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Abstract: There are many small and medium-sized orogenic copper deposits in the Jinman–Lanping 

area of Yunnan. In order to standardize mining, long-term planning, and unified management, it is 

necessary to further delineate prospecting areas. In order to improve the efficiency of prospecting, 

a data-driven approach is established. This paper uses the weight of evidence model to make pro-

specting predictions, and it then delineates the prospective prospecting area. The relevant evidence 

layers in the weight of evidence model are geochemical anomalies and remote sensing iron staining 

anomalies. Among them, the geochemical anomaly layer mainly uses the concentration–area (C-A) 

fractal model to separate the geochemical background and anomaly acquisition. The remote sensing 

iron-stained anomaly layer mainly uses bands (1, 4, 5, 7), and bands (1, 3, 4, 5) were combined for 

principal component analysis to extract abnormal iron staining. Finally, using the weight of evi-

dence model, the spatial element layers (evidence layers) from different sources were combined, 

and the interaction between them was analyzed. It is pointed out that the area has good prospects 

for prospecting, and the prospective prospecting area was thus delineated. 
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1. Introduction 

Metallogenic prediction is the application of geological theory and related technical 

methods that synthesizes basic data (such as geology, remote sensing geology, geophys-

ics, geochemistry, etc.) using GIS technology and information integration technology to 

establish a regional comprehensive information mineral prediction model [1,2] for quan-

titative evaluation of mineral resources, and it is an important means of information find-

ing in the field of mineral resources exploration at present [3]. At the same time, under 

the guidance of the generalized ore deposit geological model, reasonable metallogenic 

prediction theory, and appropriate mathematical geological methods, geographic infor-

mation system (GIS) technology is used to carry out integrated management of multi-

source geological information through its powerful spatial information processing. The 

analysis function can carry out fast and effective comprehensive analysis [4,5], and it is 

also a widely recognized quantitative evaluation technology system for mineral resources 

at home and abroad [6,7]. With the development of science and technology, metallogenic 

prediction and evaluation has developed from a qualitative to quantitative and from a 

two-dimensional to three-dimensional approach. Since the 1980s, geographic information 

system (GIS) technology has been successfully introduced into metallogenic prediction. 

This technology improves the efficiency of mineral resource prediction and shortens the 

resource evaluation period, and it can also quantitatively delineate favorable metallogenic 

sections at all levels. Among the available models, the weight of evidence model is a math-

ematical prediction and evaluation model that is based on the spatial position relationship 

of data and combines GIS technology to effectively synthesize various favorable metallo-

genic factors (evidence layers). At present, different domestic experts and scholars have 
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carried out mineral resource prediction work based on the right of evidence method for 

some major metallogenic zones and deposits, and they have achieved good prospecting 

results [8–13]. 

At present, fractal and multifractal analysis methods based on the principle of self-

similarity have been widely used to identify geochemical anomalies. In the extraction of 

geochemical anomalies, the fractal method is also used to extract information about geo-

chemical anomalies. In the remoting sensing aspect of geological interpretation, the ex-

traction of characteristic minerals is realized by multivariate statistical methods, mainly 

through the use of principal component analysis to extract iron staining anomalies which 

thus provides information about characteristic mineral extraction. 

The research area of this paper is located in the Jinman area in Lanping County, Yun-

nan Province. It is located on both sides of the Lancang River Gorge. There are many small 

and medium-sized orogenic copper deposits (points) in the area. According to incomplete 

statistics, there are hundreds of copper deposits in the area [14]. In order to plan mining, 

this study uses the ArcGIS10.2 platform to explore the evidence maps of geochemical 

anomalies and remote sensing anomalies closely related to mineralization.  

2. Regional Geological Overview 

The Lanping-Simao Basin in Yunnan is located at the intersection of the Tethys tec-

tonic domain and the Pacific Rim tectonic domain and is a Middle Cenozoic terrestrial rift 

basin developed on the basement of the Hercynian [15]. Since the late Mesozoic, the 

Lanping-Simao Basin has experienced three extension-rifting periods (in the Late Triassic, 

Jurassic-Early Cretaceous, and Paleocene) that led to the formation of the third-order gra-

ben basin [15], and multiple extensional activities have resulted in intense paleothermal 

activity in the basin that is favorable for the formation of copper and polymetallic depos-

its. 

The strata of the Lanping Basin are dominated by late Paleozoic–Cenozoic basin de-

posits and are mainly composed of sedimentary rocks from the Carboniferous to the Mi-

ocene; generally, this demonstrates marine–continental sedimentary evolution. The Car-

boniferous–Triassic period led to successive marine carbonate–clastic formations and 

coal-bearing clastic formations. The Jurassic to Early Paleogene regions show the devel-

opment of a set of red formations and coal-bearing formations, and the red gypsum-salt 

formation is basically continental sedimentary [14]. 

Affected by the evolution of the Sanjiang structure, the Lanping Basin developed vol-

canic rocks from the Paleozoic to the Cenozoic, and their distribution was mostly affected 

by the long-term activity of deep and large faults. Alkaline-rich porphyries and alkaline 

complexes were dominant in the early Himalayan mountains. In addition, previous stud-

ies have suggested that the Lanping Basin has deep concealed intrusions, which may have 

provided certain material and energy for nearby metallization [16]. 

The Lanping Basin is tectonically complex and has undergone multiple tectonic 

movements that have led to the formation of a basin-controlling fracture system, a folding 

and reverse-thrusting tectonic system within the Lancang River rift zone, the Jinsha River 

and the Lailun Mountain rift zone, and the central axis rift zone spreading in a near north–

south direction. 

There are a large number of copper deposits (points) in the western margin of the 

Lanping Basin, which mainly occur in the Mesozoic and Cenozoic sedimentary strata in 

the basin; these are controlled by the western reverse nappe structure and its secondary 

structures, including the Jinman copper–silver deposit, the Liancheng copper deposit, the 

Liancheng copper deposit, a Molybdenum deposit, and a series of vein copper deposits 

[17]. However, in general, the formation of vein-like copper deposits in the western mar-

gin of the Lanping Basin is related to the basin thermal brine from which atmospheric 

precipitation originated [15,17,18]. The production process is bound to cause certain geo-

chemical and alteration anomalies. The geological map of the study area is shown in Fig-

ure 1. 
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Figure 1. Geological map of the Jinman–Lanping area (a,b) [10]. 

3. Method 

3.1. Concentration–Area (C-A) Fractal Model 

The concentration–area (C-A) fractal model method is a method to identify the rela-

tionship between content and area based on self-similar fractal theory. The most basic 

characteristic of fractal theory is to describe and study objective things from the perspec-

tive of fractional dimensions and mathematical methods, that is, to describe and study 

objective things with the mathematical tools of fractal dimensions. It jumps out of the tra-

ditional barriers of one-dimensional lines, two-dimensional surfaces, and three-dimen-

sional and even four-dimensional space–time and closely describes the real properties and 

states of complex systems, which is more in line with the diversity and complexity of ob-

jective things. The fractal method is suitable for the extraction of geochemical anomalies. 

Fractal theory can be described as a curve or geometric figure, each part of which has 

statistical properties similar to the whole object. Therefore, the shape of local parts and 

the shape of the whole object show some similarity in form or function, or they look sim-

ilar at different scales, i.e., they have self-similarity. In fractal theory, self-similarity is rep-

resented by the fractal dimension D. Fractal distribution requires the amount exceeding 

the threshold to have a power exponential relationship with object size [19], so that the 

following C-A fractal statistical model can be obtained. 

( ) ,    0rA r C D r= − 
 (1) 

In Formula (1), r represents element content, A (r) represents area when element con-

tent is greater than or equal to r, C > 0 represents the proportionality constant, and D > 0 

represents the fractal dimension. The C-A fractal model helps to determine the fractal di-

mension. The specific method is to take the logarithm of both ends of Formula (1) to obtain 

the linear regression seen in Equation (2). 
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Substituting 1 2[ ( ), ( ),..., ( )]nData A r A r A r
 and 1 2( , ,..., )nr r r

 into Equation (2), the 

least squares method is used to perform linear fitting and obtains slope D of the fractal 

line, which is the fractal dimension. In general, the variables are distributed on both ends 

of the line segment or on multiple line segments, so the piecewise fitting method is used. 

To improve the accuracy of segmentation inflection point locations and minimize human 

error, we can use an optimal method to determine the cutoff point, which thus minimizes 

the residual sum of squares, E, between the straight line and the original data. Equation 

(3) represents a two-stage fit. 
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(3) 

rj is the cutoff point. D1 and D2 are the slopes and the fractal dimensions within the 

corresponding fitted range. The multi-segment straight line corresponds to multiple frac-

tal dimensions, such as D1, D2, D3, and so on. After determining anomaly thresholds 

through dimensionality, this paper used anomalous data to map geochemical anomalies. 

3.2. The Weight of Evidence Model 

The weight of evidence model is a multivariate statistical method. It determines the 

metallogenic and ore-prospecting significance of each geological variable by studying the 

characteristics of the ore-controlling variables of the model unit and identifying the inter-

nal relationship between the variables [20]. The various characteristics of the predicted 

unit and the model unit are compared, and their similarity is used to indicate the metal-

logenic favorableness of the predicted unit. This delineates a favorable prediction area for 

metallogenesis [21]. 

In terms of the specific algorithm, assume that the study area covers t km 2, thus each 

unit area is u km 2 and T = t/u represents the total number of units divided into the study 

area. Assuming that T contains all of the units in a deposit, if u is small enough, D is equal 

to the number of known deposits and P (D) = D/T is the prior probability of selecting a 

mineral-bearing unit. Prior probability is an unconditional probability, which is a constant 

in the whole study area [21]. P (D) converts to prior dominance degree O (D): 

( )
( )

1 ( )

P D
O D

P D
=

−  
(4) 

For the jth binarized evidence layer, Bj is the evidence factor, and the evidence weight 

is defined as follows: 

_

( | )

( | )

j

j

j

P B D
W ln

P B D

+ =

  

(5) 

_

_ _

( | )

( | )

j

j

j

P B D
W ln

P B D

− =  (6) 

If there is a binary model (layers of evidence may exist anywhere in space), a positive 

weight of evidence is used. If the binary model does not exist, the conditional probability 

in this formula would be determined by superposition area. 
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The final calculated posterior probability is based on the superposition of many geo-

logical, geochemical, and geophysical data layers, which comprehensively reflects rele-

vant information pertaining to the various ore-controlling factors [22]. 

4. Prospecting Prediction 

4.1. Identification of Geochemical Fractal Anomalies 

(1) Characteristic analysis of geochemical parameters 

The Cu, Mo, and Sb elements present in the study area are closely related to miner-

alization, indicating that there is tectonic hydrothermal activity in this area [23]. Table 1 

shows the element content of the surrounding rocks, tectonic rocks, and copper minerals 

in the Jinman deposit in the Jinman study area of Lanping [24]. 

Table 1. Comparison of element content in surrounding rocks, tectonic rocks, and copper minerals 

in the Jinman deposit (ppm). 

Type of 

Sample 

Number 

of Sam-

ples 

Cu Pb Zn As Sb Ag Mo Hg 

Normal 

surround-

ing rock 

34 48.3 34.1 76.4 9.5 14.2 0.12 1.3 0.26 

Mylonite 

broken 

porphyry 

6 144.2 84.2 120.3 14 17.9 0.33 2.0 0.18 

The mean 

value of 

copper 

sulfide 

19 426,70 168.73 2384.6 30,730 158,314 362.1 13.0 968 

(2) Analysis of geochemical anomalies 

According to the geochemical exploration data, the Cu anomalies in the study area 

are mainly distributed in the Dagoutou–Xiaozhaju area in the southern part of the study 

area: Hongyou lead mine, Daguochang copper mine, etc. The Mo anomalies are also 

mainly distributed along the Lancangjiang fault (the Hongyou lead deposit and the Jin-

man copper deposit), which may reflect more stratigraphic information. The Sb anomaly 

is mainly distributed along the NNE trending faults and the Daguochang–Damaidi area, 

and it fits very well with the Daguochang copper mine, Huapinghe copper mine, 

Hongyou lead mine, and Jinman copper mine in this area. Among them, the Daguochang–

Damaidi area has the highest anomaly intensity, the largest scale, and an obvious concen-

tration center that coincides with the Cu anomaly. Therefore, there is great potential of 

finding Daguochang-type copper deposits in the Daguochang area. According to the frac-

tal characteristics of Cu, Mo, and Sb elements, the abnormal thresholds are 71 ppm, 1.1 

ppm, and 3 ppm, respectively. Fractal diagrams of Cu, Mo, and Sb elements were obtained 

using Geodas software and are shown below. The fractal charts of Cu, Mo, and Sb are 

shown in Figure 2. 

   

Cu Mo Sb 
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Figure 2. Fractal chart of Cu, Mo, and Sb (unit: ppm). 

Based on the above outliers, the element combination anomaly map is extracted (Fig-

ure 3). It can be observed that the geochemical anomalies in the study area are large in 

scale, high in intensity, and obvious in terms of concentration center, which is in good 

agreement with faults and known ore points and indicates that this area has good pro-

specting prospects. 

 

Figure 3. Anomaly map of Cu, Mo, and Sb element combinations (unit: ppm). 

4.2. Remote Sensing Geological Interpretation 

This paper uses Landsat TM image data and ETM+ image data as remote sensing 

data sources. The maximum spatial resolution of TM data is 30 m with a total of seven 

spectral bands. The maximum spatial resolution of ETM+ data is 15 m with a total of eight 

spectral bands. Through remote sensing interpretation, it can be seen that metal mineral-

ization in this area is often accompanied by sericitization, potassium chloride, and kaolin-

ization. These minerals usually contain hydroxyl functional groups (OH). Carbonate min-

erals such as dolomite, calcite, and rhodochrosite often contain carbonate ions (CO 3 2−) 

[25]. Alteration minerals containing OH and CO 3 2− have strong absorption in the ETM + 
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7 (2.08–2.35 μm) zone and the strong reflection zone of ETM + 5 (1.55–1.75 μm). For iron 

oxides in metal mineralization through pyritization, the spectral characteristics are in the 

ETM+ 3 (0.63 ~ 0.69 μm) and ETM+ 1 (0.45 ~ 0.52 μm) zones and the ETM + 2 (0.52 ~ 0.60 

μm) and ETM+ 4 (0.76–0.90 μm) zones, which shows strong reflection in the spectrum. 

Some iron oxide anomalies can weaken the spectral anomalies between the reflection and 

absorption bands in ETM+ 4 and ETM+ 1 zones [26]. According to the spectral character-

istics of altered minerals, principal component analysis was carried out on the B (1, 4, 5, 

7) and B (1, 3, 4, 5) band combinations of the ETM+ images in the study area, and the 

corresponding iron staining anomalies were extracted. Information obtained by calculat-

ing standard deviation shows that the iron-stained anomalous area is basically consistent 

with the distribution of known mineralized points. The remote sensing interpretation re-

sults are shown in Figure 4. 

 

Figure 4. Remote sensing interpretation map. 

4.3. Prospecting Prediction 

In this study, the weight of evidence model was used to delineate the prospecting 

and prediction area in MRAS software based on Equations (4)–(6). The weights of the pre-

diction factors used in descending order are as follows: remote sensing line existence 

mark, 0.45; copper geochemical prospecting element abnormal existence mark, 0.372. The 

calculation results show that the weight value of the remote sensing line’s existence sign 

and copper geochemical anomaly sign is relatively large [27]. This has obvious guiding 

significance for prospecting. 

A total of nine minimum prediction units (areas) were delineated in the Jinman-type 

hydrothermal vein copper deposit research area using MRAS software. Among them, 

there are three class A prediction areas with a metallogenic probability of 0.381 to 1.00, 

two class B prediction areas with a metallogenic probability of 0.26 to 0.338, and four class 

C prediction areas with a metallogenic probability of 0.054 to 0.14. The three class A min-

imum prediction areas delineated are distributed in or near the strata outcropping area of 
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the upper member (J 2 h 2) of the Middle Jurassic Huakaizuo Formation in the ore-bearing 

formation, and there are metallogenic fault structures. Among them, there are copper 

metal geochemical anomalies in the two minimum prediction areas of Houshan and 

Kongtong, which have certain prospecting significance. The Jinman minimum prediction 

area has proven medium-sized copper deposits. The prediction basis is full and the metal-

logenic matching degree is high, which shows a certain resource potential. The two class 

B minimum prediction areas are distributed in the northern and southern parts of the 

study area. There are ore-bearing formations, metallogenic fault structures, and copper 

metal geochemical anomalies, and the prospecting prospects are good. There are ore-bear-

ing formations, fault structures, and geochemical anomalies in the distribution areas of 

the four class C minimum prediction areas. To sum up, the predicted areas delineated 

above have good prospecting prospects in terms of the distribution of ore deposit points, 

ore-bearing formations, metallogenic fault structures, and the distribution of geochemical 

anomalies. The prospecting prediction map is shown in Figure 5. 

 

Figure 5. Prospecting prediction map. 

5. Conclusions 

The geochemical data from the Jinmanian area of Lanping do not follow the normal 

distribution, so it is therefore not appropriate to use the traditional iterative method to 

calculate the lower anomaly limit of the target elements, thus the fractal method is used 
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to calculate the lower anomaly limit of the geochemical elements. Because this method is 

based on the change characteristics and structure of geochemical data, the calculated re-

sults are more objective and suitable for prospect mapping in similar areas. According to 

the above prediction results, the following conclusions are drawn. 

(1) Both geochemical fractal anomalies and remote sensing geological anomalies are 

closely related to mineralization. In the extraction of geochemical anomalies, the introduc-

tion of fractal methods is beneficial to the extraction of weak geochemical anomalies. Iron-

stained anomalies are directly related to pyritization. Selecting these two factor layers to 

establish the weight of evidence model guarantees the accuracy of prospecting prediction. 

(2) The weight of evidence method can link discrete events (mineral points) with re-

lated factor layers and calculate the weight of evidence according to the importance to 

metallization. The use of GIS overlay technology can reflect the characteristics of geologi-

cal space, which is conducive to metallogenesis. The accurate interpretation of ore infor-

mation and the delineation of the prospecting prediction area is more objective. 

(3) The prediction results of this paper more accurately delineate the prospecting area 

of this area, and they lay a solid foundation for future prospecting. 
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