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Abstract: Climate change and human activities have profoundly affected the world with extreme
precipitation, heat waves, water scarcity, frequent floods and intense droughts. It is acknowledged
that climate change will persist and perhaps intensify in the future, and it is thus meaningful to explore
the quantitative impacts of these changes on hydrological regimes. The Jiulong River basin serves
as an important watershed on the southeast coast of China. However, future hydrological changes
under the combined impacts of climate change and land use change have been barely investigated. In
this study, the climate outputs from five general circulation models (GCMs) under the Coupled Model
Intercomparison Project Phase 6 (CMIP6) were corrected and spatially downscaled by a statistical
downscaling method combining quantile mapping and machine learning. The future high-resolution
land use maps were projected by the CA–Markov model with land use changes from the Land-Use
Harmonization 2 (LUH2) as constraints. The future dynamic vegetation process was projected by the
Biome-GBC model, and then, the future hydrological process under four representative concentration
pathways and shared socioeconomic pathways (RCP–SSP) combined scenarios was simulated by a
distributed hydrological model. Based on the copula method, the flood frequency and corresponding
return periods were derived. The results demonstrated that future precipitation and air temperature
would continue to rise, and future land use changes would have different developing pathways
determined by the designs in various SSP–RCPs. Under the combined impacts of climate and land
use change, the total available water resources will increase due to increasing precipitation, and the
high flow and low flow will both increase at three stations under the four SSP–RCPs. The annual
1-day maximum discharge is projected to increase by 67–133% in the last decade of the 21st century,
and the annual 7-day minimum discharge is projected to increase by 19–39%. The flood frequency
analysis showed that the Jiulong River basin would face more frequent floods in the future. By the
end of the 21st century, the station-average frequency of a historical 100-year flood will increase
by 122% under the most optimistic scenario (SSP126) and increase by 213% under the scenario of
greatest regional rivalry (SSP370). We demonstrated that climate change would be the major cause
for the increase in future high flows and that land use change would dominate future changes in low
flows. Finally, we recommend integrated and sustainable water management systems to tackle future
challenges in this coastal basin.

Keywords: climate change; land use change; future vegetation projection; future water-related
hazards; CMIP6; hydrological modeling

1. Introduction

With socioeconomic developments, climate change and human activities have pro-
foundly affected the hydrologic cycle around the world [1]. These changes have led to
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changes in the severity, frequency and duration of extreme events [2], including extreme
heat waves [3], intense droughts [4] and recurrent flooding [5]. These extreme events may
have a negative impact on biodiversity [6], crop yields [7], human health [2] and on various
other socioeconomic factors [8]. Coastal areas typically have dense populations, concen-
trated urban construction and developed economies that are highly vulnerable to extreme
floods [9,10]. Thus, it is imperative to explore the potential changes in future flow regimes
by considering both climate change and human activities under global warming and so-
cioeconomic development to formulate adaptation and mitigation strategies, especially for
coastal basins [11].

Numerous studies have detected possible future changes in runoff under the impacts of
climate and land use changes, and then analyzed with great detail the potential changes in
different hydrological regimes including high and low flows. Most of them adopted hydro-
logical models with projected future climate forcing data from general circulation models
(GCMs) under the Coupled Model Intercomparison Project (CMIP) [12–16]. Based on a
global river routing model with outputs of 11 GCMs from CMIP5, Hirabayashi et al. [14]
projected future changes in runoff on a global scale and concluded that a warmer climate
would significantly increase future high flows in Southeast Asia, peninsular India, eastern
Africa and the northern half of the Andes. Meanwhile, their scenario analysis revealed that
global flood risks will increase with climate warming. Using a distributed semi-physically
based rainfall-runoff model with climate projections from CMIP5, Alfieri et al. [17] focused
on the high flow changes and projected future flood frequency in Europe under warmer
future conditions and concluded that flood peaks with return periods above 100 years
would, on average, double in frequency within 3 decades. Rottler et al. [18] detected and
assessed future changes in runoff in the Rhine River under various climate scenarios in
CMIP5 with full consideration of basin hydrological processes by a mesoscale hydrologic
model and demonstrated increases in high flow due to future increases in antecedent
precipitation and temperature. With a calibrated hydrological model and UKCIP98 climate
change scenarios, Arnell [19] explored the impact of climate change on low flows in Britain,
and concluded that the larger variability in future climate would lead to a decrease in low
flows and the degree of the impact would be greater in upland basins.

In addition to climate change, a large number of studies have proven that land use
change has a significant impact on flow regimes [1,20–22]. Baker et al. [21] used the Soil
and Water Assessment Tool (SWAT) to simulate the hydrological process of a small basin in
Kenya under three different land use maps and explored the impacts of forest degradation
and cropland expansion on the allocation of surface and groundwater recharge as well as
ecological effects. Their results showed that deforestation would shift the allocation and
have a negative ecological effect. With a process-based hydrological model, Li et al. [22]
detected the effects of urbanization on various elements of the hydrological cycle and
concluded that the increase in impervious surfaces and decrease in evapotranspiration
caused by vegetation losses during rapid urbanization would lead to an increase in low
flow, and eventually increase in water yield. Considering the impacts of land use change
and climate change simultaneously, some studies projected future possible changes in
hydrological processes at a watershed scale [1,23–26]. Tavakoli et al. [27] explored the
response of extreme flows under the impacts of climate change and urban growth with
a hydrological model, and concluded that extreme low flows would decrease noticeably
due to climate change and be less sensitive to urban development, while extreme high
flows would increase greatly due to both climate change and urban development. Using a
hydrological model and a land use simulation model, Chacuttrikul et al. [24] assessed the
impacts of climate and land use changes on river discharge in a small basin in Thailand
and showed that the increase in future precipitation would lead to an increase in both
low and high flows, and that continuous conversion from forest to paddy fields would
cause an increase in both high and low flows. In addition, they concluded that land use
change dominated historical runoff changes, while future discharge changes would be
mainly caused by climate change. Similarly, Yang et al. [1] adopted the SWAT model to
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project future hydrological processes and the CA–Markov model to simulate future land
use changes in the Luanhe River basin in China and projected future possible changes in
runoff under continuous afforestation and global warming. They illustrated that climate
change would increase the high flows and lead to a slight decrease in low flow seasons,
and future afforestation would cause a reduction in low flows. In addition, some of the
increase in runoff due to climate change would be offset by reduced runoff caused by
afforestation, but climate change would still play a dominant factor in the future. Although
the impacts of climate change and land use change on hydrological processes have been
evaluated by many previous studies, most of the land use change scenarios are designed
independently and are not consistent with climate change scenarios designed by CMIP.
This deficiency may lead to a large bias in accurately reflecting future possible changes in
hydrological regimes.

The newly released CMIP6 has set a series of more reasonable scenarios than previous
scenarios designed in CMIP5. The new scenarios are rooted in socioeconomic trajectories
and are named representative concentration pathways (RCPs) and shared socioeconomic
pathways (SSPs) combined scenarios [28]. Serving as a required input of GCMs in CMIP6,
Land-Use Harmonization 2 (LUH2) provides a newly harmonized annual land use dataset
from 850 to 2100 under future SSP–RCP scenarios [29]. To detect future changes in hydrolog-
ical processes, a physically based hydrological model is necessary, and the geomorphology-
based hydrological model (GBHM) developed by Yang et al. [30] can be used for future
hydrological projections. The GBHM model is a fully distributed hydrological model and
has been successfully applied in many regions [31–35] including the Jiulong river basin.
However, there is a gap between the required inputs and the data provided by CMIP6 and
LUH2, which have systematic bias and coarse spatial resolution. To bridge this gap, statisti-
cal downscaling methods can effectively correct systematic bias and downscale the spatial
resolution and are widely used for future climate downscaling [36–38]. The CA–Markov
model is a popular and robust land use simulation model and can potentially be adopted for
spatial downscaling of land use maps [1,39–42]. Combining the SSP–RCP scenario-based
climate forcing from CMIP6 and land use maps from LUH2, it is possible to explore future
water-related disaster changes considering greenhouse gas emissions and socioeconomic
development simultaneously with the help of the GBHM and CA–Markov models.

In this study, we conducted climate downscaling using a statistical downscaling
method and projected future high-resolution land use maps under various SSP–RCPs based
on CA–Markov and LUH2. With future climate forcing and land use data, we projected
future dynamic vegetation growth dynamics by a process-based ecosystem model and
then simulated future hydrological responses in the Jiulong River basin. Based on these
projections, we analyzed future changes in annual runoff and flow regimes which included
high flows (annual 1-day maximum, 3-day maximum and 7-day maximum discharges) and
low flows (annual 7-day minimum, 30-day minimum and 90-day minimum discharges),
and calculated flood frequency using a copula-based method. We strived to (1) illustrate
possible changes in future climate and land use; (2) demonstrate future changes in high and
low flows under the combined impacts of climate and land use changes; and (3) provide
corresponding suggestions to mitigate and adapt to future water-related risks.

2. Materials and Methods
2.1. Study Area

The Jiulong River basin (see Figure 1) originates in the Boping Mountains and is a coastal
watershed with a drainage area of 14,741 km2. The river length is 285 km, and is the second
longest river in Fujian Province, China. The basin is located in the subtropical monsoon climate
zone with an average annual runoff of 1010 mm. The annual average temperature ranges from
19.9 ◦C to 21.1 ◦C, and the annual average precipitation is 1400–1800 mm, with approximately
75% of the annual precipitation occurring from April to September. The basin mainly consists
of two tributaries, the North River and the West River, which cover nearly 95% of the total
drainage area of the Jiulong River basin. The Jiulong River basin is profoundly impacted
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by dams with a total of 193 dams built in the basin by the end of 2011, and the distribution
of these dams is shown in Figure 1. Among these dams, there are 2 dams built for flood
control, 89 dams built for water supply and 102 dams built for hydropower. The drainage
area of Zhengdian station (lower West River) has the largest capacity for flood control, while
Zhangping and Punan stations (North River) have the largest capacity for hydropower.
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2.2. Data

(1) Historical observation data
The observed meteorological data used in this study mainly contained daily air

temperature (mean, maxima and minima), daily relative humidity, daily sunshine du-
ration and daily average wind speed, which were provided by the China Meteorological
Administration (CMA). The gauged meteorological data were spatially interpolated to
1-km grids by an angular distance weighting method with elevation corrections [43].
Precipitation data were obtained from the 0.25◦ × 0.25◦ China Gauge-based Daily Pre-
cipitation (CGDPA) Product [44] and were resampled to 1-km grids by nearest neigh-
bor assignment in ArcGIS Software. Four historical land use maps in 1980, 1990, 2000
and 2010 were obtained from the Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/DataProduct/Detail/20080422, accessed on 15 January 2022) at a
30-m resolution and were reclassed into 10 types: water body, urban area, bare soil, for-
est, irrigated cropland, upland, grassland, shrub, wetland, and ice. Daily streamflow
observations at three gauges (i.e., Zhangping, Punan and Zhengdian) were obtained
from the Hydrology and Water Resources Bureau. Historical LAI data were obtained
from the 3rd generation of the vegetation leaf area index product (LAI3g) of the Global
Inventory Modeling and Mapping Studies (GIMMS) [45]. The soil property and soil hy-
draulic parameter data were obtained from the China Soil Hydraulic Parameters Dataset by
Duan et al. [46]. The digital elevation data were obtained from the shuttle radar topography
mission (SRTM) [47] database with a resolution of 90 m.

(2) Climate outputs of GCMs and land use projections from LUH2

http://www.dsac.cn/DataProduct/Detail/20080422
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In this study, five newly released GCM outputs (i.e., ACCESS-ESM1-5, GFDL-ESM4,
MIROC6, MPI-ESM1-2-LR and MRI-ESM2-0) under four SSP–RCP scenarios were selected
from the latest CMIP6. SSP1-RCP2.6 is referred to as SSP126, SSP2-RCP4.5 is referred to as
SSP245, SSP3-RCP7.0 is referred to as SSP370, and SSP5-RCP8.5 is referred to as SSP585.
The GCMs selected in this study have all been applied in Asia for future climate change
research in previous studies [48–53], and detailed information is shown in Table 1. The
climate model outputs from 1985 to 2100 mainly contain the daily near-surface mean,
maximum and minimum air temperature, daily precipitation, daily near-surface relative
humidity and daily near-surface wind speed. Rooted in the socioeconomic trajectories,
the newly proposed SSP–RCPs can be harmonized with the RCP previously developed in
CMIP5 with shared policy assumptions and provide more plausible future scenarios [28].
The SSP1 scenario represents a green-fueled growth future; SSP2 represents a ‘middle-of-
the-road’ future; SSP3 assumes high inequality between countries; and SSP5 represents
a fossil-fueled growth future [54]. Future land use data were obtained from the LUH2
dataset, which provided harmonized annual land use states and transitions with a spatial
resolution of 0.25◦ × 0.25◦ under four SSP–RCPs from 850 to 2100. Detailed information on
LUH2 can be found in the study by Hurtt et al. [29].

Table 1. Detailed information on GCMs selected in this study.

Name of GCM Institute Country Resolution Frequency Source

ACCESS-ESM1-5 Commonwealth Scientific and Industrial
Research Organization, CSIRO Australia 1.875◦ × 1.25◦ Daily [55]

GFDL-ESM4
Geophysical Fluid Dynamics Laboratory,

National Oceanic and
Atmospheric Administration

America 1.25◦ × 1◦ Daily [56]

MIROC6 Atmosphere and Ocean Research
Institute, The University of Tokyo Japan 1.40625◦ × 1.40625◦ Daily [57]

MPI-ESM1-2-LR The Max Planck Institute for Meteorology Germany 1.875◦ × 1.875◦ Daily [58]
MRI-ESM2-0 The Meteorological Research Institute Japan 1.125◦ × 1.125◦ Daily [59]

2.3. Methodology
2.3.1. Statistical Downscaling for Climate Outputs of GCMs

Compared with observations, the climate outputs from GCMs always contain sys-
tematic bias, and their coarse spatial resolution makes them unable to meet the high
requirements of hydrological models. Therefore, it is necessary to perform bias correction
and spatial downscaling on GCM outputs. In this study, we used a statistical downscal-
ing method that combines quantile mapping (QM) and a machine learning method. The
framework of this method (Figure 2) is summarized as follows:

(1) The first step is the initial bias correction and spatial downscaling by quantile
mapping (QM) [60] for the historical period and detrended quantile mapping (DQM) [61]
for the future period. This step is applied to all climate variables. By matching the cu-
mulative distribution functions (CDFs) of GCM outputs with those of observations, QM
has been widely used to correct the bias between GCM outputs and observations in the
field of climate change [36,38]. For bias correction in the future period, DQM removes
the trend of simulations firstly and then conducts quantile mapping, eventually restoring
the trend. This method can transfer the future distribution to lie within the support of the
historical distribution. A detailed description of QM and DQM can be found in the studies
by Piani et al. [60] and Cannon et al. [61]. Since QM or DQM mainly corrects the daily
simulations on a monthly basis and the daily variability of precipitation is relatively larger,
QM/DQM alone cannot meet the high requirements of daily hydrological simulation.
Therefore, other methods are still needed to improve the correction at a daily scale.
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(2) The second step is daily correction by machine learning. This study selected the
GA-NARX [32,62] method to perform further correction for precipitation. As a class of
recurrent neural networks, GA-NARX is regarded as a suitable method for nonlinear
dynamic time series prediction, and a detailed description can be found in [32,62]. In
this study, the predictors of GA-NARX include the QM/DQM-corrected daily rainfall,
mean/maximum/minimum temperature, relative humidity and wind speed, and the target
is the observed precipitation. Similar to other machine learning methods based purely on
data, GA-NARX always underestimates high values [63] due to the sigmoidal activation
function and insufficient training with limited high values in the time series [31,32,64]. This
drawback can significantly affect the projection of future floods and needs to be overcome.

(3) The third step is extreme value correction by triple-gamma distribution mapping
(TGDM). TGDM belongs to the categories of QM methods that fit CDFs by a triple-gamma
distribution similar to the double-gamma distribution in Gao et al. [65] and can better
capture the distribution of extremely high values. In a triple-gamma distribution, the
observations and simulations are separately divided into three groups according to the
specifically designed percentiles, including the 95th percentile and 99th percentile, as
criteria for distinguishing normal, high and extremely high values in this study. The
detailed calculation process is similar to the double-gamma distribution in Gao et al. [65]
and can be found in the corresponding reference.
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2.3.2. Future Land Use Projection by CA–Markov and Leaf Area Index Projection by
Biome-BGC

The CA–Markov model [41] is a popular method for modeling the dynamics of
spatiotemporal land use with high accuracy [66–68]. The Markov chain is a random process
describing the transition of a system from one state to another and has the stable and
memoryless property which means the probability of a random process depends only
on its current state and time. A cellular automaton (CA) can independently change its
state according to its previous state and that of immediate neighbors, which includes the
spatial relationship in its outputs. Integrating the advantages of the Markov chain and
CA, CA–Markov can reallocate land use during iterations until reaching the area totals
predicted by the Markov chain. The CA–Markov model is run using IDIRISI software, and
more details can be found in the IDIRISI manual [69]. In this study, we use the future land
use transition area matrixes from the LUH2 dataset to replace the transition area matrixes
generated by the Markov process and then run the CA–Markov model to project future
high-resolution land use maps under four SSP–RCPs. The model inputs mainly include the
historical land use maps (100 m × 100 m) in 2000 and 2010, and the model finally generates
future 100 m × 100 m land use maps for each decade from 2020 to 2090.

The temporal and spatial dynamic distribution of vegetation is affected by both climate
and land use and then constrains the hydrological process through stomatal conductance,
leaf area, interception and transpiration [70–74]. Thus, the process of dynamic vegetation
growth should be considered in hydrological simulations. As a one-dimensional process-
based biogeochemical model, the Biome-BGC model [75] can robustly and accurately
describe vegetation physiological processes, including photosynthesis, respiration, evap-
otranspiration and decomposition, in terrestrial ecosystems. The leaf area index (LAI) is
estimated as a function of leaf carbon amount and is updated daily [76]. The details of
Biome-BGC can be found in the studies by White et al. [77] and Thornton et al. [75]. In
this study, the 4.2 version of Biome-BGC is mainly used to project future LAI with future
climate forcing and land use projections under four SSP–RCPs. The eco-physiological
parameters mainly include maximum stomatal conductance, fraction of leaf N in Rubisco,
canopy average specific leaf area, canopy water interception coefficient, current growth
proportion, year day for the start of new growth and year day for the end of litterfall, and
are calibrated with remote sensing-based LAI from 1985 to 1989.

2.3.3. Hydrological Simulation by GBHM

As a fully distributed hydrological model, the geomorphology-based hydrological model
(GBHM) proposed by Yang et al. [30] mainly consists of two parts: hillslope unit-based hydro-
logical simulations and river routing along river networks. The hydrological simulation in
the GBHM mainly includes canopy interception, evapotranspiration, surface flow, infiltration,
unsaturated flow and groundwater flow, and river routing is based on the kinematic wave
method. A detailed description of the GBHM can be found in the studies by Yang et al. [30]
and Yang et al. [78]. In this study, the GBHM is used for natural hydrological simulation
and projection in the Jiulong River basin with a spatial resolution of 1 km × 1 km. Since the
model had been calibrated and validated with the Jiulong River basin in our previous study
by Lu et al. [33], this study directly used the developed model to simulate the hydrological
process during the historical period (1 January 1985–31 Decmber 2014) and the future period
(1 January 2015–31 Decmber 2099). For the detailed GBHM development process in the
Jiulong River basin, please refer to the previous study by Lu et al. [33].

2.3.4. Statistical Approaches for Analyzing the Changes in High and Low Flows

For the definitions of high flow and low flow, there are two common methods to
describe them. One is to determine the high and low flows by the high and low percentiles
based on the flow frequency distribution curve, and is widely used to validate the perfor-
mance of hydrological models and can reflect the most common situations of high and
low flows [32,79]. The other method of description is the annual maximum or minimum
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of specific moving window mean discharges, and is commonly applied to reflect flood or
drought risks [27,80]. Since the changes in future hydrological hazards are focused more in
this study, we selected the second method to reflect high and low flows. In this study, the
high flow is reflected by annual 1-day maximum, 3-day maximum and 7-day maximum
discharges calculated based on daily average discharges, and the low flow is reflected by an-
nual 7-day minimum, 30-day minimum and 90-day minimum discharges calculated based
on daily average discharges at three hydrological stations. These 6 indices we selected in
this study are all contained in the indicators of hydrologic alterations (IHA) [81] to reflect
the changes in flow regimes and have been widely used in previous studies [33,82,83].

To grasp the changes in future floods more accurately, the copula-based method is
adopted to analyze future flood frequency. Before frequency analysis can be performed,
flood events need to be identified. In this study, the peak over threshold (POT) method [84]
is adopted. POT extracts flood events by setting a threshold value that leads to a specific
number of flood events per year. With obvious advantages compared with the annual
maximum flood series (AMF), POT can identify more flood events in wet years, ignore
minor and insignificant floods in dry years, and provide more flood characteristics (such as
flood volume, duration and lag time between adjacent events) [32,85]. This study adopted
POT3 with three events per year, and the details of POT can be found in the studies by
Lang et al. [84] and Mediero et al. [85].

Compared with classical bivariate frequency, the copula-based method performs
marginal distribution and multivariate dependence modeling separately, providing greater
flexibility in selecting marginal and joint probability functions [86,87]. In the field of bivari-
ate frequency analysis, the copula function has been the dominant method and is widely
used in flood frequency analysis. The copula function uses the following function to link the
univariable marginal distribution functions to the multivariate probability distribution [88]:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (1)

where F1(x1), F2(x2), . . . , Fn(xn) are marginal distributions of the random vector (x1, x2, . . . , xn).
A detailed description of copula functions can be found in the studies by Nelsen [89] and Sal-
vadori et al. [90]. In this study, the flood peak and volume are selected as the marginal variables,
and the candidate marginal distribution functions include the generalized extreme value (GEV),
inverse Gaussian (IG), Birnbaum Saunders (BS), lognormal (LN), gamma (G), loglogistic (LL),
Nakagami (Na), Rician (Ri), normal (N), logistic (L), t-location scale (T), Weibull (W), extreme
value (EV), Rayleigh (Ra), exponential (Exp) and generalized Pareto (GP) distributions. The
candidate copula functions include elliptical copulas (Gaussian), Archimedean copulas (Clatyon,
Gumbel and Joe), extreme value copulas (Galambos), and mixture copulas (Plackett and Farlie-
Gumbel-Morgenstren). All parameters were estimated using a hybrid-evolution Markov chain
Monte Carlo (MCMC) approach within a Bayesian framework, and flood frequency analysis
was performed by the Multivariate Copula Analysis Toolbox (MvCAT) [91,92]. A detailed
mathematical description of marginal distribution functions, copula functions and joint return
periods can be found in the study by Sadegh et al. [91].

3. Results
3.1. Statistical Downscaling Results of Climate Variables

Using a combination of quantile mapping and machine learning, we performed spatial
downscaling and bias correction for the coarse outputs of GCMs, and the results are shown
in Figure 3. The comparison (Figure 3a) between the areal mean value of precipitation pro-
jections and observations showed that the downscaling method can satisfactorily correct the
bias, and the future precipitation shows an increasing trend under the four SSP–RCPs. The
fossil energy-developed SSP585 had the highest precipitation increase rate of 5.8 mm per
year (0.33%/year), and the sustainably developed SSP126 had the second highest increase
rate of 4.9 mm per year (0.28%/year) followed by the middle-of-the-road-developed SSP245
with an increase rate of 4.1 mm per year (0.23%/year), while the regional-rivalry-developed
SSP370 had the lowest rate of increase of 2.3 mm per year (0.13%/year). In the last decade
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of the 21st century, annual precipitation is projected to increase by 15.5% under SSP126,
22.2% under SSP245, 14.6% under SSP370 and 24.9% under SSP585. For the inner-year
temporal distribution of precipitation, the result (Figure 3b) shows that there are two peaks
in a year according to the historical precipitation, which occur in June and August. In the
future, two peaks still exist, with the second peak projected to increase greatly and almost
surpass the first peak, which potentially indicates greater flood risks in the future. The
projected annual mean temperature is shown in Figure 3c, and the results indicate that the
future temperature shows different degrees of rise under the four SSP–RCPs. The sustain-
able development SSP126 has the slowest rise rate of 0.12 ◦C per decade, and continued
warming will be effectively contained until 2070, subsequently showing a slight downward
trend. In the last decade of the 21st century, the temperature under SSP126 will eventually
increase by 0.96 °C. The temperature under the other three SSP–RCPs will continue to rise
steadily, and the rise rate will accelerate as greenhouse gas emissions increase with a rise
rate of 0.16 °C per decade under SSP245, a rise rate of 0.19 °C per decade under SSP370
and 0.24 °C per decade under SSP585. In the last decade of the 21st century, the annual
mean temperature will increase 1.42 °C under SSP245, 1.83 °C under SSP370 and 2.34 °C
under SSP585 in the study area. In the case of constant land use, the gradual increase in
temperature and precipitation in the future may increase evapotranspiration to some extent
and eventually affect runoff. Since the forest coverage rate in the Jiulong River basin is
nearly 57% and the evapotranspiration is largely contributed by vegetation, it is necessary
to consider future land use or vegetation changes.
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precipitation (b) for the period 2015–2100, while the observations (solid black line) are calculated for
the period 1985–2014.

3.2. Projected Future Land Use Changes and Leaf Area Index under Various SSP–RCPs

Using the CA–Markov model with land use changes from LUH2 as constraints, this
study projected decadal land use maps with a spatial resolution of 100 m × 100 m from 2020
to 2090. We summarize the areal mean land use changes of forest, cropland and urban areas
in Figure 4. The historical land use map in 2010 and the projected land use maps in 2090
under four scenarios are shown in Figure 5, and other projected land use maps are provided
in the Supplement (see Figures S1–S4). The results show that strict land use regulations and
afforestation under SSP126 will lead to a continued increase in forest growth, with the ratio
of forest coverage increasing by 10.4% in 2090 compared with that in 2010 and a decreasing
trend of croplands, with the ratio decreasing by 10.7% compared with that in 2010. Under
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the other three SSP–RCPs, the ratio of forest will initially decrease and then increase, while
the ratio of croplands will initially increase and then slowly decrease. With the lack of land
use regulation, SSP370 shows the greatest decrease in forest and increase in croplands in
2050. Regarding urbanization, the SSP370 scenario will essentially maintain the current
urbanization rate, while other SSP–RCPs will show a declining trend after 2050.
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With projected land use maps and climate forcing data, the Biome-BGC model was
used in this study to simulate future leaf area index (LAI) changes. First, the half-monthly
remote sensing-based LAI was used to calibrate the Biome-BGC model from January 1985
to December 1989 for each type of land use and to validate the model from January 1990
to December 1994. The results (Figure 6) mainly demonstrate the model performance for
the LAI simulation of forest (including dense forest and sparse forest), cropland (including
paddy field and upland field) and other vegetation types (including grasses and shrubs).
The calibration and validation results showed that the model can basically capture the
periodic changes in LAI with correlation coefficients greater than 0.4 for each type of land
use, although certain discrepancies remain between the simulation and the remote-sensing
LAI, which may be caused by the lack of detailed data of some local vegetation species and
we must ignore these local species. With the calibrated Biome-BGC model, the future daily
LAI under the four SSP–RCPs was projected.
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Figure 6. The comparison between the daily simulated areal mean LAI by the Biome-BGC model and
the half-monthly remote sensing-based LAI (referred to as the observation in the figure) for forest (a),
cropland (b), and other vegetation (c).

3.3. Future Changes in High and Low Flows

In this study, the GBHM was used to project future hydrological processes under
the four SSP–RCPs with future climate forcing, land use maps and LAI projections, and
the calibration and validation of the GBHM in the Jiulong River basin can be found in
our previous study by Lu et al. [33]. The previous study has proven that the GBHM can
accurately reflect the natural hydrological process in the study area and the calibration and
validation results are shown in Table 2. PBIAS is the percent bias between the simulation
and observation and can be used to evaluate the overall model performance [93]. NSE
refers to the Nash and Sutcliffe efficiency coefficient and is widely used to evaluate the
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performance of a hydrological model [94]. LNSE is the logarithmic-transformed Nash and
Sutcliffe efficiency coefficient and is used to evaluate the capability of low flow simulation
of a hydrological model [95]. A hydrological model can be regarded as a satisfactory model
when PBIAS is between −10% and 10% and NSE and LNSE are greater than 0.7 according
to the study by Moriasi et al. [96]. The detailed calculation equations can be found in the
study by Lu et al. [33].

Table 2. Calibration and validation results of GBHM at the Zhengdian, Zhangping and Punan stations.

Calibration Period (1963–1967) Validation Period (1968–1972)

Gauges PBIAS (%) NSE LNSE PBIAS (%) NSE LNSE

Zhengdian 4.70 0.72 0.80 −8.00 0.69 0.74
Zhangping 8.91 0.79 0.86 2.11 0.79 0.87

Punan 3.77 0.82 0.90 −8.77 0.85 0.86

The future runoff projections under the four SSP–RCPs at the three stations are shown
in Table 3. The results demonstrate that future runoff is projected to show an increasing
trend under all four scenarios, with the increases in runoff under SSP245 and SSP585 being
relatively larger, and the lowest increase is under SSP370. At Zhengdian station, the runoff
in the last decade of the 21st century is projected to increase by 29.9% under SSP126, 45.6%
under SSP245, 25.3% under SSP370 and 40.0% under SSP585 compared with that in the
historical period (1985–2014). At Zhangping station, the runoff in the last decade of the
21st century is projected to increase by 43.6% under SSP126, 46.0% under SSP245, 22.8%
under SSP370 and 49.8% under SSP585. At Punan station, the runoff in the last decade of
the 21st century is projected to increase by 41.7% under SSP126, 47.2% under SSP245, 24.5%
under SSP370 and 49.3% under SSP585.

Table 3. Annual mean runoff at the Zhengdian, Zhangping and Punan stations under the four
SSP–RCPs.

Decadal Mean Runoff (×108 m3/year)

Gauge Zhengdian Zhangping Punan

Historical Period Observations GCM-Simulation Observations GCM-Simulation Observations GCM-Simulation

1990s 29.24 29.70 50.13 50.08 91.15 91.31
2000s 26.72 26.59 45.98 45.30 82.89 82.74
2010s 22.70 22.37 45.28 46.00 79.90 79.87

Future period SSP126 SSP245 SSP370 SSP585 SSP126 SSP245 SSP370 SSP585 SSP126 SSP245 SSP370 SSP585

2020s 30.81 31.80 30.88 30.51 54.92 55.57 55.54 54.35 98.70 100.63 99.92 97.75
2030s 31.27 28.46 29.66 29.59 59.30 51.74 54.16 54.72 106.00 93.07 97.34 98.20
2040s 33.97 36.18 31.92 32.41 59.50 61.88 56.17 55.82 107.73 111.76 100.94 100.94
2050s 33.43 38.88 27.52 31.33 61.53 65.43 53.02 58.99 110.41 119.30 94.71 104.87
2060s 38.41 33.29 31.37 32.73 69.92 68.19 58.92 60.59 125.66 120.82 105.41 108.48
2070s 35.45 36.08 32.99 34.95 66.23 70.26 56.91 63.36 118.08 124.68 103.10 114.44
2080s 33.92 36.72 31.83 36.75 68.90 69.12 59.65 67.17 121.61 124.59 106.90 120.76
2090s 34.06 38.20 32.87 36.71 67.78 68.69 57.88 70.03 119.98 124.34 105.15 125.73

3.3.1. Future Changes in High Flows

To make a preliminary assessment of future flood situations, we calculated the annual
1-day maximum, 3-day maximum and 7-day maximum discharges at three hydrological
stations, with the results at the three stations shown in Figure 7. The annual 1-day maximum
discharge showed the most variability, with the three stations increasing by an average of
133% under SSP126, 73% under SSP245, 68% under SSP370 and 67% under SSP585 in the
last decade of the 21st century compared with that in the historical period. Annual 3-day
maximum discharges had relatively less variability with the three stations increasing by an
average of 141% under SSP126, 70% under SSP245, 72% under SSP370 and 64% under SSP585
in the last decade of the 21st century. The annual 7-day maximum discharges had the least
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variability, with the three stations increasing by an average of 144% under SSP126, 69% under
SSP245, 87% under SSP370 and 64% under SSP585 in the last decade of the 21st century. The
results demonstrate that the annual 1-day maximum, 3-day maximum and 7-day maximum
discharges all reveal increasing trends in the future under all scenarios, which indicates that
there may be more frequent floods with larger magnitudes in the future.
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(d–f) and Punan station (g–i).

With daily projected runoff, we used the POT3 method to extract the flood events and
then used the copula-based method to simulate the bivariate joint distribution of peak-
volume combinations for the historical 30-year flood, 50-year flood and 100-year flood at
the three stations under the four SSP–RCPs. To display the change in flood frequency more
directly, the return period was adopted. A smaller return period represents the greater
likelihood a given flood is to occur with a greater exceedance frequency, and vice versa.
The results shown in Table 4 indicate that the frequency of floods of different magnitudes
are projected to increase under the four future scenarios. The comparison among the four
SSP–RCPs shows that the future described in SSP370 and SSP585 is projected to face more
frequent floods, while the situation under SSP126 is projected to encounter the lowest
increase in flood frequency, with flood frequency projections under SSP245 being in the
middle. At Zhengdian station, the frequency of the historical 100-year flood is projected to
increase by 128% under SSP126, 128% under SSP245, 184% under SSP370, and 178% under
SSP585 in the last three decades of the 21st century. At Zhangping station, the frequency
of the historical 100-year flood is projected to increase by 86% under SSP126, 120% under
SSP245, 239% under SSP370, and 263% under SSP585. At Punan station, the frequency of
the historical 100-year flood is projected to increase by 151% under SSP126, 165% under
SSP245, 215% under SSP370, and 158% under SSP585. Increasingly frequent floods in the
future may cause serious damage to the lives and properties of local people in the study
area, and effective mitigation and adaptation measures should be proposed to face future
increasing flood risks.
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Table 4. Return periods of the historical 30-year, 50-year and 100-year floods occurring in the future
at the Zhengdian, Zhangping and Punan stations under the four SSP–RCPs.

Scenario

Return Period

Historical 30-Year Flood Historical 50-Year Flood Historical 100-Year Flood

2026–2055 2046–2075 2071–2100 2026–2055 2046–2075 2071–2100 2026–2055 2046–2075 2071–2100

Zhengdian

SSP126 19 17 16 28 25 22 52 44 44
SSP245 17 17 17 26 27 24 49 51 44
SSP370 15 12 18 21 17 25 46 35 35
SSP585 17 14 16 24 19 24 50 36 36

Zhangping

SSP126 16 15 20 23 24 33 39 40 54
SSP245 19 15 12 31 24 18 60 35 46
SSP370 20 14 13 32 21 24 58 35 30
SSP585 19 15 12 47 22 18 46 38 28

Punan

SSP126 15 16 19 24 27 34 55 43 40
SSP245 16 15 12 26 25 19 55 40 38
SSP370 18 14 15 36 22 24 57 35 32
SSP585 19 18 13 34 28 21 70 48 39

3.3.2. Future Changes in Low Flows

To make a preliminary assessment of future hydrological drought situations, we
calculated the annual 7-day minimum, 30-day minimum and 90-day minimum discharges
at three hydrological stations, and the results are shown in Figure 8. For changes in low
flows, the results show that there are slightly increasing trends in the 7-day minimum,
30-day minimum and 90-day minimum discharges in the future at the three stations
under the four SSP–RCPs compared with those in the historical periods. The annual 7-day
minimum discharge had the least variability, with the three stations increasing by an
average of 39% under SSP126, 19% under SSP245, 25% under SSP370 and 0.26% under
SSP585 in the last decade of the 21st century compared to that in the historical period.
Annual 30-day minimum discharges have relatively greater variability with the three
stations increasing by an average of 41% under SSP126, 18% under SSP245, 24% under
SSP370, and 31% under SSP585 in the last decade of the 21st century. The annual 90-day
minimum discharges had the most variability, with the three stations increasing by an
average of 36% under SSP126, 13% under SSP245, 25% under SSP370, and 29% under
SSP585 in the last decade of the 21st century. This indicates that future hydrological
droughts may be alleviated to some extent, although droughts have not been a severe
problem in the Jiulong River basin.
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4. Discussion
4.1. Impact of Climate and Land Use Changes on Future High and Low Flows

The above results have demonstrated a wetter and warmer future in this coastal
basin and analyzed potential changes in future runoff and flood frequency under the
combined impacts of climate change and land use change. However, the respective impacts
of climate change and land use change need to be further discussed. Here, we replaced
the historical 30-year climate forcing data with the projected 30-year (2071–2100) future
climate data under SSP370 and retained the historical land use (referred to as the newly
designed scenario). The LAI was simulated by the calibrated Biome-BGC model, and
the hydrological process was projected using the calibrated GBHM model. Since SSP370
and the newly designed scenario had the same precipitation in 2071–2100 with the only
difference being in land use change, the comparison between these two scenarios could
show the impact of land use change. Similarly, the only difference observed between the
historical situation and the newly designed scenario was the change of climate forcing
data, and the comparison between these two scenarios could quantify the impact of climate
change. The annual 1-day maximum discharge was selected to represent high flow, and the
annual 7-day minimum discharge was chosen to represent low flow.

For high flow, the comparison results showed that the mean value of annual 1-day
maximum discharge under the newly designed scenario is projected to increase by 106%
at Zhengdian station, 100% at Zhangping station and 48% at Punan station compared to
that in the historical period (1985–2014), while that under SSP370 is projected to increase
by 128% at Zhengdian station, 103% at Zhangping station and 51% at Punan station. It
can be concluded that climate change is a dominating factor for the future increase in
high flows with larger precipitation during the wet season. The comparison between the
newly designed scenario and SSP370 shows that continuous deforestation and cropland
extension under SSP370 will exacerbate this increase (from 106% to 128% at Zhengdian
station, 100% to 103% at Zhangping station and 48% to 51% at Punan station) by affecting
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canopy interception, infiltration and evapotranspiration processes, which is consistent with
previous studies [97–99]. For low flow, the results demonstrate that the mean value of
annual 7-day minimum discharge under the newly designed scenario will increase by 8.5%
at Zhengdian station, 8.4% at Zhangping station and 9.5% at Punan station, while that
under SSP370 will increase by 27.2% at Zhengdian station, 31.3% at Zhangping station and
19.3% at Punan station. This indicates that future climate change in the Jiulong River basin
may have less impact on low flows, while land use changes (deforestation and cropland
extension) will cause an increase in low flows. The main reason for this phenomenon is
that forest degradation reduces evapotranspiration and canopy interception, which leads
to an increase in soil water content and groundwater recharge and ultimately causes an
increase in low flow [1,100].

4.2. Impact of Dams on Futrue High and Low Flows

Since there are numerous dams existing in the Jiulong River basin, the possible impacts
of dams on future high and low flows are desired points of discussion. However, since the
GBHM model we used in this study did not have the reservoir operation module which
requires further improvement, it was difficult to quantitatively analyze the current impact
of dams thus we only quantitatively discussed the possible impacts here. The drainage
area of Zhengdian station is mainly affected by annual flood-control dams according to the
reservoir capacities, and the drainage area of Zhangping and Punan stations are mainly
affected by small-scale hydropower dams (<50 MW). Our previous study [33] showed
that the flood-control dams could decrease the high flows and increase the low flows at
Zhengdian station by releasing water in dry seasons and restraining floods in wet seasons,
while at Zhangping and Punan stations, the dominant hydropower dams could reduce low
flows and had less obvious effects on high flows. This is due to these small dams being built
solely to generate as much electricity as possible and may thus store more water up to a
sufficient head before electricity generation can occur during the dry season. Under a future
with increasing high flows and frequent floods, the flood-control dams may to some extent
mitigate the growth of high flows and reduce flood risks in addition to increasing low flows
at Zhengdian station. However, the numerous small-scale hydropower dams may have less
effect on the reduction of high flows and mitigation of flood risks at Zhangping and Punan
stations, and the slight increase in low flows due to climate and land use changes may be
offset to some extent by the reduction effect from hydropower dams, thus low flows at
these two stations may not change much in the future.

4.3. Suggestions for Future Water Management

According to the results found in this study, the Jiulong River basin faces a challenging
future with more frequent floods, and a wetter and warmer climate will dominate the
increase in high flows, which will be further exacerbated by forest degradation. Current
water management systems will be severely challenged and need to be adjusted. Integrated
water management is required in the future. First, as regional positive and sustainable
land use changes can offset the impacts of climate change to some extent, we suggest that
local authorities implement strict land management practices and vigorously promote af-
forestation. Second, we recommend that the flood protection standards of the infrastructure
should be improved in the Jiulong River basin, which is in close proximity to several cities
with large populations and thriving economies. Third, we suggest that the management
department should improve the operation rules of numerous existing reservoirs to adapt
to more severe flood situations in the future.

5. Conclusions

With a combined downscaling quantile mapping-machine learning method, the future
climate forcing data from GCMs in CMIP6 were bias corrected and spatially downscaled.
Using the CA–Markov model with future land use changes from LUH2 as constraints,
decadal future land use maps with high spatial resolution were projected. Based on the
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climate forcing and land use projections, the Biome-BGC model was applied to project
future LAI data, and subsequently, a calibrated hydrological model (GBHM) was used to
simulate the future hydrological process under four SSP–RCPs during the period from 2015
to 2100. The main conclusions were as follows:

(1) Under global warming, precipitation and air temperature will continue to rise
under all SSP–RCPs. In the last decade of the 21st century, precipitation is projected to
increase by 15.5% under SSP126, 22.2% under SSP245, 14.6% under SSP370 and 24.9% under
SSP585, and the annual mean temperature will increase by 0.96 °C under SSP126, 1.42 °C
under SSP245, 1.83 °C under SSP370 and 2.34 °C under SSP585 in the study area.

(2) In the future, land use changes will have different development pathways deter-
mined by the initial designs in various SSP–RCPs. Under greenest roads (SSP126), the
forest area will continue to rise with the ratio increasing by 10.4% in 2090, and the cropland
decreasing by 10.7% compared with that in 2010. Under the other three SSP–RCPs, the ratio
of forest will initially decrease and then increase, while the ratio of croplands will initially
increase and then slowly decrease.

(3) Under the combined impacts of climate and land use change, the total available
water resources will increase due to increasing precipitation, and the high flow and low
flow will both increase at three stations under the four SSP–RCPs. In addition, the Jiulong
River basin will face more frequent floods in the future. In the last three decades of the 21st
century, the station-average frequency of a historical 100-year flood will increase by 122%
under the most optimistic of scenarios (SSP126), and increase by 213% under the scenario
of greatest regional rivalry (SSP370).

(4) Future warmer and wetter climates will lead to a great increase in high flows, and
deforestation will exacerbate this increase to some extent, while the increase in low flows
mainly caused by land use changes (deforestation and cropland extension), and the impact
of climate change will be relatively smaller.

(5) To tackle the challenges of future water management presented by climate change,
we recommend an integrated water management system, including afforestation, raised
protection standards of infrastructure and improvement of existing operation rules of
numerous reservoirs.
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