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Abstract: For greenhouse gas control and environment protection, CO2 emission reduction has
become a hot spot in global research. CO2 injection in developed oil reservoirs to enhance oil
recovery is widely regarded as one of the most economical and promising measures for reducing
anthropogenic CO2 emissions into the atmosphere. In this paper, a three-dimensional embedded
discrete fracture model is proposed and applied to simulate CO2 flooding and geological storage
processes in hydraulically fractured reservoirs. The gas injection is simplified as a two-phase two-
component mathematical model with the varying pressure-related fluid physical properties, and its
accuracy is verified by commercial software tNavigator®. The advantage of this model is that it can
deal with the complex geological conditions of three-dimensional arbitrary-inclined fracture networks
and accurately assess the effects of CO2-EOR and geological sequestration in real reservoirs. Two
application cases of CO2 huff-and-puff with a single well and inter-fracture asynchronous injection
and production are demonstrated and explained in detail. The optimized technological parameters
and CO2 saturation distribution can provide key technical parameters for field operations.

Keywords: CO2-EOR; CO2 geological sequestration; fractured reservoirs; embedded discrete fracture
model; greenhouse gas control

1. Introduction

For more than 30 years, issues such as global climate change and global warming have
been emerging in the agenda of national summits from the themes of academic papers and
been hot topics in media forms such as newspapers, magazines, radio, television, and the
Internet. It is now widely accepted that CO2 is one of the major greenhouse gases that
cause global warming, and global climate change is related to CO2 emissions [1,2]. Carbon
capture, utilization, and storage (CCUS) are among the key technologies to deal with
global climate change, which have been highly valued by countries all over the world [3–5].
According to the current development of technologies, reinjection of CO2 produced in
the production process into formation is a technically feasible and environmentally safe
solution [6–8]. Geological bodies that can be selected for utilizing and storing CO2 include
depleted oil and gas reservoirs, brine aquifers, deep ocean, coal seams that cannot be
mined, and so on [9,10]. CO2-EOR refers to capturing the carbon dioxide emitted in the
production process and then injecting it into the reservoirs under development to enhance
oil recovery (EOR) rather than simply storing it [11]. Compared with other methods of
CO2 geological sequestration, carbon dioxide can be recycled, which can produce economic
benefits and has more practical operability. Owing to its advantage in technology and
economy, CO2-EOR becomes one of the current ideal storage technologies [12]. It not only
has a large demand for CO2 and meets the requirement of CO2 permanent isolation but
also can increase oil production. Its certain economic returns can compensate for the cost of
CO2 separation, transportation, and injection.
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The proportion of low- and ultra-low-permeability reservoirs in the Ordos Basin is
increasing year by year. How to develop such reserves economically and effectively has
become the focus of most oilfields in China [13]. Although CO2 injection into conventional
high-permeability reservoirs has been used for many years to enhance oil recovery, the
studies of CO2-EOR and geological sequestration in low-permeability reservoirs are still
quite inadequate, especially in complex fault-block reservoirs, which cannot form the
regular well pattern [14]. Low-permeability reservoir refers to reservoirs with low porosity,
poor fluid seepage capacity, and low natural productivity, which are difficult to develop on
a large scale by conventional production approaches [15,16]. Low permeability is a relative
concept. There is no unified standard for the classification of low-permeability reservoirs
all over the world, which varies due to different national policies, resource status, and
economic and technical conditions. For low-permeability oilfields in China, the reservoir
rocks are mainly sandstone and siltstone, with porosity less than 15% and permeability less
than 20 mD [17]. With the progress of staged-fractured technology of horizontal wells, the
production of low-permeability reservoirs has been effectively improved. More than 90% of
oil wells have produced industrial oil flow after hydraulic fracturing and other stimulation
measures [18]. After hydraulic fracturing, multi-stage fractures are connected to form
complex fracture networks, which increases the contact area between reservoir matrix and
fractures and improves the overall permeability of reservoirs. Therefore, the precondition
work of CO2-EOR and geological sequestration in low-permeability reservoirs is making a
detailed description and characterization of complex hydraulic fracture networks.

For conventional commercial numerical software, fractures are represented only
through local grid refinement, which is just a simplified approach. At present, the character-
ization methods of complex fracture networks are mainly divided into the double-medium
model and discrete fracture model. From the spatial configuration relationship between
fracture and matrix, the dual-media model can be divided into the Warren–Root model [19],
Kazemi model [20], and De Swaan model [21]. The second characterization method, rep-
resented by the research of Al-Ahmadi [22,23], Jones et al. [24], and Cippola et al. [25,26],
explicitly characterizes the fractures and focuses on describing the fracture distribution
patterns and determining the geometric morphology of each fracture. Lee et al. [27] first
proposed the concept of the embedded discrete fracture model (EDFM). By explicitly embed-
ding fractures into structured grids, the problem caused by unstructured grids is avoided.
This method involves flexible mesh generation and has high solving efficiency. In addition,
compared with the discrete fracture model (DFM), which uses complex unstructured grids
to match the fracture geometry in space, EDFM only adopts a set of fixed structured rect-
angular grids, and fractures are separated from the grids and explicitly described in the
preprocessing, which is the key advantage of EDFM over DFM. Moinfar et al. [28,29] de-
veloped EDFM into a three-dimensional (3D) form and considered the influence of fracture
dynamic change on oil well productivity. Tene et al. [30] pointed out that EDFM cannot
deal with situations in which fracture permeability is lower than matrix permeability and
proposed pEDFM to solve this problem. Rao et al. [31] improved pEDFM by making it
three-dimensional and improved the accuracy of solving. However, the application of
3D-EDFM for simulating CO2-EOR and geological storage in fractured low-permeability
reservoirs is rarely studied.

In this paper, a 3D-EDFM framework is built and deals with complex fracture networks
in hydraulically fractured reservoirs. On this basis, a simplified two-phase two-component
mathematical model with the varying pressure-related fluid physical properties is adopted
to simulate CO2 injection in low-permeability reservoirs. The accuracy of the proposed
model is verified by commercial software tNavigator®. This paper is a theoretical attempt to
discuss the simulation method of CO2-EOR and geological sequestration by 3D-EDFM. The
obtained CO2 reserves and saturation distribution can provide key technical parameters
for field operations.
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2. Methodology
2.1. Basic Assumptions and Governing Equations

Considering the true formation conditions of fractured reservoirs, in order to better
establish the 3D-EDFM, the basic assumptions are as follows: (1) Reservoirs are homoge-
neous, isotropic, and isopachous; (2) The reservoir fluid flow is isothermal seepage of oil
and gas two-phase; (3) Gravity effects are considered; (4) Reservoir boundary is closed;
(5) Fractures are finite in conductivity, that is, the discrete fracture is composed of multiple
fracture elements, and there is a pressure gradient along the fracture strike.

Oil component governing equation is as follows [32]:

∇ ·
{

kkro

Boµo
[∇po −∇(γoD)]

}
+ qo =

∂

∂t

(
φSo

Bo

)
(1)

where γo = ρosig/Bo, and ρosi is oil-phase density under standard surface conditions.
Therefore, the equation can be rewritten as:

∇ ·
{

kkro

Boµo

[
∇po − ρosig∇

(
D
Bo

)]}
+ qo =

∂

∂t

(
φSo

Bo

)
(2)

Similarly, the gas component equation can be written as:

∇ ·
{

kkrg

Bgµg

[
∇pg − ρgsig∇

(
D
Bg

)]
+

Rskkro

Boµo

[
∇po − ρosig∇

(
D
Bo

)]}
+ qg + Rsqo =

∂

∂t

(
φSg

Bg
+

φRsSo

Bo

)
(3)

where γg = ρgsig/Bg, and ρgsi is gas-phase density under standard surface conditions.

2.2. Finite Volume Discretization of Flow Equations for 3D-EDFM

For 3D-EDFM, rectangular parallelepiped grids are generally chosen to solve the
geometrical parameters between the fracture surface and the matrix [33]. In this set of
grid systems, the finite volume method that satisfies the local mass balance and has clear
physical meaning is the preferred choice. Therefore, the finite volume method is used to
discretize the flow equation for the cuboid matrix grid. The details are as follows:

We take the oil component equation as an example to illustrate the finite volume
discrete scheme of flow equations. In this paper, the block-center finite volume method
is adopted. The block-center control volume is the volume of gridblock where the block
center is located. Integrating the time and control volume on both sides of the oil-phase
equation above, and using the divergence theorem, the following is obtained:∫ t+∆t

t

∫ { kkro

Boµo
[∇po −∇(γoD)]

}
· ndsdt + qo =

∫
∆V

∫ t+∆t

t

[
∂

∂t

(
φSo

Bo

)]
dtdV (4)

The area integral in the left side of Equation (4) can be approximated by the sum
of normal flow rates between adjacent gridblocks that conform to physical significance.
For the integration of time on the right side of the above equation, it can be solved accurately,
which is why the finite volume method has high precision. Equation (4) can be rewritten as:

n

∑
j=1

{
Tij
[(

poi − poj
)
+
(
γoiDoi − γojDoj

)]}
+ qn+1

sc =
∆Vi
∆t

[(
φSo

Bo

)t+∆t
−
(

φSo

Bo

)t
]

(5)

where n is the number of other gridblocks adjacent to this gridblock; ∆Vi is the volume of
the gridblock; ∆t is the time interval of two adjacent time steps; and Tij is the transmissibility
of adjacent gridblocks, which is the product of the mobility λij and the geometric factor Gij.

The mobility λij can be expressed as:

λij =
kro

µoBo
(6)



Atmosphere 2022, 13, 229 4 of 14

In this equation, the upstream scheme is used for the value of the physical quantity kro
subject to saturation. For physical quantities µo and Bo subject to pressure, the values are in
the arithmetic average scheme as:

kro =

{
(kro)i po,i ≥ po,j
(kro)j po,i < po,j

(7)

µo =
µo,i + µo,j

2
(8)

Bo =
Bo,i + Bo,j

2
(9)

The geometric factor Gij of mass transfer between two adjacent matrix grids is equal to
half of the harmonic average of geometric factors Gi and Gj in two separate grids, as shown
in Figure 1. For 3D box mesh, taking the X direction as an example, we can obtain:

Gij =
(

G−1
i + G−1

j

)−1
(10)

Gi =
ki A
2∆xi

(11)

Gj =
k j A
2∆xj

(12)
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Figure 1. Sketch of discretization for rectangular matrix gridblocks. 
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Figure 1. Sketch of discretization for rectangular matrix gridblocks.

Similar to the oil component equation, the block-center finite volume discrete scheme
of the gas component flow equation in the matrix grid is:

n
∑

j=1

[
Gijλg,ij

(
po,i − po,j + pcgo,i − pcgo,j

)
+ Rs,ijGijλo,ij

(
po,i − po,j

)
+
(
γoiDoi − γojDoj

)]n+1
+ qn+1

gsc

+Rs,iqn+1
osc = ∆Vi

∆t

[(
φSg,i

Bg

)n+1
−
(

φSg,i
Bg

)n
+

(
Rsφ(1−Sg,i−Sw,i)

Bo

)t+∆t
−
(

Rsφ(1−Sg,i−Sw,i)
Bo

)t
] (13)

In this paper, for flow between fracture units, the block-center finite volume method is
still used to discretize the flow equation. Taking the oil component equation as an example,
the discrete scheme can be obtained as follows:

n

∑
j=1

{
Tf ij

[(
po f i − po f j

)
+
(

γo f iDo f i − γo f jDo f j

)]}
+ qom f =

∆Vi
∆t

[(
φ f So f ,i

Bo

)t+∆t

−
(

φ f So f ,i

Bo

)t
]

(14)

where n is the number of fracture units adjacent to the ith fracture unit; Tfij is the transmis-
sibility of the ith and jth fracture units; pofi, pofj are the oil-phase pressure at the center of ith
and jth fracture units; γofi, γofj are the oil-phase gravity at the center of ith and jth fracture
units; Dofi, Dofj are the depths at which the centers of ith and jth fracture units are located
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(negative number); qomf is the transfer flux term of the matrix grid to the fracture unit; ∆Vi
is the volume of the ith fracture unit; ∆t is the time increment; ϕf, Soj,i are the porosity and
saturation of the ith fracture unit; and Bo is the oil-phase volume factor corresponding to
the ith fracture unit.

It can be seen from Equations (5) and (13) that the key to determining the specific
discrete scheme of the flow equation of fracture units is to determine the transmissibility
Tfij of fracture units, and the calculation of the geometric factor Gfij in the transmissibility is
related to the connection relationship between fracture units. As shown in Figure 2, after
dividing the fracture by matrix grid boundary, four types of Non-Neighboring Connection
(NNC) in 3D-EDFM are formed, which are the connection between the fracture segment
and the matrix grid through which the fracture section passes (NNC Type I), the connection
between adjacent fracture segments in a fracture (NNC Type II), the connection between
intersecting fracture segments (different fractures, NNC Type III), and the connection
between two adjacent matrix cells (NNC Type IV). Introducing NNC pairs enables flow
exchange between grids that are not only adjacent in the physical model but also adjacent
in the computational model. The general calculation equation of the transmissibility
coefficient of NNC is:

TNNC =
KNNC ANNC

dNNC
(15)

where KNNC is the permeability of NNC, i.e., the effective permeability, mD; ANNC is
the contact area of NNC, i.e., the open area, m2; and dNNC is the characteristic distance
associated with NNC, m.
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2.3. Characterization of CO2 Physical Properties Change

Ordos Basin may be the most favorable and suitable place for CCUS in China. This
paper studies the Chang-7 reservoir of Changqing Oilfield, which is located in the south
of Ordos Basin, as shown in Figure 3. Due to the low reservoir pressure, it is difficult for
oil and gas to reach the miscible state after CO2 injection, and the component change is
not violent. Therefore, gas injection into oil reservoirs can be simplified as a two-phase
two-component problem, which can be treated by the black oil model.
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Figure 3. Regional geological map of Ordos Basin and study area (modified after Chen et al. [34]).

To evaluate the effect of injected gas, it is necessary to accurately calculate the PVT
properties of CO2. The main oil recovery mechanism of CO2 immiscible flooding is to
reduce the viscosity of crude oil, expand the volume of crude oil, extract and vaporize
light hydrocarbons in crude oil, and reduce interfacial tension. This kind of CO2-EOR is
usually characterized by the changing of CO2 physical properties. According to the D-A-K
method introduced by Dranchuk et al. [35], the properties of CO2 under different reservoir
pressures can be obtained as shown in Equation (16).

Bg =
V

Vsc
=

ZTPsc

TscP
= Z · 273 + t

273
· Psc

P
(16)

The Lee–Gonzalez–Eakin equations [36], such as Equations (17) and (18), are used for
a semi-empirical method to calculate gas viscosity as:

µg = 10−4K · exp
(

XρY
g

)
(17)

K =
10−4 exp

(
XρY

g

)
209.2 + 19.26Mg + 1.8T

(18)

It is well known that the molecular weight of CO2 is 44. According to the above method,
the PVT properties of CO2 are calculated iteratively, and the results are shown in Table 1.
With the increase in reservoir pressure, the volume coefficient of CO2 gradually decreases,
but the viscosity of CO2 increases. The effect of CO2 injection can be approximated by
introducing the pressure-dependent physical properties of CO2 into the black oil model.
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Table 1. The PVT property of CO2.

Reservoir Pressure, MPa The Volume Coefficient of
CO2, m3/m3 The Viscosity of CO2, mPa·s

3.45 0.030 0.012
6.90 0.012 0.016
10.34 0.007 0.026
15.17 0.005 0.041
17.93 0.005 0.047
20.69 0.005 0.052
23.45 0.004 0.057
25.52 0.004 0.061
27.03 0.004 0.063
28.97 0.004 0.066

3. Model Validation

In our previous research [37], the accuracy of the proposed embedded discrete fracture
modeling has been verified. Combined with the varying pressure-related fluid physical
properties, the accuracy of the improved black oil model in this paper is compared with the
compositional model from the advanced reservoir simulation software named tNavigator®

for evaluating the injection of CO2. The values of parameters used in the simulation
are shown in Table 2. Based on the physical scenario of one-well injection and one-well
production (as shown in Figure 4), the reservoir pressure distribution of the improved
model by our EDFM is consistent with that of the compositional model by tNavigator®,
as indicated in Figure 5. Similarly, the results of well production performance between the
two simulators are remarkably similar, as illustrated in Figure 6. The above verification
shows that the model proposed in this paper can reflect dynamic characteristics affected by
injecting CO2.

Table 2. Parameters of the numerical simulation case.

Properties Value Properties Value

Grid size, m 1 × 1 × 10 Initial reservoir pressure, MPa 14.1
Number of grids 100 × 100 × 1 CO2 density (SC), g/L 1.96

Initial oil saturation, fraction 0.8 Initial gas–oil ratio, m3/m3 68.17
Reservoir depth, m 1600 Oil density (SC), kg/m3 820
Layer thickness, m 10 Rock compressibility, MPa −1 1.07 × 10−4

Injection pressure, MPa 25 Production pressure, MPa 10
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Figure 6. Comparison of well production performance between two simulators.

4. Application Cases

In this section, two numerical examples of single-well multicycle CO2 huff-and-puff
and multi-well inter-fracture CO2 flooding are introduced to demonstrate the engineering
application of the proposed model in CO2-EOR and carbon sequestration. Both examples
are aimed at the Chang-7 reservoir in Ordos Basin, and basic parameters are consistent.
Table 3 summarizes the model physical properties of the reservoir and fluids, such as
rock, fracture, injection gas (CO2), and crude oil. As shown in Figure 7, there are relative
permeability and capillary pressure curves in matrix, which reflects the flowability of oil
and gas in reservoirs.

4.1. Multicycle CO2 Huff-and-Puff in a Multistage Fractured Horizontal Well

In this example, 3D-EDFM is applied for the production simulation of multicycle CO2
huff-and-puff in a multistage fractured horizontal well. Figure 8 shows the front view,
overhead view, and 3D view of the reservoir model for a three-stage fractured horizontal
well. The biggest difference between 3D-EDFM and 2D-EDFM is that the 3D model can
capture the characteristics of arbitrary-placed inclined fractures with arbitrary shapes.
It can be seen that our simulator can efficiently calibrate the hydraulic fracture networks
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using given information and characterize more complex spatial positions and fracture
shapes, which is hardly achieved by commercial software such as tNavigator® that only
can handle situations in which fractures are aligned with axes.

Table 3. Physical properties of the reservoir and fluids.

Properties Value Properties Value

Reservoir volume, m 1000 × 500 × 30 Grid number 100 × 50 × 3
Reservoir depth, m 1500 Initial reservoir pressure, MPa 30
Well diameter, m 0.178 Skin factor, fraction 0.1

Rock compressibility, MPa−1 1.07 × 10−4 Fracture aperture, m 0.01
Matrix porosity, fraction 0.17 Fracture porosity, fraction 0.4
Matrix permeability, mD 1 Fracture permeability, mD 20,000

CO2 density (SC), g/L 1.96 Oil density (SC), kg/m3 820
Oil viscosity, mPa·s 2 Oil compressibility, MPa−1 3.02 × 10−3
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Figure 7. The relative permeability and capillary pressure curves in matrix. (a) The relative perme-
ability curves. (b) The capillary pressure curve.
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The fractured horizontal well of this model is controlled at a fixed oil production of
150 m3/d. When the reservoir pressure is lower than the economic limit pressure, the pro-
duction well will be transformed into a CO2 huff-and-puff huff working system. The cycle
of CO2 huff-and-puff is 135 days, and the interval between cycles is 70 days. The injection
pressure of CO2 is set at a fixed 30 MPa. Figure 9 shows the production dynamic curves of
multicycle CO2 huff-and-puff with varying matrix permeability. It can be concluded that
multicycle CO2 injection can indeed improve oil recovery in low-permeability reservoirs,
which is significantly related to the matrix permeability. The higher the matrix permeability,
the greater the degree of CO2-EOR. It shows, as another aspect, that hydraulic fracturing
is an important prerequisite for CO2-EOR in low-permeability unconventional reservoirs.
Figure 10 shows the CO2 saturation distribution map at different stages of multicycle CO2
huff-and-puff. The free CO2 accumulates near the fracture networks and gradually flows
from the fracture to the matrix.
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Figure 9. Production dynamic curves of multicycle CO2 huff-and-puff with varying matrix perme-
ability. (a) Matrix permeability 10 mD. (b) Matrix permeability 1 mD. (c) Matrix permeability 0.5 mD.
(d) Matrix permeability 0.1 mD.

4.2. Inter-Fracture CO2 Flooding between Multi-Wells

In this case, 3D-EDFM is applied for simulating the inter-fracture CO2 flooding be-
tween multiple wells. Figure 11 shows the sketch of three horizontal wells, of which one
injection well is located in the middle of two production wells. The oil production and gas
injection are carried out simultaneously. The bottom hole pressure is constantly controlled
at 10 MPa and 30 MPa when it is producing and injecting, respectively. Figure 12 summa-
rizes the plot of production dynamic curves of simulation of 1 year, and Figure 12a shows
the dynamic change of gas injection rate. Figure 12b illustrates that the daily oil production
considered CO2 flooding is higher than that of the natural depletion process without the
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effect of CO2 injection. In this model, the first fracture of the injection gas well is located in
the first and second layers, and the second and third fractures are located in the third and
fourth layers. The proposed 3D-EDFM can also be used to model the location of fractures
in different layers, which is more consistent with the actual formation and engineering
conditions. Figure 13 shows the CO2 saturation distribution map of simulation of 1 year at
different layers. It can be seen that the injected CO2 will preferentially diffuse along the
fracture and the diffusion area is not large enough because the simulated production time
is relatively short. The effect of CO2 geological sequestration can be assessed by prolonging
the production time because it is a long-term process. The extra significance of this model
is that the asynchronous injection and production process can be stimulated by further
controlling the open–shut time of wells, which is also worthy of attention in engineering
applications.
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Figure 10. The CO2 saturation distribution map at different stages of multicycle CO2 huff-and-puff.
(a) The start time. (b) After the 1st cycle. (c) After the 2nd cycle. (d) After the 3rd cycle.
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Figure 11. Sketch of inter-fracture CO2 flooding between multiple wells.
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Figure 12. Production dynamic curves of inter-fracture CO2 flooding between multi-wells. (a) CO2

injection rate under constant pressure. (b) Oil production rate under constant pressure.
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5. Conclusions

This paper presents a CO2-EOR evaluation model based on 3D-EDFM. The model
can effectively describe the three-dimensional fractured geological conditions of low-
permeability reservoirs, which cannot be effectively handled by general business software.
Practical applications of this model in simulating the CO2 huff-and-puff in single-well and
inter-fracture CO2 flooding between multi-wells are illustrated. The results of simulations
show that the proposed model can handle the complex shapes of fractures and arbitrary
spatial positions distribution in 3D reservoirs and can be adopted to evaluate CO2-EOR
and geological sequestration problems. This paper is a preliminary theoretical attempt to
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discuss the modeling techniques for green energy transition, and we will explore more
possibilities for this model in the future.
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