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Abstract: Rainfed agriculture in Senegal is heavily affected by weather-related risks, particularly 

timing of start/end of the rainy season. For climate services in agriculture, the National Meteorolog-

ical Agency (ANACIM) of Senegal has defined an onset of rainy season based on the rainfall. In the 

field, however, farmers do not necessarily follow the ANACIM’s onset definition. To close the gap 

between the parallel efforts by a climate information producer (i.e., ANACIM) and its actual users 

in agriculture (e.g., farmers), it is desirable to understand how the currently available onset defini-

tions are linked to the yield of specific crops. In this study, we evaluated multiple onset definitions, 

including rainfall-based and soil-moisture-based ones, in terms of their utility in sorghum produc-

tion using the DSSAT–Sorghum model. The results show that rainfall-based definitions are highly 

variable year to year, and their delayed onset estimation could cause missed opportunities for 

higher yields with earlier planting. Overall, soil-moisture-based onset dates determined by a crop 

simulation model produced yield distributions closer to the ones by semi-optimal planting dates 

than the other definitions, except in a relatively wet southern location. The simulated yields, partic-

ularly based on the ANACIM’s onset definition, showed statistically significant differences from 

the semi-optimal yields for a range of percentiles (25th, 50th, 75th, and 90th) and the means of the 

yield distributions in three locations. The results emphasize that having a good definition and skill-

ful forecasts of onset is critical to improving the management of risks of crop production in Senegal. 
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1. Introduction 

The economy in West Africa heavily relies on rainfed agriculture and is thus highly 

vulnerable to the negative impact of climate change and variability [1]. Particularly, in 

Senegal, agriculture contributes to over 17% of the gross domestic product (GDP), and 

more than 70% of its population are employed in agriculture [2,3]. Weather-related risk, 

including the delayed onset or early cessation of the rainy season, erratic rainfall distribu-

tion, and dry spells, is the most predominant factor threatening agricultural production 

in Senegal [4]. The West African countries have limited adaptive capacities to the climate 

and/or weather-related risks due to the low level of fertilizer use, irrigation systems, 

mechanized cultivation, and other off-farm inputs [5,6]. Therefore, shifting planting dates 

is one of the most suitable approaches that smallholder farmers are relatively able to act 

upon to mitigate the risks of year-to-year climate variability. Delayed planting might lead 

to reduced yield by shortening the critical crop growth period, while planting too early 

has a risk of early crop failure and thus replanting when a long dry spell follows sowing 

[7,8]. Therefore, the onset dates of the rainy season for optimal planting were identified 
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as essential information affecting farmers’ crop management decisions and for usable 

weather and climate information services in Senegal [3,9–11].  

The onset of the West African monsoon has been analyzed and defined by many 

studies, as summarized in Fitzpatrick et al. [12] and Bombardi et al. [13]. The previous 

studies broadly defined onset at two scales: (1) regional and (2) local. The regional onset 

is mainly explained by the latitudinal shift of the intertropical convergence zone (ITCZ), 

but the timing of the onset of the local rainy season has a weak correlation with the ITCZ 

shifts [12]. The local onsets were defined solely based on daily rainfall observations and 

can be divided into meteorological and agronomic definitions [14]. The meteorological 

definitions are mainly based on the first rains, while the agronomic definitions take into 

account subsequent dry spells to guarantee enough soil moisture for successful germina-

tion and early crop development [14,15]. The meteorological approaches used only cumu-

lative rainfall [16–18] or both cumulative and climatological mean daily rainfall [19,20]. 

The agronomic definitions have multiple variants with different thresholds for the dura-

tion of the first wet spell, rainfall amount during the wet spell, duration of the following 

dry spell, and the subsequent search period for the dry spell [8,15,21–23]. Some ap-

proaches explicitly used the water-holding capacity of different soil types to determine 

the rainfall requirement [24–26].  

After comparing nine different onset definitions of the West African monsoon at both 

regional and local scales, Fitzpatrick et al. [12] concluded that there exist little correlation 

and harmony between local onsets and regional onsets and thus an improved understand-

ing and prediction of the shifts of the ITCZ might not ensure a better prediction of local 

onsets, which are more relevant to farmers’ decisions. On the contrary, in an earlier study, 

Sultan et al. [6] showed the possibility of improving local millet production by linking the 

information on regional climate dynamics with crop modeling. 

The development of skillful forecasts of monsoon onset should be oriented to meet 

the needs of end-users (e.g., farmers, extension workers or government policy/decision 

makers in the case of the agriculture sector) to become “usable” information. Although 

many studies have proposed different onset definitions for the West African monsoon, 

there has been little work evaluating the utility of the proposed definitions in terms of 

agricultural production and/or usefulness in helping agricultural climate risk manage-

ment. To our knowledge, only Marteau et al. [14] and Sultan et al. [6] applied a crop sim-

ulation model, SARRAH, to assess the impact of different onset definitions on millet yield 

in Niger in the context of the West African monsoon.  

In Senegal, the National Meteorological Agency (ANACIM) has been working on de-

veloping and delivering locally relevant weather and climate information for smallholder 

farmers in collaboration with the CGIAR Research Program on Climate Change, Agricul-

ture and Food Security (CCAFS) since 2012 [10]. To provide usable monsoon onset fore-

casts, ANACIM has developed an agronomic definition of the onset as the first wet day 

of one or three consecutive days receiving at least 15 to 20 mm of rain without any 20-day 

dry spell during the following 30 days [27]. In the field, farmers may use their index finger 

to examine if the soil is wet enough to sow [28]. Extension workers use a rainfall-based 

criterion (e.g., rainfall > 20 mm) as the onset of the rainy season [Personal communication 

with ISRA]. In the meantime, the Institut Sénégalais de Recherches Agricoles (ISRA, Sen-

egalese Institute of Agricultural Research) has been trying to develop crop-specific plant-

ing criteria [Personal communication with ISRA]. 

To close the gap between the parallel efforts by ANACIM (i.e., climate information 

producer) and ISRA (i.e., a climate information user), it is desirable to understand how 

the current ANACIM’s onset definition is linked to the obtained yield of specific crops in 

Senegal. In this study, we aimed to evaluate multiple local agronomic onset dates defined 

by ANACIM, Bombardi et al. [20], and soil-moisture-based planting determined by the 

Decision Support System for Agrotechnology Transfer (DSSAT)–Crop Environment Re-

source Synthesis (CERES)–Sorghum model, in terms of their utility for sorghum produc-

tion. The evaluation was conducted by comparing full distributions of model simulated 
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yields at four locations covering diverse climatic conditions in Senegal. Crop simulation 

models are effective tools that allow impractical, costly, and lengthy experiments in hy-

pothetical environments to evaluate multiple management options. In evaluating the ef-

fect of planting dates on crop yields, hundreds of seasonal experiments/simulations at 

several locations with multiple planting dates in more than 30 years are possible only us-

ing crop simulation modeling. Considering its geographical popularity and importance 

in the food security of Senegal, sorghum was selected in the present study. The ultimate 

goal of this analysis is to contribute to defining an agriculture-relevant onset definition 

that could help to determine optimal planting dates and thus to improving ANACIM’s 

onset forecasting service to make it more usable. We envision this study stimulates co-

production of usable weather and climate information between ANACIM and ISRA for 

the agricultural sector.  

2. Materials and Methods 

2.1. Sites and meteorological data 

In this study, we selected ISRA’s four agricultural research experimental fields in 

Senegal: Bambey (14.71° N, 16.48° W), Nioro du Rip (13.76° N, 15.78° W), Sinthiou Malème 

(13.82° N, 13.9° W), and Kolda (12.88° N, 14.25° W), as shown in Figure 1. Long-term 

weather data (i.e., daily maximum and minimum temperature, solar radiation, and pre-

cipitation) from 1981 to 2015 were obtained from the ANACIM in order to define meteor-

ological onsets and run the DSSAT–CERES–Sorghum model. Senegal is located in the Su-

dano-Sahelian climatic zone and has a unimodal rainfall distribution [29]. The mean an-

nual rainfall gradually increases from the north (550 mm in Bambey) to the south (768 mm 

in Nioro du Rip, 755 mm in Sinthiou Malème and 996 mm in Kolda). At a large scale, the 

rainy season is governed by the West African monsoon and the movement of the ITCZ 

[30]. The length of the rainy season ranges from 3 months in the north to 5 months in the 

south (Figure 2d). Seasonal cycles of temperature and solar radiation show relatively 

lower values during the rainy season (Figure 2).  

 

Figure 1. Locations of the four target experimental research stations managed by ISRA. CNRA, 

NRIP, SINT and KOLD represent Bambey, Nioro du Rip, Sinthiou Malème and Kolda, respectively. 
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Figure 2. Mean seasonal cycle of weather variables at four target weather stations from 1981 to 2015: 

(a) daily Tmax, (b) daily Tmin, (c) daily Solar radiation, and (d) 7-day precipitation moving average. 

Refer to Figure 1 for the full names of the legend. 

2.2. Rainfall-Based Onset Definitions 

2.2.1. ANACIM’s onset definition  

ANACIM’s onset definition is based on previous studies for the Western Sahel re-

gion, including Sivarkumar [22,31] and Marteau et al. [15]. Currently they define the ag-

ronomic onset as the first wet day of one or three consecutive days receiving at least 15 or 

20 mm of rain without any 20-day dry spell during the following 30 days, starting from 

May 1 [27]. The threshold rainfall amount, 15 or 20 mm, is differentiated between the 

northern and the southern regions, respectively, separated by a straight line connecting 

Mbour-Diourbel-Matam. The 20 mm of rainfall threshold represents the minimum water 

requirement for crop survival, mainly based on the International Crops Research Institute 

for the Semi-Arid Tropics (ICRISAT)’s study on millet in Niger [15]. The post-onset dry 

spell is set to filter out false onsets that could damage germination and crop growth during 

the early stages. Compared to the 7-day dry spell in other studies [7,15,22,32], the 

ANACIM’s definition has a more relaxed criterion (i.e., 20 days). 
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2.2.2. Bombardi’s onset definition for sub-seasonal onset prediction 

Another rainfall-based onset definition was adopted from Bombardi et al. [20] (BM 

hereafter), which defined the onset of a rainy season to capture a seasonal change in the 

precipitation regime by improving on Bombardi and Carvalho [33] and Liebmann and 

Marengo [34]. The onset date at a weather station is detected based on accumulated rain-

fall anomalies 

𝑆(𝑛) = ∑(𝑝𝑖  −  �̅�)

𝑛

𝑖=𝑡0

  

where S(n) is the accumulated precipitation deviation from day t0 to day n. The daily de-

viation is calculated by subtracting the annual climatological precipitation rate (�̅� , mm 

day−1) from the rainfall at day i (𝑝𝑖). Precipitation anomalies averaged with 5-day running 

mean (𝑆𝑚) are used to determine the onset. The first day when the first derivative of the 

smoothed curve is greater than 2.5 (dSm/dt > 2.5) is considered the onset of the year. Note 

that the threshold 2.5 was used to avoid a false onset due to the first insignificant rainfall, 

while Bombardi et al. [20] used the first day after the inflection point (dSm/dt > 0). The BM 

method was particularly applied by Singh et al. [35] to assess the predictability of mon-

soon onset over Senegal using sub-seasonal hindcast databases. The advantage of the BM 

method against the ANACIM’s onset definition is that it can be used for real-time forecasts 

because it does not require prior knowledge of weather for the coming 30 days to detect a 

false onset (i.e., 20-day dry spell after the onset). 

2.3. Ex ante crop simulation experiments 

2.3.1. Crop modeling setup and validation 

In Senegal, sorghum is one of the most important subsistence cereal crops after pearl 

millet and maize [36,37]. As a drought-tolerant crop, sorghum is grown in most regions 

of Senegal regardless of agroecological zones [38]. In the present study, we used the 

DSSAT–CERES–Sorghum model to (1) determine planting dates based on soil water con-

tent, (2) determine semi-optimal planting dates, and (3) evaluate various onset definitions 

in terms of the simulated sorghum yield. In setting up the model management inputs, we 

assumed planting dates as one day after the onset dates as determined either by rainfall 

or soil water content. Note that we assumed the agronomic onset dates corresponded to 

farmers’ planting dates. In other words, farmers tend to plant as early as possible when a 

rainy season starts, in order to secure enough crop growing period. However, actual 

planting on the fields is constrained by non-meteorological factors, including available 

labor, seeds and logistics. 

The DSSAT–CERES–Sorghum model has been applied in several studies in Senegal 

(e.g., [38–40]). The DSSAT–Cropping System Model consists of primary modules for 

weather, management, soil, plant, and soil–plant–atmosphere, to simulate interactions be-

tween plants and environments [41,42]. Particularly, soil water content at each layer is 

updated daily by computing one-dimensional daily inflows (i.e., rainfall or irrigation 

through infiltration), outflows (i.e., soil evaporation, plant transpiration, root water up-

take, and drainage), and upward unsaturated flow [41].  

In this study, we followed all the field experiment setups in Ganyo et al. [43], except 

for inter-annually varying the planting dates. Recommended fertilizer practice (T2) is to 

apply 150 kg ha−1 of NPK (15-15-15) at emergence, 50 kg ha−1 of urea (46%) at tillering, and 

50 kg ha−1 of urea at stem extension, as recommended by the Senegalese agricultural re-

search institute (ISRA). This recommended practice was applied for the calibration and 

validation of the model performance. For multi-year simulations (1981–2015), fixed 

amounts of N fertilizer (22, 23 and 23 N kg ha−1) were applied at 6, 36 and 51 days after 

planting to follow the recommendation by ISRA (i.e., approximate emergence, tillering 

and stem extension growth stages). Major soil properties were also extracted from Ganyo 

et al. [43] (Table S1). All sites have very sandy soils with 80–95% of sand. Soil N level at 
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the top 30 cm soil varied from 167 N kg ha−1 (‘N16-I’ experiment) to 235 N kg ha−1 (‘N16-

R’ experiment). 

We used the genetic coefficients of Fadda, one of the most popular hybrids, as cali-

brated by Ganyo et al. [40,43,44] (Table S2). The calibration was based on the 2 years of 

field experimental data to see the effect of fertilization strategies on representative sor-

ghum cultivars in Senegal. We further validated the calibrated sorghum model, focusing 

on the experiments with recommended fertilizer management. First, the performance of 

the calibrated model was evaluated by computing mean absolute error (MAE), root-mean-

square error (RMSE), and normalized RMSE (nRMSE) (Equations (A1) and (A2)). The 

MAE, RMSE, and nRMSE for anthesis were 5, 6 days, and 6.6%, respectively. For the yield, 

the MAE, RMSE, and nRMSE were 685, 852 kg ha−1, and 60.9%, respectively. Due to small 

sample datasets (e.g., n ≤ 11), in this study, we considered an nRMSE ≤ 15% as “good” 

agreement; 15–30% as “moderate” agreement; and ≥ 30% as “poor” agreement [45–47]. 

Anthesis prediction of the model was in “good” agreement, being well-aligned along the 

1:1 line in Figure 3. The yield prediction skill was poor (Figure 3b). However, the case of 

“Nioro du Rip 2016 Irrigated (N16-I)” had an unreasonably low yield in Figure 3b, lower 

than the national average sorghum grain yield in Senegal (i.e., 888 kg ha−1) despite sup-

plemented irrigation (at least 30 mm per week) with a sufficient fertilizer amount [43]. 

Ganyo et al. [43] attributed the meager yield to the site’s low yield potential and fertilizer 

application timing. When the N16-I case was excluded, the nRMSE was improved to the 

“moderate” agreement, 30%. Note that high standard deviations (e.g., more than 1000 kg 

ha-1 in the case of S15-R and N15-R) in Figure 3b indicate considerable uncertainty in the 

yield measurements, even in well-controlled field experiments by ISRA, and thus difficul-

ties in fitting the model-predicted yields to the observed. 

  

(a) (b) 

Figure 3. Simulated and observed anthesis (a) and yield (b) of Fadda sorghum cultivar. Error bars 

indicate ± standard deviation of the observed yields. 

Secondly, the model performance was validated by looking at the inter-annual vari-

ation of crop phenology. Simulated anthesis dates for the previous 35 years (1981–2015) 

were within the range of observed anthesis dates in Ganyo et al. [43] (74–113 days in Fig-

ure S1b). Most of the simulated maturity dates of Fadda in Figure S1c were also within 

the range of the medium maturing variety found in literature: 100–125 days in Ganyo et 

al. [43] and 100–135 days in Akinseye et al. [48]. Maturity dates were not recorded in the 

field experiments, but they estimated maturity dates as 25–30 days after flowering [44]. 

Figure S1d also shows that the durations between the simulated anthesis and maturity 

were around 25 days across the 35 years, with some exceptions. Note that photoperiod-
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sensitive local sorghum varieties in West Africa flower at approximately fixed dates for 

timely maturity, independent of widely varying planting dates, before the rainy season 

ends [49]. The DSSAT–Sorghum model accommodated the photoperiod sensitivity by ad-

justing the P2O and P2R coefficients in Table S2 [50,51]. 

2.3.2. Soil-moisture-based onsets  

The DSSAT’s automatic planting option allows finding planting dates within a user-

specified time interval (i.e., reasonable planting window), when soil water content aver-

aged over a specific depth (e.g., 30 cm) reaches a user-specified threshold. This study 

adopted the automatic planting option, rather than fixed planting dates, to determine the 

soil-moisture-based planting dates against the rainfall-based onset dates by assuming that 

it better represents farmers’ planting practices. We tested two planting windows: (i) DOY 

151 (May 31) to DOY 231 (August 19) (AutoP(151) hereafter), and (ii) DOY 166 (June 15) 

to DOY 231 (August 19) (AutoP(166) hereafter). The two different planting windows were 

selected due to the substantial difference between the current ANACIM definition, which 

starts to count from May 1, and the literature. For instance, Diop [52] argued that the 

growing season starts between June 24 and July 11 in the south and southeast and between 

August 2 and 21 in the north and northeast of Senegal. The soil water threshold for auto-

matic planting was set as 30% of the field capacity over 30 cm soil depth. The DSSAT 

model simulation started on DOY 150 (30 May). Considering the unimodal rainfall distri-

bution (Figure 2d) and long dry season before the rainy season starts, the initial soil is very 

dry, but whenever rainfall fills the soil water content up to 30% within the designated 

planting window, the DSSAT automatically plants sorghum seeds.  

2.3.3. Determining semi-optimal planting dates 

Planting as soon as soil moisture meets the automatic planting criteria does not guar-

antee the highest potential yields farmers can achieve in a given season. Optimal planting 

dates could be later if there was a subsequent long dry spell after planting. The DSSAT’s 

automatic planting option depends on the planting window’s first date. To find semi-op-

timal planting dates, we shifted the planting window day by day, starting from DOY 151 

(i.e., planting window from DOY 151–231, DOY 152–231, DOY 153–231, and onwards) 

and then selected the planting date that produced the highest yield during the target sea-

son. For example, in the case of CNRA-1989 in Figure S2a, the planting windows from 

DOY 151–231 to DOY 165–231 determined planting dates as DOY 165 (the first marker on 

the 1989 curve in Figure S2a), indicating there was only one rainfall event during DOY 

151–165 to fill the 30% of soil marginally, but it drained out quickly. The next significant 

rainfall arrived on DOY 172 (the second marker on the 1989 curve in Figure S2a). The 

earliest planting on DOY 165 resulted in a 709 kg ha−1 yield. However, planting on DOY 

172 allowed a higher yield (964 kg ha−1), which is not necessarily the maximum/potential 

yield; thus, we call DOY 172 the semi-optimal planting date in 1989. As the planting win-

dow shifted to the later days, simulated yields gradually decreased as the growing season 

became shorter. Figure S2 illustrates how the semi-optimal planting windows were deter-

mined for different years and locations. The semi-optimal planting dates and correspond-

ing simulated yields served as a reference in evaluating the utility of the different onset 

definitions described above. 

2.4. Evaluation of onset definitions 

The value of various onset definitions was assessed by comparing the ‘distribution’ 

of 35 years of simulated yields against the ‘distribution’ of reference yields with semi-

optimal planting dates, not comparing all the individual years. Each empirical distribu-

tion of the simulated yields with different onset/planting dates was compared with the 

reference distribution. Therefore, we used representative statistical methods for the hy-

pothesis testing of two groups of samples. For equal mean hypothesis tests, we adopted a 
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non-parametric statistical method, Mann–Whitney–Wilcoxon (MWW) test [53] (i.e., H0: μ1 

= μ2), rather than Student’s t-test, because not all yield distributions were normally dis-

tributed. Since we compared the full distributions of 35 simulated yields, testing only the 

mean was insufficient to evaluate the value of the different planting dates. In addition, if 

the yield distribution is not symmetrical, then comparing the means or variances of the 

two groups may not be helpful. Therefore, we adopted a permutation test to compare 

percentiles (10th, 25th, 50th, 75th, and 90th) of two distributions. We used the percen-

tileTest function in the rcompanion package in R [54].  

3. Results and Discussion 

3.1. Bambey (CNRA) 

In general, soil-moisture-based planting dates were consistent with the progression 

of meteorological onset in Senegal. In other words, onsets of the rainy season progress 

from the southeast to the northwest of the country [35], from KOLD and SINT to NRIP to 

CNRA (Table S3). Notably, the driest station, CNRA, showed highly variable year-to-year 

planting dates from the earliest DOY 160 (June 9) to the latest DOY 220 (August 8) (Figures 

4a, 5a, and Table S3), indicating higher vulnerability of the location to climate variability. 

 

Figure 4. Planting dates based on different onset definitions (a), and corresponding simulated sor-

ghum yields (b) in CNRA. 
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Figure 5. Cumulative distribution of estimated onset/planting dates (a), and corresponding simu-

lated sorghum yields (b) for 1981–2015 in CNRA. 

Time series of the estimated planting dates (i.e., one day after the determined onset) 

are shown in Figure 4a. In general, the soil-moisture-based planting dates (i.e., AutoP(151) 

and AutoP(166) were closer to the semi-optimal planting dates than the rainfall-based def-

initions (i.e., ANACIM and BM). Particularly, the ANACIM definition generated planting 

dates that were too late in several years (1988, 1994, 1996, 1998, 1999, 2006, and 2014), 

resulting in significantly lower yields. The considerably late planting dates by ANACIM 

brought severe water stress even before anthesis and during the grain filling period, and 

thus resulted in much lower final yields than the ones of the semi-optimal or Au-

toP(151)/AutoP(166). The simulated water stress indices in 1988 are illustrated in Figure 6 

as an example.  

 

Figure 6. Simulated water stress indices in 1988 with ANACIM and AutoP(151) onset definitions in 

CNRA. Note that the water stress index is computed as 1 minus water deficiency, where water de-

ficiency is the ratio of supply to potential demand. The higher water stress index indicates less water 

supply for root water uptake hindering crop growth. Vertical dashed lines indicate anthesis dates. 

The cumulative distributions of the estimated planting dates and yields in Figure 5 

also show overall later planting dates (i.e., shifted to the right from the semi-optimal 

curve) and lower yields (i.e., shifted to the left from the semi-optimal curve) of the 
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ANACIM definition compared to the ones of the semi-optimal. Statistical analysis shows 

significant differences in the mean, 75th, and 90th percentiles between the ANACIM and 

the semi-optimal at a 10% level of significance (Table 1). The ANACIM onset definition 

seems too strict and tends to miss earlier planting opportunities for higher yields in CNRA 

representing the driest climatic condition of northern Senegal. 

Table 1. Summary statistics of simulated yields for each onset definition. 

  
Onset  

Definition 
Mean Stdev Min Max 

Percentiles 

10th 25th 50th 75th 90th 

CNRA 

ANACIM 667 233 276 1088 384 502 626 815 999 

BM 697 239 230 1118 384 512 673 879 1003 

AutoP(151) 724 229 337 1087 400 504 753 895 1024 

AutoP(166) 731 232 337 1087 400 504 780 911 1024 

Optimal 776 265 337 1320 426 522 793 982 1075 

NRIP 

ANACIM 1822 312 1120 2274 1458 1623 1808 2104 2180 

BM 1838 320 1084 2306 1394 1646 1870 2100 2212 

AutoP(151) 1846 302 1019 2270 1403 1692 1883 2087 2189 

AutoP(166) 1845 325 1019 2257 1360 1692 1883 2089 2210 

Optimal 1971 298 1130 2371 1550 1849 2032 2179 2319 

SINT 

ANACIM 1995 501 998 3323 1345 1685 2018 2290 2621 

BM 2082 437 1291 3424 1558 1857 2027 2256 2579 

AutoP(151) 2073 424 1329 3032 1583 1754 2100 2341 2550 

AutoP(166) 2023 373 1355 2929 1614 1796 1992 2222 2379 

Optimal 2197 428 1391 3519 1684 1941 2176 2400 2567 

KOLD 

ANACIM 2331 567 1205 3861 1664 1997 2353 2590 3152 

BM 2377 521 1385 3856 1948 2007 2328 2556 3190 

AutoP(151) 2336 479 1206 3513 1959 2062 2291 2428 3076 

AutoP(166) 2265 521 1206 3838 1753 2009 2161 2417 3057 

Optimal 2384 529 1206 3879 1960 2091 2342 2458 3171 

* Yields in bold and underline/bold and italic indicate the null hypothesis (i.e., equal mean or equal 

percentile between the simulated yields and semi-optimal yields) is rejected at 5%/10% level of sig-

nificance. 

Due to the short rainy season in CNRA, in general there were negative correlations 

between planting dates and yields, but the negative correlation was strongest with the 

ANACIM method (Pearson R = −0.8) followed by the BM method (Pearson R = −0.74), as 

shown in Figure 7. Relatively weaker correlations with the optimal planting or soil-mois-

ture-based onset definition in Figure 7 prove that the negative impact of late planting on 

yield could be avoided by adjusting planting dates accordingly. In addition, the strong 

correlations between onset dates and crop yields (i.e., Pearson R > 0.6) regardless of onset 

definitions emphasize the importance of having skillful agronomic onset forecasts for ag-

ricultural decision support, while most of the current seasonal forecasting system is fo-

cused on predicting seasonal rainfall amounts. As mentioned above, the crop growing 

season largely varies inter-annually (i.e., starting dates from June to August) in CNRA 

and thus total rainfall amount forecasts at a fixed period (e.g., June to September) might 

not provide a meaningful signal for the expected yield of the coming season to decision 

makers. On the contrary, skillful onset forecasts would be much more useful and action-

able information for farmers to maximize/minimize their gains/risks, and for national gov-

ernment or humanitarian agencies to counteract in advance.  
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Figure 7. Relationships between estimated onset dates (day of year) and simulated sorghum yields 

in CNRA for different onset definitions: AutoP(151) (a), AutoP(166) (b), ANACIM (c), BM (d), and 

Optimal (e).  

3.2. Nioro du Rip (NRIP) 

Compared to CNRA, NRIP had an approximately 10-day-earlier mean onset starting 

from DOY 152 (Table S3). The BM method defined an exceptionally early onset (DOY 123) 

in 1992 (Figures 8a and 9a), which can be attributed to a significant rainfall event (24 mm) 

in early May (DOY 121), as shown in Figure S3. However, the next considerable rainfall 

event arrived one month later on DOY 159; thus, planting on DOY 121 would have re-

sulted in a crop failure. This result shows the weakness of the BM method being too sen-

sitive to a single rainfall event and not considering following dry spells. The BM method 

needs to be further elaborated to filter out unreasonable onset dates. 
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Figure 8. Planting dates based on different onset definitions (a), and corresponding simulated sor-

ghum yields (b) in NRIP. 

 
 

Figure 9. Cumulative distribution of (a) estimated onset/planting dates and (b) corresponding sim-

ulated sorghum yields (1981–2015) in NRIP. 

A few significantly late planting dates were found in the semi-optimal planting dates 

in Figure 8a (i.e., 1993, 2002, and 2003). To better understand the reason, we looked at the 

case of 2003. In 2003, the minimum soil moisture requirement for planting was met from 

DOY 160, but due to the following long dry spells, the maximum yield was obtained when 

planted on DOY 212 (Figure S4). When comparing two different planting dates (DOY 195 

vs. DOY 212) in 2003, the later planting on DOY 212 allowed a higher yield with a higher 

harvest index (0.145 and 0.213 with DOY 195 and 212 planting, respectively). Severe water 

stress around the anthesis was the primary factor for the lower harvest index/yield with 

the DOY 195 plating (Figure S5). The case of 2003 shows the critical role of prolonged dry 
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spells during the growing season, especially in a relatively dry year. Therefore, it empha-

sizes that the skillful forecasting of dry spells during the crop growing season could add 

value to agricultural decision making. It may be difficult for farmers to wait, but delayed 

planting (after the dry spell) could be better for higher yields. For instance, a 20% higher 

yield could be achieved when planting on DOY 212 (1708 kg ha−1) compared to planting 

on DOY 195 (1427 kg ha−1), as shown in Figure S4. 

The statistical analysis showed that all four onset definitions had statistically differ-

ent yields in the mean and 90th percentile from the semi-optimal (Table 1 and Figure 9b) 

at a 5 or 10% significance level. Particularly in the case of the ANACIM definition, statis-

tically significant differences from the semi-optimal were found across the full distribu-

tion of the simulated yields (i.e., mean, 25th, 50th, and 90th percentiles) at a 5 or 10% level 

(Table 1). This result indicates that farmers could reduce overall risks ranging from the 

25th to 90th percentiles of yield distribution by switching from the ANACIM to a better 

onset definition. There is little room to improve yield in bad years (e.g., lower 10% of the 

yield distribution) regardless of onset definitions, but improved onset definitions and 

forecasting capability could increase yields at a range greater than the 25th percentile in 

NRIP. 

3.3. Sinthiou Malème (SINT)  

Similar to the results of the CNRA, the ANACIM definition resulted in highly inter-

annually varying onset dates (Figures 10a and 11a). Very late planting dates by the 

ANACIM in 1985, 1995, 1997, 2000, and 2013 contributed to substantially lower yields than 

the other methods (Figure 10b). Therefore, statistically significant differences between the 

ANACIM and the semi-optimal results were found in the mean, 10th, and 25th percentiles 

at a 10% significance level (Table 1). The current ANACIM definition has a potential risk 

of missing optimal planting dates and thus of inducing a significant yield drop. 

 

Figure 10. Planting dates based on different onset definitions (a), and corresponding simulated sor-

ghum yields (b) in SINT. 
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Figure 11. Cumulative distribution of (a) estimated onset/planting dates and (b) corresponding sim-

ulated sorghum yields (1981–2015) in SINT. 

Both the ANACIM and BM definitions generated very early planting dates, even in 

May in several years, but these unusually early planting dates did not cause low yields, 

unlike the negative effects of the late planting. The AutoP(166) starts to count planting 

windows from DOY 166, not allowing earlier planting before DOY 166. This threshold 

date (DOY 166) hampers the potential yield as indicated in the significant difference be-

tween the mean and 75th percentile of simulated yields between the AutoP(166) and the 

semi-optimal (Table 1 and Figure 11b). Therefore, in SINT, farmers seem to be able to 

move planting dates forward (earlier than DOY 166) with lower risks, rather than sticking 

to the traditional planting window (i.e., June 24 to July 11 in Diop [52]) or delaying the 

planting dates. 

3.4. Kolda (KOLD) 

In KOLD, in general, there was no significant difference in the yields between the 

semi-optimal and all the other onset definitions (Figures 12, 13b, and Table 1). Due to the 

relatively favorable climatic (rainfall) conditions (Figure 2d), how to define the onset of 

the rainy season seems not to be very critical in KOLD as long as the crop growing season 

is secured before the demise of a rainy season. The ANACIM and BM definitions caused 

much earlier planting dates than the semi-optimal (Figure 12a and Table S3). However, 

negative effects of the earlier planting on yield were not found because the rainy season 

in KOLD starts relatively early without prolonged dry spells. Counting the onset from 

mid-June (i.e., AutoP(166)) seems to be a naïve approach considering the slightly lower 

yields with the AutoP(166), as shown in Figure 12 (e.g., 1986, 1989, 1993, 1997, 2010, and 

2011). However, the yield difference is not statistically significant in Table 1. The results 

demonstrated that the optimal planting dates in KOLD are more flexible than in the other 

three sites. This in turn suggests that farmers in KOLD also have more flexibility to plant 

their crops within a wider range of dates as compared to the other three regions. 
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Figure 12. Planting dates based on different onset definitions (a), and corresponding simulated sor-

ghum yields (b) in KOLD. 

 
 

Figure 13. Cumulative distribution of (a) estimated onset/planting dates and (b) corresponding sim-

ulated sorghum yields (1981–2015) in KOLD. 

3.5. Limitations and future work 

In the present study, we used a well-validated DSSAT–CERES–Sorghum model. De-

spite the innumerable benefits of using the crop simulation model, its limitations should 

be kept in mind. For the ex ante crop simulation experiments, we applied fixed amounts 

of fertilizers on fixed days after planting, following ISRA’s recommended fertilizer prac-

tices. However, in reality, the fertilizer amounts used could vary year to year depending 

on the crop growth status and farmers’ accessibility to fertilizer. For instance, farmers 

would not invest in fertilizer if a drought resulted in poor crop growth. They may also use 

small quantities of fertilizers, due to a lack of funding or access to credit. For future 
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studies, the “automatic N application” option of the DSSAT and a detailed economic anal-

ysis could be applied to investigate the economically optimal N application rate. 

Another limitation of the current modeling study could be the imperfect mechanisms 

of the crop model, particularly a simple soil water balance algorithm of the DSSAT. As 

Ritchie [55] argued, the empirical equations used to calculate soil water balance compo-

nents in the DSSAT can be improved with more detailed input and experimental data to 

make the root zone soil water dynamics more realistic. If in situ soil moisture measure-

ments had been available during crop growth, then the model performance in simulating 

soil water dynamics and its impact on crop yield could have been further evaluated.  

Detailed soil properties including soil water-holding capacity are one of the most 

critical inputs to crop modeling, particularly in determining soil-moisture-based onset 

dates. We used soil analysis data from the literature for only four target locations in this 

study. To expand the findings of this study to the entire country, the development of a 

reliable national soil database should precede. Recently, a global high-resolution gridded 

soil database has become increasingly available [56,57]. The global soil database must be 

validated against national field survey data, if available. 

4. Conclusions 

In accordance with the increasing improvement of climate services in Senegal, we 

evaluated the values of diverse onset definitions, from meteorological (rainfall-based) to 

agronomic (soil-moisture-based) approaches, in terms of sorghum yield production. The 

meteorological onset definitions provide a high inter-annual variability of onset/planting 

dates due to their intrinsic weaknesses (i.e., being sensitive to certain threshold 

amounts/durations of rainfall/dry spells). The problems of highly variable onsets by the 

meteorological definitions were found to be detrimental when the onsets were delayed. 

Especially in drier regions, delayed planting caused severe water stress before and during 

a critical growth stage, anthesis, and thus significant yield decrease. Soil-moisture-based 

onset definitions were more robust and closer to the semi-optimal planting dates than the 

meteorological ones, mainly in drier regions (CNRA, NRIP and SINT), but not in the rel-

atively wetter southern region (KOLD). We found more benefits of planting early than 

procrastinating through the ex ante crop modeling experiments. In the field, the possibil-

ity of a false onset (i.e., prolonged dry spell after onset) impedes farmers’ active response 

to the onset. This study emphasizes the importance of skillful and reliable forecasts of 

agronomic onset in the agricultural sector.  
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planting windows day by day at NRIP for selected years; ; Figure S5: Simulated water stress indices 

in NRIP with semi-optimal planting onset dates for two cases: planting on DOY 195 vs. DOY 212 in 

2003. 
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Appendix A 

Performance of the calibrated DSSAT–CERES model was evaluated with the ob-

served sorghum yields using mean absolute error (MAE), root-mean-square error (RMSE), 

and normalized RMSE (nRMSE). 

Root-Mean-Square Error =√
∑ (𝑆𝑖−𝑀𝑖)2𝑛

𝑖=1

𝑛
 (A1) 

nRMSE = 
𝑅𝑀𝑆𝐸

 �̅�
× 100 (A2) 

where Si is the simulated value, Mi is the measured value, n is the number of values, and 

�̅� is the average of the measured values. The RMSE summarizes the average difference 

between observed and predicted values [58]. The nRMSE shows the relative size of the 

average difference without units and this statistic is unbounded [58]. For small sample 

datasets (e.g., n ≤ 11) that were used in this study, we consider nRMSE ≤ 15% as “good” 

agreement; 15–30% as “moderate” agreement; and ≥ 30% as “poor” agreement [45–47].  
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