the FVC trend
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in Figure 10a. The increasing area is mainly located in the northern part of Huan county,
eastern part of Huachi, Heshui and Zhengning counties, as well as the southwest part
of Ning county and the central part of Xifeng. The grids ranging from 2 to 3 × 10−3/a
increased 21.63%, covering the southwest part of Huan county and Huachi county, and
the northern part of Heshui county. The grids in the range of 3 to 5 × 10−3/a decreased
by 57.48%. The decreasing trend mainly covered the southern part of Huan and Huachi
counties, and most of Zhengyuan, Qingcheng, Ning counties, and Xifeng.

Figure 10. Trend variation of FVC in Qingyang from 2000 to 2019. (a) FVC trend; (b) dominated by
climate variables; (c) dominated by human factors.

The spatial distribution of human variables that impacted the FVC trend are shown
in Figure 10c. In all, 85.44% of the grids demonstrated a positive trend, with a decrease of
13.29% comparing to climate variable dominated conditions. The decrease was mainly in
the range of 1.5 to 3 × 10−3/a. In contrast, a large increasing trend was discovered from
3 to 5 × 10−3/a, with the area increasing by 25.76%, covering the southwest part of Heshui
county, the central part of Ning county, and in Zhenning county. A total of 14.56% of the
grids demonstrated a decreasing trend, and these were in the northwest of Huan county
and southeast part of Heshui county.

The contributions of climate and human factors to long-term FVC variation (2000–2019)
are shown in Figure 11. In general, the FVC variation is affected by both climate and human
factors, with each contributing 54% and 46%, respectively.

Figure 11. Contribution of (a) climate variables and (b) human factors.

On a spatial scale, the area with a positive FVC trend was highly influenced by human
activities, with 55.89% of the increasing grids dominated by human activities (with the
contribution rate >50%) and 12.08% of the area with a contribution rate of human activities
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higher than 70%. Human activities most influenced the eastern part of Huachi county, the
western part of Heshui county, and the central part of Ning county. The contribution rate
ranges from 50 to 70% in most of central Qingyang.

In total, 44.11% of the area with an increasing FVC trend was influenced by climate
factors and was found in the northeast part of Huan and Zhengyuan counties, the western
part of Huachi county, and the easternmost part of Heshui, Ning, and Zhengning counties.
The northeast part of Huan county and the easternmost part of Heshui, Ning and Zhengning
counties were highly influenced by climate factors (with the contribution rate higher 70%),
accounting for 21.88% of Qingyang.

Climate factors dominated the negative FVC trend covering 75.42% of the decreasing
FVC grids. High influences (with a contribution of more than 70%) were detected in the
western part of Zhengyuan and Ning counties, the eastern part of Heshui county and in
Zhengning county, covering 74.82% of the area.

The remaining 24.58% of the decreasing FVC trend was affected by human activities,
and mostly found in the central part of Zhengyuan county (with the contribution rate
higher than 70), covering 21.92% of the area.

The sloping land conversion program was piloted in some cities in 2000 and has
been fully implemented since 2003. It is the largest conversion program with the feature
of conversion of steep-slope or degraded cropland into forest or grassland [49,50]. The
implementation of the program has greatly influenced the contribution of human activity.

Recent global evidence has demonstrated a direct human impact on global vegetation
greening while the indirect drivers like climate change contributed about 40% [51]. How-
ever, the quantification of climate-driven and human-induced contribution results varies
according to location, vegetation type, and target period [16,52,53]. Ge [54] have quantified
the contribution to vegetation net primary productivity in China from 2001 to 2016, found
the contribution of climate factors was about 60.06% and human activities contributed
39.94%. Moreover, it mentioned that climate change to vegetation dynamics was relatively
lower in the Loess Plateau due to the sloping land conversion program.

Zheng [13] has taken the Loess Plateau as the study site, using NDVI as a proxy
of grassland vegetation. The research found human activities contributed 42.35% to the
vegetation change while climate change contributed 57.65%, which is consistent with our
result. While Shi [55] revealed different results that climate change was responsible for
45.78% of NDVI variation while human activities were responsible for 54.22% in the Loess
Plateau. The inconsistent result could be attributed to (1) different time periods of the
dataset. Our study developed the data from 2000 to 2019, while Shi’s covers 2000 to 2016.
A new round of Grain for Green Project was implemented in Gansu Province during the
year from 2014 to 2018, with 6.578 million hectares area restored to forests and grasslands
(918,000 acres in Qingyang city). This could not be neglected during the analysis. (2) differs
in satellite data. Our study used the MOD09 and MYD09 data with a spatial resolution of
250 m and temporal resolution of 0.5 days. While Shi’s research utilized the MODIS NDVI
dataset with a 1 km spatial resolution and a temporal resolution of 8 days. This might be
led to the difference in quantitative contribution analysis.

3.5. FVC Response to ENSO and IOD Connections

The cross-correlation between the ONI and DMI indexes was calculated to further
process the analysis on the effects of ENSO/IOD connections on the vegetation dynamics.
The cross-correlation results of FVC against DMI (a and c) and ONI (b and d) are shown in
Figure 12. For DMI, a unique result was identified, with a two-month (indicated by positive
signs) spatial lag distribution. Some spots in the southwest, seem to precede DMI by three
months (indicated by positive signs). The best correlations are located in the west of Huan
county and the westernmost side of Huachi county. The lowest correlation was found in
Ziwuling Forest. A more diverse result was apparent in the correlation against ONI. For
the majority of the north, including Huan, Huachi, Qingcheng, and Heshui counties, a
five-month lag (indicated by positive signs) was apparent. The remaining area excluding
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the striped area of Ning, Zhengning, and Zhengyuan counties and Xifeng, appeared to
precede ONI by 1–3 months. The shortest lag emerged in Zuwuling Forest, with a lag
length of one month (indicating negative signs).

Figure 12. Cross-correlation results between FVC and DMI (a,c), ONI (b,d). The best time lags
(a,b), and the corresponding correlation coefficients (b,d) were illustrated.

We identified a considerably strong dependence of FVC on DMI teleconnections
(Figure 9) The vegetation response lagged by five months, but the associated linear rela-
tionship was considerably weaker compared to DMI. For the latter, there was a comparable
time shift of up to three months (and more in the southwest part). In general, we concluded
that supposed DMI has more influence on vegetation.

Coupled EI Nino/IOD+ stages had the most similar phase to the mean value while
having a higher magnitude (Figure 13). For the growing season, a prolonged phase of
maximum vegetation activity was identified in all EI Nino stages. Moreover, the minimum
FVC value was observed under pure IOD+ stages. Moreover, for the following growing
season, all groups gain a lower value compared to the mean, especially since June.
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Figure 13. Average value of FVC in the study site during different EI Nino/IOD+ stages from
2000 to 2019.

In contrast, coupled La Nina/IOD+ stages yielded below average FVC throughout
the period, except for discrete months under some stages (Figure 14). This includes pure
IOD+ in September and all La Nina stages in the next June. The pure La Nina and La Nina
w IOD+ stage had a similar curve both in shape and magnitude. Unlike the ENSO stages,
the prolonged phase was found in pure IOD+ stages. Compared to the ENSO stages, the
curves of all groups were quite similar during the non-growing periods.
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In general, there is a lag in climate change influences on vegetation growth, mostly
more significant in the next growing season, both for ENSO and La Nina events.

3.6. Impact of Human Activity on FVC

Gansu province has experienced great modification by human activities in the re-
cent two decades, especially with the implementation of the sloping land conversion
program [56,57]. By deploying the MLR models, we separated the FVC trends dominated
by climate factors and human activities.

To examine the possible influence of human activities in more detail, we factored in
population and GDP data for the area (Figure 15). From 2011 to 2019, despite an increase in
total population, Qingyang’s rural population declined as people migrated to the urban
area. This could have contributed to lessening the pressure to encroach on naturally
vegetated land, and further increasing FVC.

There was a good correlation between GDP demonstrated and FVC variation (Figure 16).
Qingyang has implemented a grazing ban since 2010, and a subsidy and reward mechanism
for grassland protection since 2011. As shown in Figure 11, Huan and Huachi counties were
highly affected by human activity. These two counties have implemented a program to
return grazing land to grassland, contributing a lot to the increasing trend of grassland and
further to the FVC.
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Figure 15. Relationship between population and FVC variation from 2000 to 2019 in Qingyang city.

Figure 16. Relationship between FVC and GDP from 2000–2020 in Qingyang.

Also shown in Figure 16, the GDP of the primary industry has risen in the last two
decades despite the implementation of the sloping land conversion program. This could
be for three reasons. First, the higher FVC has effectively reduced land desertification
and sand hazards. This further led to the most significant ecological change which is the
reduction of the agricultural disaster areas and inundated areas. With improved agricultural
production conditions, farming yields have been high and stable in recent decades. Second,
agricultural products become more abundant since the start of the program. Through
the program, cultivation on steep slopes and sandy areas with low and unstable grain
yields but high ecological value was returned to vegetation, changing the long-standing
practice of extensive planting and low yields. As a result, people pursued more intensive
farming on land with better conditions. Third, the program freed up the rural labor force
and enabled farmers to diversify into cultivating fruit and rearing livestock and providing
other services, broadening the way to prosperity and rising incomes.

The five-year moving average of FVC was used in the analysis. A significant decrease
was observed in 2010, while the FVC had a significant rise during this period. This demon-
strated that the population tended to lessen the pressure to encroach on naturally vegetated
land, and therefore could have contributed to the FVC increasing in the whole area. An-
other decreasing trend in population was identified in 2005 while no significant variation
was found in FVC. This suggests that other variables had overwhelming influences on the
vegetation changes.
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4. Conclusions

This study looked at the long-term temporal and spatial variation of FVC from 2000 to
2019 in Qingyang in Gansu province, a typical part of the Yellow River Basin. The area is
ecologically fragile and a center for energy resources. We also explored the possible impacts
of climatic and anthropogenic activities on FVC variation. The main conclusions relate to
(1) the long-term spatial and temporal evolution of FVC trends for different administrative
districts, (2) quantitative analysis of the influence of climatic factors and human activities
on FVC change, and (3) the nonstationary response of FVC to the climate change factors.

Significant seasonal variation of vegetation was observed in Qingyang, with the
maximum value in August. Significant latitudinal zonal distribution of vegetation was
also observed throughout the whole year and the growing season, with an increasing trend
from northwest to southeast.

In the past two decades, 96.71% of Qingyang showed an increasing trend of FVC with
no obvious change in the FVC pattern. The annual average FVC was 30.71%, with the
lowest value in 2000 (20.97%) and the highest value in 2018 (35.71%). Significant inter-
annual changes were observed during the periods from 2000 to 2003, 2009 to 2010, and
2015 to 2019.

According to the time series decomposition results, five significant change points in
trend components were revealed in July 2002, July 2003, August 2008, March 2012, and
March 2018. Except for 2003 which had a decreasing trend, all periods showed an increasing
trend. Significant irregular components appeared in 2012–2013 and 2015–2016, both of
which were sudden increase points.

The MLR model indicated that FVC variation in Qingyang was led by a combination of
climatic and human activity factors. In general, climate change contributed 54% and human
activities 46%, respectively. In the area dominated by climatic factors, 98.73% exhibited an
increasing trend. In the human activity-dominated area, 85.44% had an increasing trend.
For the places with an increasing FVC trend, 55.89% of the area was dominated by human
activity. For the area with a decreasing FVC trend, 75.42% of the area was impacted mainly
by climatic factors.

By utilizing the ONI and DMI indexes, we explored the response of FVC to climate
change (ENSO/IOD). Generally, the DMI index displayed a higher correlation compared to
the ONI index, indicating that it had a more significant impact on vegetation growth in the
study site. Spatial heterogeneity was observed in the lag month between the ONI index and
FVC. Most of the area displayed 1–3 months in advance with two exceptions—the northern
part of Qingyang (five months lag) and in Ziwuling forest (one month). Furthermore, the
comparison between FVC and different ENSO/IOD and La Nina/IOD stages also proved
the impact of climate change on vegetation growth, especially during the growing season
for the following year.
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