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Abstract: At the cloud top of the Venus atmosphere, equatorial Kelvin waves have been observed and
are considered to play an important role in the super-rotation. We were able to reproduce the wave
in a general circulation model (GCM) by conducting an observing system simulation experiment
(OSSE) with the help of a data assimilation system. The synthetic horizontal winds of the Kelvin wave
produced by the linear wave propagating model are assimilated at the cloud top (~70 km) in realistic
conditions, assuming they are obtained from cloud tracking of ultra-violet images (UVI) taken by
the Venus orbiters. It is demonstrated using Eliassen–Palm (EP) fluxes that the reproduced Kelvin
wave transports angular momentum and plays an important role in the magnitude and structure of
the super-rotation, causing the acceleration and deceleration of zonal wind of ~0.1 m/s day−1. The
conditions required in order to reproduce the Kelvin wave have also been investigated. It is desirable
to have 24 hourly dayside satellite observations in an equatorial orbit, such as the Akatsuki Venus
climate orbiter. The results of this type of data assimilation study will be useful in the planning of
future observation missions to the atmospheres of planets.

Keywords: Venus atmosphere; Kelvin wave; data assimilation; super-rotation; momentum transport

1. Introduction

Venus is covered by a thick cloud at altitudes of around 45–70 km, and therefore, it is
difficult to observe the atmosphere below the cloud from space directly. At the cloud top
(~70 km), planetary-scale wave patterns are intermittently observed and considered to be
Kelvin and Rossby waves, based on their structures and periods [1–4]. The Kelvin wave
in the equatorial region propagates faster than the super-rotation, with a fast zonal flow
of ~100 m/s at the cloud top, e.g., [5,6], with a period of ~4 Earth days, while the Rossby
wave in mid-latitudes does slower with a period of ~5 Earth days [7,8]. While these waves
are considered to play an important role in the maintenance of the super-rotation through
their momentum transport, they, particularly the Kelvin wave, are not well reproduced in
Venus’s general circulation models (GCMs).

Recently, the first data assimilation system for the Venus atmosphere was developed
by the use of the Local Ensemble Transform Kalman Filter (LETKF) [9]. In this system,
ensemble forecasts are performed by the Venus GCM named AFES-Venus [10], based on
AFES (an atmospheric GCM for the Earth Simulator) [11]. Observing system simulation
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experiments (OSSEs) to reproduce Kelvin waves were conducted in the previous work [12]
using this AFES LETKF Data Assimilation System for Venus named ALEDAS-V [13].
However, because synthetic observations were produced by another Venus GCM [14],
whose basic state was greatly different from that of AFES-Venus, significant inconsistency
between the models occurred during data assimilation. Then the impact of the Kelvin
wave on the general circulation could not be investigated satisfactorily. Furthermore, the
longitudinal range of observations was not limited, though actual ultra-violet images (UVI)
can be obtained by satellites in a limited region on the dayside.

As an extension of the previous study [12], here, we will reproduce the Kelvin wave
more realistically and completely by the OSSE using ALEDAS-V and investigate its impact
on the Venus atmosphere. The synthetic observations of horizontal winds are created by
the linear wave propagating model [15,16], in which the basic state is adjusted to be similar
to that of AFES-Venus. The necessary conditions to reproduce the Kelvin wave are also
investigated in a realistic way by the dayside observation from satellites. This paper is
organized as follows: Experimental settings of OSSEs are described in Section 2. Section 3
presents the results of the reproduced Kelvin wave and its impact, as well as the conditions
required to reproduce the Kelvin wave. Section 4 contains a summary and discussion.

2. Experimental Settings

Synthetic observations for OSSEs are produced by the linear wave propagating
model [15,16], with the basic state similar to that of AFES-Venus (see Figure A1). In
the model, the Kelvin wave is forced at the bottom of 60 km, assuming upward propagation
of the Kelvin wave from a lower altitude. Then the Kelvin wave propagation in the given
basic state is calculated by a linearized primitive equation. The horizontal resolution is
120 times 58 in a latitude–longitude grid system with constant 3-degree intervals for each
direction, which is comparable to that obtained by the Akatsuki orbiter [17,18]. Horizontal
winds obtained at the cloud top (70 km) in this model are used for data assimilation, by
which the Kelvin wave with a period of ~4 Earth days is induced in the equatorial region
(see Figure A2). These settings are consistent with horizontal winds derived from UVI taken
by the Akatsuki orbiter [18]. Here, we have prepared a series of synthetic observations,
in which observation conditions are systematically changed. We chose 6-Earth-hourly
dayside observations in low-latitudes as a control case, covering 120◦ (zonal width of 8 h in
local time; LT) in longitude from 120◦ E (east) (8 LT) to 120◦ W (west) (16 LT) and 60◦ in
latitude from 30◦ S (south) to 30◦ N (north). Akatsuki may observe similar regions with a
comparable frequency throughout good seasons of observation [17]. It is worth noting that
the direction of planetary rotation is the same as that of the Earth in this study.

ALEDAS-V uses LETKF [9] and AFES-Venus [10] for data assimilation and ensemble
forecast, respectively. The number of ensemble members is 31. In LETKF, ensemble fore-
casts are updated by assimilating horizontal wind observations. The assimilation cycle
is 6-Earth-hourly, and observations are assigned to each Earth-hour if they are available.
The parameters explained below were chosen from previous research [12,13,19,20]. The ob-
served error is assumed to be 3 m/s, and the horizontal and vertical localization parameters
are 400 km and log P = 0.4, respectively, where P is the pressure of the given observations.
The multiplicative 10% spread inflation is used for background error covariance [9]. AFES-
Venus solves a dry full nonlinear primitive equation in a spherical domain. The horizontal
resolution is 128 times 64 in the latitude–longitude grid system, and the vertical layers are
60 with almost constant ~2 km intervals up to 120 km. Physical parameters such as radius,
rotation period, gravity acceleration, specific heat, and so on are set to values for Venus.
While the value of specific heat varies 740–1180 J Kg−1 K−1 [21], it is fixed at a constant
value of 1000 J Kg−1 K−1 for simplicity. Solar heating and infrared cooling are simplified
by a solar net flux profile based on [22] and Newtonian cooling [23], respectively. It should
be noted that while some Venus GCMs implemented a radiative transfer scheme [24,25],
we will use this experimental setting for simplicity. Topography and planetary bound-
ary layer are not considered. At the planetary surface, Rayleigh friction with a damping
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time of ~0.5 Earth days is used. Above 80 km in the high atmosphere, there is a sponge
layer that solely acts on eddy components. The T42 (triangular truncation at wavenumber
42) dynamical core additionally implements vertical eddy diffusion with 0.15 m2/s and
horizontal eddy diffusion with a 4th-order elliptic operator (squared Laplacian) viscosity
with a damping time of ~0.1 Earth day at the maximum wavenumber. In order to focus
on the Kelvin wave, the diurnal component of solar heating and hence thermal tides are
excluded [26] in both idealized observations and AFES-Venus.

From an idealized initial condition of the super-rotation, AFES-Venus spins up for
4 Earth years. The initial condition is a temperature field with low static stability layers
that is gradient wind balanced with the idealized initial super-rotation. It should be
noted that the general circulation obtained in AFES-Venus in a quasi-equilibrium state is
consistent with previous observations, e.g., [27,28] in many aspects: The zonally averaged
zonal wind has a weak mid-latitude jet and almost constant velocity of about 120 m/s in
latitudes between 45◦ S and 45◦ N at the cloud top-level [29], structures of cold collar [30],
thermal tide [31,32], planetary-scale streak [33], and small-scale gravity waves [34]. From
1 January, 5th year, data assimilation is performed for one Earth month. We will compare
OSSE (control case) results with the AFES-Venus free run forecast (frf case) in which no
observations are assimilated. Previous studies [10,13,19,31] go into greater detail about the
AFES-Venus and ALEDAS-V experimental setups.

3. Results

In this section, we shall compare the results of OSSE (control case) to those of the
free-run forecast (frf case). Section 3.1 presents the time evolution of the Kelvin wave. By
composite means in Section 3.2, we extract structures from the Kelvin wave. The impact
of the Kelvin wave on the general circulation is investigated in Section 3.3. Finally, the
necessary conditions to reproduce the Kelvin wave by actual satellite observations are
discussed in Section 3.4.

3.1. Time Evolutions

First, time evolutions of horizontal structure at the cloud top (~70 km) for the control
case are shown in Figure 1. The Kelvin wave, with a period of ~4 Earth days, is reproduced
in the equatorial region in both the zonal wind and temperature components successfully
by the horizontal wind assimilation. See also: Animations for the control and frf examples
may be seen in Videos S1 and S2, respectively. The Kelvin wave’s phase in the zonal wind
is zonally shifted from that in temperature, indicating that the Kelvin wave propagates
vertically [35]. Because the LETKF algorithm uses a covariance matrix that includes hori-
zontal winds and temperature, the temperature is also updated to show that its uncertainty
is limited.

In order to confirm when the Kelvin wave is clearly reproduced during the time
evolution of OSSE, longitude-time cross-sections of the zonal wind deviation from its time
average at the equator and 70 km altitude are shown in Figure 2 for the (a) frf and (b)
control cases. Black arrows indicate periods of ~5 and ~4 Earth days for the frf and control
cases, respectively. The Kelvin wave, with a period of ~4 Earth days, is clearly reproduced
only for the control case. The Kelvin wave seems to appear where horizontal winds are
assimilated within 120◦ E–120◦ W in longitudes immediately after OSSE starts. However, it
does not propagate sufficiently in the longitudinal direction, resulting in a discontinuity
when the next assimilation starts at 120◦ E. From ~1 Earth week later, the Kelvin wave
with a period of ~4 Earth days propagates globally in the longitudinal direction, and the
discontinuity disappears. It should be noted that the wave obtained for the frf case is the
Rossby wave with a period of ~5 Earth days [29], as shown in the next section.
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Figure 2. Longitude–time cross-sections of zonal wind (m/s) deviation from its time average from
1 January, 5th year at 70 km and the equator for the (a) frf and (b) control cases. Black arrows indicate
periods of ~5 and ~4 Earth days for (a) and (b), respectively.

The vertical structure of the Kelvin wave is also being investigated. Figure 3 shows the
time-altitude cross-sections of the zonal wind deviation from its zonal and time averages
at 10◦ W and the equator for the (a) frf and (b) control cases. The black lines indicate an
altitude of 70 km. Only the Rossby wave with a period of ~5 Earth days exists in the frf
case at altitudes of ~62–78 km (Figure 3a). On the other hand, in the control case, the
Kelvin wave with a period of ~4 Earth days is gradually reproduced at 70 km after ~1 Earth
week (rather than the Rossby wave) (Figure 3b). Its structure extends vertically at altitudes
of 66–72 km. The downward phase propagation of the Kelvin wave suggests that it will
propagate upward and transport angular momentum vertically.
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3.2. Composite Means

We extract wave structures by using composite methods, such as averaging each field
with periods of 5 and 4 Earth days for the frf and control cases, respectively. Figure 4 shows
the composite mean of horizontal wind sections (vector) and temperature (color) at 70 km
for the (a) frf and (b) control cases. In the control case, zonal winds of ~2 m/s with a
wavenumber 1 component symmetric around the equator prevail in the equatorial region,
while meridional winds are small (Figure 4b). The Kelvin wave corresponds to this struc-
ture. The equatorial region similarly has a temperature of ~0.3 K with a wavenumber
1 component, although only horizontal winds are assimilated. The temperature phase dif-
fers by ~60◦ from the zonal wind phase, indicating that the wave propagates vertically [35].
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The Rossby wave, on the other hand, appears in the frf case. In particular, vortices
with a wavenumber 1 are predominant in the mid-latitudes, with zonal and meridional
winds of ~5 m/s (Figure 4a). In the mid-to high-latitudes, a temperature of ~1.2 K with
a wavenumber 1 component is also predominant. This structure is similar to the Rossby
wave associated with baroclinic instability, as reported in a previous study [29]. It is worth
noting that there is essentially no temperature disturbance in the equatorial region.

Figure 5 shows the composite mean of zonal wind in vertical sections at the equator
for the (a) frf and (b) control cases. Again, the Kelvin wave is clearly reproduced only in
the control case with both the zonal wind and temperature components. The Kelvin wave
extends vertically for approximately 8 km (66–74 km altitudes), whereas horizontal winds
are only assimilated at 70 km (Figure 5b; contour). It is worth noting that the vertical local-
ization at 70 km is only ~O(102) m, which is substantially less than the vertical grid interval
of ~2 km. As a result, for dynamical reasons, the Kelvin wave would expand vertically.
Temperature with a wavenumber 1 component predominates and has an inverted sign at
an altitude of 70 km (Figure 5b; color). As in the horizontal structures, the temperature
phase is 60◦ shifted from that of the zonal wind. The Kelvin wave appears to propagate
vertically in both the zonal wind and temperature fields.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 13 
 

 

  

(a) frf (b) control 

Figure 4. Longitude–latitude cross-sections of the composite means of horizontal wind (m/s; vector) 

and temperature (K; color) deviations from zonal averages at 70 km for the (a) frf and (b) control 

cases. Each field is averaged along with periods of 5 and 4 Earth days for the frf and control cases 

to extract the Rossby and Kelvin waves, respectively. 

Figure 5 shows the composite mean of zonal wind in vertical sections at the equator 

for the (a) frf and (b) control cases. Again, the Kelvin wave is clearly reproduced only in 

the control case with both the zonal wind and temperature components. The Kelvin wave 

extends vertically for approximately 8 km (66–74 km altitudes), whereas horizontal winds 

are only assimilated at 70 km (Figure 5b; contour). It is worth noting that the vertical lo-

calization at 70 km is only ~O(102) m, which is substantially less than the vertical grid 

interval of ~2 km. As a result, for dynamical reasons, the Kelvin wave would expand ver-

tically. Temperature with a wavenumber 1 component predominates and has an inverted 

sign at an altitude of 70 km (Figure 5b; color). As in the horizontal structures, the temper-

ature phase is 60° shifted from that of the zonal wind. The Kelvin wave appears to prop-

agate vertically in both the zonal wind and temperature fields. 

  

(a) frf (b) control 

Figure 5. Longitude–altitude cross-sections of composite means of zonal wind (m/s; contour) and 

temperature (K; color) deviations from their zonal averages at the equator for the (a) frf and (b) 

control cases. Each field is averaged along with periods of 5 and 4 Earth days for the frf and control 

cases to extract the Rossby and Kelvin waves, respectively. 

Figure 5. Longitude–altitude cross-sections of composite means of zonal wind (m/s; contour)
and temperature (K; color) deviations from their zonal averages at the equator for the (a) frf
and (b) control cases. Each field is averaged along with periods of 5 and 4 Earth days for the frf and
control cases to extract the Rossby and Kelvin waves, respectively.

In contrast, the Rossby wave associated with baroclinic instability generated around
60 km is predominant for the frf case (Figure 5a). Above ~67 km, temperature disturbances
are almost non-existent. While the large differences between the two cases are mostly
caused by the composite means, the results suggest that the Kelvin wave reproduced by
the horizontal wind assimilation would have a significant impact on the general circulation.
We will investigate this in the next section.

3.3. Impact of Kelvin Wave

We expect that the vertically propagating Kelvin wave transports angler momentum.
To estimate wave-induced mean zonal wind accelerations, we evaluate the Eliassen–Palm

(EP) fluxes [36,37] associated with waves. The EP flux vector
→
F = (Fϕ, Fz) is defined by

Fϕ = ρ0RV cos ϕ

(
∂u
∂z∗

v′θ′
∂θ
∂z∗
− u′v′

)
, (1)
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Fz = Hρ0RV cos ϕ

{[
f − 1

RV cos ϕ

∂

∂ϕ
(u cos ϕ)

]
v′θ′

∂θ
∂z∗
− u′w′

}
, (2)

where overbar and prime denote the zonal average and its deviation, respectively, and
u, v, w, and θ represent the zonal, meridional, and vertical winds, and potential tempera-
ture, respectively. RV and ρ0 are the Venus radius and atmospheric density, respectively.
f = 2Ω sinϕ is the Coriolis parameter where Ω and ϕ are the planetary rotational angular
velocity and latitude, respectively. z∗ = –H log(p/ps) is a log-pressure height where H is
the scale height, p and ps are pressure and surface pressure, respectively. The wave-induced

acceleration and deceleration of mean zonal wind is estimated by (ρ0RV cos ϕ)−1∇·
→
F with

the EP flux divergence,

∇·
→
F =

1
RV cos ϕ

∂

∂ϕ
(Fϕ cos ϕ) +

1
H

∂

∂z∗
(Fz), (3)

Figure 6 shows latitude–altitude cross-sections of acceleration and deceleration esti-
mated by the EP flux for the (a) frf and (b) control cases. Since there are many disturbances
such as baroclinic (Rossby) and gravity waves in both experiments, the distributions of
acceleration and deceleration associated with waves are complicated. Focusing on the
equatorial region, while the Rossby wave mostly decelerates the mean zonal wind at
70–78 km altitudes (Figure 6a), the Kelvin wave accelerates it at these altitudes in the
opposite sense (Figure 6b). It is worth noting that the Kelvin wave has a deceleration
rate of ~0.1 m/s day−1 when it is generated below 70 km and an acceleration rate of
~0.1 m/s day−1 at 70–72 km altitudes. Then the Kelvin wave propagates vertically and
accelerates mean zonal wind by ~0.1 m/s day−1 above 75 km, which is consistent with
previous estimates, e.g., [16]. This acceleration and deceleration will change the magnitude
and structure of the super-rotation during the time evolution of OSSE.
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Figure 6. Latitude–altitude cross-sections of acceleration and deceleration (m/s day−1) estimated by
the EP flux (color) for the (a) frf and (b) control cases. Time averages for 20 Earth days are conducted
after the Kevin wave is reproduced.

Figure 7 shows latitude–altitude cross-sections of zonally averaged zonal wind (color)
and temperature (contour). The generation of the Kelvin wave causes a deceleration of
the super-rotation of ~5 m/s at ~70 km in the equatorial region. The Kelvin wave then
accelerates the super-rotation by ~5 m/s at altitudes of 75–85 km between 45◦ S and 45◦ N.
These accelerations and decelerations of the super-rotation are generated by a shift in the
primary wave from the Rossby wave to the Kelvin wave, and are consistent with the EP flux
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estimations shown in Figure 6. The deceleration of roughly 70 km would also be caused by
a somewhat slower super-rotation of the basic state used for synthetic observations (see
Figure A1a). While OSSE is only performed for one Earth month in this study, the current
result suggests that the Kelvin wave in the real Venus atmosphere can affect the magnitude
of the super-rotation over a long period of time. It should be noted that zonally averaged
zonal wind and temperature are produced by not only waves but the mean meridional
circulation mainly generated by solar heating. Because the diurnal component of solar
heating (and thus the thermal tide) is excluded in the present study in order to focus on the
Kelvin wave, there are substantial mid-latitude jets (~125 m/s) in both present experiments
when compared to real-world observations, e.g., [27,28].
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ture (K; contour) on 30 January, 5th year for the (a) frf and (b) control cases.

3.4. Requirements for Future Observations

Finally, we will investigate the conditions required to reproduce the Kelvin wave using
actual data assimilation from satellite studies of horizontal winds, such as the Akatsuki
Venus climate orbiter. On OSSEs, two types of sensitivity checks of synthetic observations
were performed. The first is dependent on the range of observation longitude, and the
second is dependent on observation frequency. To quantify the modification, we calculate
the root-mean -square deviation (RMSD), which is defined as

RMSD =

√√√√ 1
N

N

∑
i=1

(Xi − xi)
2, (4)

where Xi and xi indicate the results of the frf and each assimilated case, respectively, and N
is the total number of horizontal grids at 70 km.

Figure 8 shows the time evolution of the RMSD for the sensitivity test of observation
(a) longitude and (b) frequency. The dependence on the range of observation longitude
is not as large in (a). If we can only observe half the zonal range compared to the control
case (red line), the Kelvin wave is marginally reproduced. If the zonal range of observation
is 1.5 times larger than the control case (blue line), improvement will be faster, but the
final results will be almost unchanged. Figure 8b shows that the observation frequency is
more important. For the cases of twice-a-day (12-Earth-hourly; red line) and once-a-day
(24-Earth-hourly; blue line) observations, the Kelvin wave is marginally reproduced. The
Kelvin wave, however, cannot be reproduced in other cases of 36-Earth-hourly (green line)
and 48-Earth-hourly (purple line) observations. The RMSDs in these cases are kept at less
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than 10 most of the time, so enough modifications are not obtained by the data assimilation.
It is worth noting that we also check horizontal structures in all cases to determine whether
or not the Kelvin wave is reproduced (not shown). To duplicate the Kelvin wave, at
least 24-hourly dayside observations will be needed, and if possible, 6-hourly would be
preferable, even at the expense of a reduced observation range in longitude.
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Figure 8. Root-mean-square deviations (RMSD) of zonal wind (m/s) calculated by Equation (4) at
70 km in each assimilated case from 1 January, 5th year. Dependency on the range of (a) observation
longitude and (b) observation frequency. In (a), observation longitudes are half (red line) and
1.5 times (blue line) of the control case with 120◦ (black line). In (b), observation frequencies are
12-Earth-hourly (red line), 24-Earth-hourly (blue line), 36-Earth-hourly (green line), and 48-Earth-
hourly (purple line) compared with the control case with a 6-Earth-hourly (black line).

4. Summary

In this study, we performed OSSEs for the Venus atmosphere in order to reproduce the
Kelvin wave using data assimilation, extending the previous study [12] in a more realistic
way. The linear wave propagation model [15,16] with a basic state similar to that of AFES-
Venus is used to generate synthetic observations of horizontal winds. In the control case,
horizontal winds are assimilated at 70 km in 6-Earth-hourly intervals only on the dayside
of the equatorial region, assuming cloud tracking of UVI is observed by satellites, such
as the Akatsuki Venus climate orbiter. The Kelvin wave is then successfully reproduced
not only in the zonal wind but also in temperature fields. It propagates vertically and
transports angular momentum. We estimated the Eliassen–Palm (EP) fluxes and found
that the Kelvin wave influences the magnitude and structure of the super-rotation through
a ~0.1 m/s day−1 acceleration and deceleration of zonal wind. To reproduce the Kelvin
wave using horizontal wind assimilation, at least 24-hourly dayside satellite observations
in the equatorial region are required, which may frequently be obtained using Akatsuki
observations. As a result, if Akatsuki can study Venus at periods when the Kelvin wave
appears for a period of several weeks, it is quite likely that we will reproduce the three-
dimensional structure of the Kelvin wave by data assimilation and elucidate its impact on
the super-rotation.

The latitudinal range of data assimilation was important in previous work because
there is a large discrepancy between the basic states obtained by AFES-Venus and the
CCSR/NIES (Center for Climate System Research/National Institute for Environmental
Studies) Venus GCM [14], from which synthetic observations are produced. Since there are
too strong mid-latitude jets at ~60◦ N (S) in the previous synthetic observations, OSSEs over
larger latitudinal ranges did not always produce valuable results. Due to the similarity and
consistency of the basic states, we do not require such a latitudinal restriction in this work.
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Because the Kelvin wave exists only in the equatorial zone, observations of the entire planet
have less impact on the reproduction of the Kelvin wave (not shown) compared with the
control case. To reproduce the Rossby wave in mid-latitudes and/or produce an objective
analysis of the Venus atmosphere, the basic state of AFES-Venus must be consistent with
observations over vast latitudinal ranges.

Previous research [3,38] suggested that the Rossby and Kelvin waves would induce
super-rotation fluctuations over a long period of time. When the super-rotation is fast, the
Rossby wave appears, but the Kelvin wave appears when the super-rotation is slow [16].
According to this study, the Kelvin wave causes an acceleration of ~0.1 m/s day−1. The
super-rotation would then fluctuate by O (10) m/s every 3 Earth months. In the future, we
will use OSSEs to reproduce the Rossby wave and estimate its impact on the super-rotation.
The observed long-term fluctuation of the super-rotation should be studied, with a focus
on the momentum transport induced by both the Rossby and Kelvin waves. Finally, we
emphasize that OSSEs would be valuable in designing missions not only for Venus but also
for other planetary atmospheres.

Supplementary Materials: Videos S1 and S2 are available online at https://www.mdpi.com/article/
10.3390/atmos13020182/s1.

Author Contributions: Conceptualization, N.S.; Data curation, Y.F.; Formal analysis, M.S. and M.A.;
Funding acquisition, N.S. and Y.F.; Investigation, M.S. and M.A.; Methodology, N.S., M.T. and T.K.;
Project administration, N.S.; Software, N.S. and Y.F.; Supervision, N.S.; Validation, Y.F.; Visualization,
M.S. and M.A.; Writing—original draft, N.S.; Writing—review and editing, N.S., H.A., S.-y.M., T.K.,
M.T., and M.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Global Science Campus of JST (Japan Science and
Technology Agency). The work is partly supported by JSPS KAKENHI grants numbers JP19H0197,
JP19H05605, JP19K14789, JP20H01958, and JP20K04064.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to licenses from AFES.

Acknowledgments: This study was supported by the Japan Science and Technology Agency. It is
conducted under the joint research project of the Earth Simulator Center.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix shows the basic state and horizontal structure of the Kelvin wave
in the linear wave propagating model [15,16] used for producing synthetic observations.
Figure A1 shows the latitude–altitude cross-sections of the zonally averaged zonal wind
and temperature used for the basic state. The Kelvin wave is forced at the bottom 60 km
and propagates upward in this basic state. At 70 km, the Kelvin wave with a period of
~4 Earth days and a wavenumber 1 component appears in the equatorial region in both the
zonal wind (of ~1 m/s) and temperature (of ~0.5 K) fields (Figure A2). For the control case,
only 6-hourly horizontal winds on the dayside (from 120◦ E to 120◦ W in longitude) and
the equatorial region (from 30◦ S to 30◦ N in latitude) are used.
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