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Abstract: Rainfed agriculture in Senegal is heavily affected by weather-related risks, particularly tim-
ing of start/end of the rainy season. For climate services in agriculture, the National Meteorological
Agency (ANACIM) of Senegal has defined an onset of rainy season based on the rainfall. In the field,
however, farmers do not necessarily follow the ANACIM’s onset definition. To close the gap between
the parallel efforts by a climate information producer (i.e., ANACIM) and its actual users in agricul-
ture (e.g., farmers), it is desirable to understand how the currently available onset definitions are
linked to the yield of specific crops. In this study, we evaluated multiple onset definitions, including
rainfall-based and soil-moisture-based ones, in terms of their utility in sorghum production using
the DSSAT–Sorghum model. The results show that rainfall-based definitions are highly variable
year to year, and their delayed onset estimation could cause missed opportunities for higher yields
with earlier planting. Overall, soil-moisture-based onset dates determined by a crop simulation
model produced yield distributions closer to the ones by semi-optimal planting dates than the other
definitions, except in a relatively wet southern location. The simulated yields, particularly based on
the ANACIM’s onset definition, showed statistically significant differences from the semi-optimal
yields for a range of percentiles (25th, 50th, 75th, and 90th) and the means of the yield distributions in
three locations. The results emphasize that having a good definition and skillful forecasts of onset is
critical to improving the management of risks of crop production in Senegal.

Keywords: agronomic onset; rainy season onset; sorghum crop modeling; DSSAT; Senegal

1. Introduction

The economy in West Africa heavily relies on rainfed agriculture and is thus highly
vulnerable to the negative impact of climate change and variability [1]. Particularly, in
Senegal, agriculture contributes to over 17% of the gross domestic product (GDP), and more
than 70% of its population are employed in agriculture [2,3]. Weather-related risk, including
the delayed onset or early cessation of the rainy season, erratic rainfall distribution, and dry
spells, is the most predominant factor threatening agricultural production in Senegal [4].
The West African countries have limited adaptive capacities to the climate and/or weather-
related risks due to the low level of fertilizer use, irrigation systems, mechanized cultivation,
and other off-farm inputs [5,6]. Therefore, shifting planting dates is one of the most suitable
approaches that smallholder farmers are relatively able to act upon to mitigate the risks of
year-to-year climate variability. Delayed planting might lead to reduced yield by shortening
the critical crop growth period, while planting too early has a risk of early crop failure
and thus replanting when a long dry spell follows sowing [7,8]. Therefore, the onset dates
of the rainy season for optimal planting were identified as essential information affecting
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farmers’ crop management decisions and for usable weather and climate information
services in Senegal [3,9–11].

The onset of the West African monsoon has been analyzed and defined by many
studies, as summarized in Fitzpatrick et al. [12] and Bombardi et al. [13]. The previous
studies broadly defined onset at two scales: (1) regional and (2) local. The regional onset
is mainly explained by the latitudinal shift of the intertropical convergence zone (ITCZ),
but the timing of the onset of the local rainy season has a weak correlation with the ITCZ
shifts [12]. The local onsets were defined solely based on daily rainfall observations and
can be divided into meteorological and agronomic definitions [14]. The meteorological
definitions are mainly based on the first rains, while the agronomic definitions take into
account subsequent dry spells to guarantee enough soil moisture for successful germination
and early crop development [14,15]. The meteorological approaches used only cumulative
rainfall [16–18] or both cumulative and climatological mean daily rainfall [19,20]. The
agronomic definitions have multiple variants with different thresholds for the duration
of the first wet spell, rainfall amount during the wet spell, duration of the following dry
spell, and the subsequent search period for the dry spell [8,15,21–23]. Some approaches
explicitly used the water-holding capacity of different soil types to determine the rainfall
requirement [24–26].

After comparing nine different onset definitions of the West African monsoon at both
regional and local scales, Fitzpatrick et al. [12] concluded that there exist little correlation
and harmony between local onsets and regional onsets and thus an improved understand-
ing and prediction of the shifts of the ITCZ might not ensure a better prediction of local
onsets, which are more relevant to farmers’ decisions. On the contrary, in an earlier study,
Sultan et al. [6] showed the possibility of improving local millet production by linking the
information on regional climate dynamics with crop modeling.

The development of skillful forecasts of monsoon onset should be oriented to meet
the needs of end-users (e.g., farmers, extension workers or government policy/decision
makers in the case of the agriculture sector) to become “usable” information. Although
many studies have proposed different onset definitions for the West African monsoon,
there has been little work evaluating the utility of the proposed definitions in terms of
agricultural production and/or usefulness in helping agricultural climate risk management.
To our knowledge, only Marteau et al. [14] and Sultan et al. [6] applied a crop simulation
model, SARRAH, to assess the impact of different onset definitions on millet yield in Niger
in the context of the West African monsoon.

In Senegal, the National Meteorological Agency (ANACIM) has been working on
developing and delivering locally relevant weather and climate information for smallholder
farmers in collaboration with the CGIAR Research Program on Climate Change, Agriculture
and Food Security (CCAFS) since 2012 [10]. To provide usable monsoon onset forecasts,
ANACIM has developed an agronomic definition of the onset as the first wet day of one or
three consecutive days receiving at least 15 to 20 mm of rain without any 20-day dry spell
during the following 30 days [27]. In the field, farmers may use their index finger to examine
if the soil is wet enough to sow [28]. Extension workers use a rainfall-based criterion (e.g.,
rainfall > 20 mm) as the onset of the rainy season [Personal communication with ISRA]. In
the meantime, the Institut Sénégalais de Recherches Agricoles (ISRA, Senegalese Institute of
Agricultural Research) has been trying to develop crop-specific planting criteria [Personal
communication with ISRA].

To close the gap between the parallel efforts by ANACIM (i.e., climate information
producer) and ISRA (i.e., a climate information user), it is desirable to understand how
the current ANACIM’s onset definition is linked to the obtained yield of specific crops in
Senegal. In this study, we aimed to evaluate multiple local agronomic onset dates defined
by ANACIM, Bombardi et al. [20], and soil-moisture-based planting determined by the De-
cision Support System for Agrotechnology Transfer (DSSAT)–Crop Environment Resource
Synthesis (CERES)–Sorghum model, in terms of their utility for sorghum production. The
evaluation was conducted by comparing full distributions of model simulated yields at
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four locations covering diverse climatic conditions in Senegal. Crop simulation models
are effective tools that allow impractical, costly, and lengthy experiments in hypothetical
environments to evaluate multiple management options. In evaluating the effect of planting
dates on crop yields, hundreds of seasonal experiments/simulations at several locations
with multiple planting dates in more than 30 years are possible only using crop simulation
modeling. Considering its geographical popularity and importance in the food security of
Senegal, sorghum was selected in the present study. The ultimate goal of this analysis is to
contribute to defining an agriculture-relevant onset definition that could help to determine
optimal planting dates and thus to improving ANACIM’s onset forecasting service to make
it more usable. We envision this study stimulates co-production of usable weather and
climate information between ANACIM and ISRA for the agricultural sector.

2. Materials and Methods
2.1. Sites and Meteorological Data

In this study, we selected ISRA’s four agricultural research experimental fields in
Senegal: Bambey (14.71◦ N, 16.48◦ W), Nioro du Rip (13.76◦ N, 15.78◦ W), Sinthiou Malème
(13.82◦ N, 13.9◦ W), and Kolda (12.88◦ N, 14.25◦ W), as shown in Figure 1. Long-term
weather data (i.e., daily maximum and minimum temperature, solar radiation, and precipi-
tation) from 1981 to 2015 were obtained from the ANACIM in order to define meteorological
onsets and run the DSSAT–CERES–Sorghum model. Senegal is located in the Sudano-
Sahelian climatic zone and has a unimodal rainfall distribution [29]. The mean annual
rainfall gradually increases from the north (550 mm in Bambey) to the south (768 mm in
Nioro du Rip, 755 mm in Sinthiou Malème and 996 mm in Kolda). At a large scale, the
rainy season is governed by the West African monsoon and the movement of the ITCZ [30].
The length of the rainy season ranges from 3 months in the north to 5 months in the south
(Figure 2d). Seasonal cycles of temperature and solar radiation show relatively lower values
during the rainy season (Figure 2).
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Figure 2. Mean seasonal cycle of weather variables at four target weather stations from 1981 to 2015:
(a) daily Tmax, (b) daily Tmin, (c) daily Solar radiation, and (d) 7-day precipitation moving average.
Refer to Figure 1 for the full names of the legend.

2.2. Rainfall-Based Onset Definitions
2.2.1. ANACIM’s Onset Definition

ANACIM’s onset definition is based on previous studies for the Western Sahel region,
including Sivarkumar [22,31] and Marteau et al. [15]. Currently they define the agronomic
onset as the first wet day of one or three consecutive days receiving at least 15 or 20 mm of
rain without any 20-day dry spell during the following 30 days, starting from 1 May [27].
The threshold rainfall amount, 15 or 20 mm, is differentiated between the northern and the
southern regions, respectively, separated by a straight line connecting Mbour-Diourbel-
Matam. The 20 mm of rainfall threshold represents the minimum water requirement for
crop survival, mainly based on the International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT)’s study on millet in Niger [15]. The post-onset dry spell is set to filter
out false onsets that could damage germination and crop growth during the early stages.
Compared to the 7-day dry spell in other studies [7,15,22,32], the ANACIM’s definition has
a more relaxed criterion (i.e., 20 days).

2.2.2. Bombardi’s Onset Definition for Sub-Seasonal Onset Prediction

Another rainfall-based onset definition was adopted from Bombardi et al. [20] (BM
hereafter), which defined the onset of a rainy season to capture a seasonal change in the
precipitation regime by improving on Bombardi and Carvalho [33] and Liebmann and
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Marengo [34]. The onset date at a weather station is detected based on accumulated
rainfall anomalies

S(n) =
n

∑
i=t0

(pi − p)

where S(n) is the accumulated precipitation deviation from day t0 to day n. The daily
deviation is calculated by subtracting the annual climatological precipitation rate (p ,
mm day−1) from the rainfall at day i (pi). Precipitation anomalies averaged with 5-day
running mean (Sm) are used to determine the onset. The first day when the first derivative
of the smoothed curve is greater than 2.5 (dSm/dt > 2.5) is considered the onset of the year.
Note that the threshold 2.5 was used to avoid a false onset due to the first insignificant
rainfall, while Bombardi et al. [20] used the first day after the inflection point (dSm/dt > 0).
The BM method was particularly applied by Singh et al. [35] to assess the predictability
of monsoon onset over Senegal using sub-seasonal hindcast databases. The advantage of
the BM method against the ANACIM’s onset definition is that it can be used for real-time
forecasts because it does not require prior knowledge of weather for the coming 30 days to
detect a false onset (i.e., 20-day dry spell after the onset).

2.3. Ex Ante Crop Simulation Experiments
2.3.1. Crop Modeling Setup and Validation

In Senegal, sorghum is one of the most important subsistence cereal crops after pearl
millet and maize [36,37]. As a drought-tolerant crop, sorghum is grown in most regions
of Senegal regardless of agroecological zones [38]. In the present study, we used the
DSSAT–CERES–Sorghum model to (1) determine planting dates based on soil water content,
(2) determine semi-optimal planting dates, and (3) evaluate various onset definitions in
terms of the simulated sorghum yield. In setting up the model management inputs, we
assumed planting dates as one day after the onset dates as determined either by rainfall
or soil water content. Note that we assumed the agronomic onset dates corresponded to
farmers’ planting dates. In other words, farmers tend to plant as early as possible when
a rainy season starts, in order to secure enough crop growing period. However, actual
planting on the fields is constrained by non-meteorological factors, including available
labor, seeds and logistics.

The DSSAT–CERES–Sorghum model has been applied in several studies in Senegal
(e.g., [38–40]). The DSSAT–Cropping System Model consists of primary modules for
weather, management, soil, plant, and soil–plant–atmosphere, to simulate interactions
between plants and environments [41,42]. Particularly, soil water content at each layer
is updated daily by computing one-dimensional daily inflows (i.e., rainfall or irrigation
through infiltration), outflows (i.e., soil evaporation, plant transpiration, root water uptake,
and drainage), and upward unsaturated flow [41].

In this study, we followed all the field experiment setups in Ganyo et al. [43], except
for inter-annually varying the planting dates. Recommended fertilizer practice (T2) is to
apply 150 kg ha−1 of NPK (15-15-15) at emergence, 50 kg ha−1 of urea (46%) at tillering,
and 50 kg ha−1 of urea at stem extension, as recommended by the Senegalese agricul-
tural research institute (ISRA). This recommended practice was applied for the calibration
and validation of the model performance. For multi-year simulations (1981–2015), fixed
amounts of N fertilizer (22, 23 and 23 N kg ha−1) were applied at 6, 36 and 51 days
after planting to follow the recommendation by ISRA (i.e., approximate emergence, tiller-
ing and stem extension growth stages). Major soil properties were also extracted from
Ganyo et al. [43] (Table S1). All sites have very sandy soils with 80–95% of sand. Soil N
level at the top 30 cm soil varied from 167 N kg ha−1 (‘N16-I’ experiment) to 235 N kg ha−1

(‘N16-R’ experiment).
We used the genetic coefficients of Fadda, one of the most popular hybrids, as cali-

brated by Ganyo et al. [40,43,44] (Table S2). The calibration was based on the 2 years of
field experimental data to see the effect of fertilization strategies on representative sorghum
cultivars in Senegal. We further validated the calibrated sorghum model, focusing on
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the experiments with recommended fertilizer management. First, the performance of the
calibrated model was evaluated by computing mean absolute error (MAE), root-mean-
square error (RMSE), and normalized RMSE (nRMSE) (Equations (A1) and (A2)). The MAE,
RMSE, and nRMSE for anthesis were 5, 6 days, and 6.6%, respectively. For the yield, the
MAE, RMSE, and nRMSE were 685, 852 kg ha−1, and 60.9%, respectively. Due to small
sample datasets (e.g., n ≤ 11), in this study, we considered an nRMSE ≤ 15% as “good”
agreement; 15–30% as “moderate” agreement; and ≥ 30% as “poor” agreement [45–47].
Anthesis prediction of the model was in “good” agreement, being well-aligned along the
1:1 line in Figure 3. The yield prediction skill was poor (Figure 3b). However, the case
of “Nioro du Rip 2016 Irrigated (N16-I)” had an unreasonably low yield in Figure 3b,
lower than the national average sorghum grain yield in Senegal (i.e., 888 kg ha−1) despite
supplemented irrigation (at least 30 mm per week) with a sufficient fertilizer amount [43].
Ganyo et al. [43] attributed the meager yield to the site’s low yield potential and fertil-
izer application timing. When the N16-I case was excluded, the nRMSE was improved
to the “moderate” agreement, 30%. Note that high standard deviations (e.g., more than
1000 kg ha-1 in the case of S15-R and N15-R) in Figure 3b indicate considerable uncertainty
in the yield measurements, even in well-controlled field experiments by ISRA, and thus
difficulties in fitting the model-predicted yields to the observed.
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Secondly, the model performance was validated by looking at the inter-annual varia-
tion of crop phenology. Simulated anthesis dates for the previous 35 years (1981–2015) were
within the range of observed anthesis dates in Ganyo et al. [43] (74–113 days in Figure S1b).
Most of the simulated maturity dates of Fadda in Figure S1c were also within the range of
the medium maturing variety found in literature: 100–125 days in Ganyo et al. [43] and
100–135 days in Akinseye et al. [48]. Maturity dates were not recorded in the field experi-
ments, but they estimated maturity dates as 25–30 days after flowering [44]. Figure S1d
also shows that the durations between the simulated anthesis and maturity were around
25 days across the 35 years, with some exceptions. Note that photoperiod-sensitive local
sorghum varieties in West Africa flower at approximately fixed dates for timely maturity,
independent of widely varying planting dates, before the rainy season ends [49]. The
DSSAT–Sorghum model accommodated the photoperiod sensitivity by adjusting the P2O
and P2R coefficients in Table S2 [50,51].

2.3.2. Soil-Moisture-Based Onsets

The DSSAT’s automatic planting option allows finding planting dates within a user-
specified time interval (i.e., reasonable planting window), when soil water content averaged
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over a specific depth (e.g., 30 cm) reaches a user-specified threshold. This study adopted
the automatic planting option, rather than fixed planting dates, to determine the soil-
moisture-based planting dates against the rainfall-based onset dates by assuming that it
better represents farmers’ planting practices. We tested two planting windows: (i) DOY 151
(31 May) to DOY 231 (19 August) (AutoP(151) hereafter), and (ii) DOY 166 (15 June) to
DOY 231 (19 August) (AutoP(166) hereafter). The two different planting windows were
selected due to the substantial difference between the current ANACIM definition, which
starts to count from 1 May, and the literature. For instance, Diop [52] argued that the
growing season starts between 24 June and 11 July in the south and southeast and between
2 and 21 August in the north and northeast of Senegal. The soil water threshold for auto-
matic planting was set as 30% of the field capacity over 30 cm soil depth. The DSSAT model
simulation started on DOY 150 (30 May). Considering the unimodal rainfall distribution
(Figure 2d) and long dry season before the rainy season starts, the initial soil is very dry,
but whenever rainfall fills the soil water content up to 30% within the designated planting
window, the DSSAT automatically plants sorghum seeds.

2.3.3. Determining Semi-Optimal Planting Dates

Planting as soon as soil moisture meets the automatic planting criteria does not
guarantee the highest potential yields farmers can achieve in a given season. Optimal
planting dates could be later if there was a subsequent long dry spell after planting. The
DSSAT’s automatic planting option depends on the planting window’s first date. To find
semi-optimal planting dates, we shifted the planting window day by day, starting from
DOY 151 (i.e., planting window from DOY 151–231, DOY 152–231, DOY 153–231, and
onwards) and then selected the planting date that produced the highest yield during
the target season. For example, in the case of CNRA-1989 in Figure S2a, the planting
windows from DOY 151–231 to DOY 165–231 determined planting dates as DOY 165
(the first marker on the 1989 curve in Figure S2a), indicating there was only one rainfall
event during DOY 151–165 to fill the 30% of soil marginally, but it drained out quickly.
The next significant rainfall arrived on DOY 172 (the second marker on the 1989 curve in
Figure S2a). The earliest planting on DOY 165 resulted in a 709 kg ha−1 yield. However,
planting on DOY 172 allowed a higher yield (964 kg ha−1), which is not necessarily the
maximum/potential yield; thus, we call DOY 172 the semi-optimal planting date in 1989.
As the planting window shifted to the later days, simulated yields gradually decreased as
the growing season became shorter. Figure S2 illustrates how the semi-optimal planting
windows were determined for different years and locations. The semi-optimal planting
dates and corresponding simulated yields served as a reference in evaluating the utility of
the different onset definitions described above.

2.4. Evaluation of Onset Definitions

The value of various onset definitions was assessed by comparing the ‘distribution’ of
35 years of simulated yields against the ‘distribution’ of reference yields with semi-optimal
planting dates, not comparing all the individual years. Each empirical distribution of the
simulated yields with different onset/planting dates was compared with the reference
distribution. Therefore, we used representative statistical methods for the hypothesis
testing of two groups of samples. For equal mean hypothesis tests, we adopted a non-
parametric statistical method, Mann–Whitney–Wilcoxon (MWW) test [53] (i.e., H0: µ1 = µ2),
rather than Student’s t-test, because not all yield distributions were normally distributed.
Since we compared the full distributions of 35 simulated yields, testing only the mean was
insufficient to evaluate the value of the different planting dates. In addition, if the yield
distribution is not symmetrical, then comparing the means or variances of the two groups
may not be helpful. Therefore, we adopted a permutation test to compare percentiles
(10th, 25th, 50th, 75th, and 90th) of two distributions. We used the percentileTest function
in the rcompanion package in R [54].
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3. Results and Discussion
3.1. Bambey (CNRA)

In general, soil-moisture-based planting dates were consistent with the progression of
meteorological onset in Senegal. In other words, onsets of the rainy season progress from
the southeast to the northwest of the country [35], from KOLD and SINT to NRIP to CNRA
(Table S3). Notably, the driest station, CNRA, showed highly variable year-to-year planting
dates from the earliest DOY 160 (June 9) to the latest DOY 220 (August 8) (Figures 4a and 5a,
and Table S3), indicating higher vulnerability of the location to climate variability.
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Time series of the estimated planting dates (i.e., one day after the determined onset) are
shown in Figure 4a. In general, the soil-moisture-based planting dates (i.e., AutoP(151) and
AutoP(166) were closer to the semi-optimal planting dates than the rainfall-based definitions
(i.e., ANACIM and BM). Particularly, the ANACIM definition generated planting dates
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that were too late in several years (1988, 1994, 1996, 1998, 1999, 2006, and 2014), resulting in
significantly lower yields. The considerably late planting dates by ANACIM brought severe
water stress even before anthesis and during the grain filling period, and thus resulted in
much lower final yields than the ones of the semi-optimal or AutoP(151)/AutoP(166). The
simulated water stress indices in 1988 are illustrated in Figure 6 as an example.
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in CNRA. Note that the water stress index is computed as 1 minus water deficiency, where water
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The cumulative distributions of the estimated planting dates and yields in Figure 5 also
show overall later planting dates (i.e., shifted to the right from the semi-optimal curve) and
lower yields (i.e., shifted to the left from the semi-optimal curve) of the ANACIM definition
compared to the ones of the semi-optimal. Statistical analysis shows significant differences
in the mean, 75th, and 90th percentiles between the ANACIM and the semi-optimal at a
10% level of significance (Table 1). The ANACIM onset definition seems too strict and tends
to miss earlier planting opportunities for higher yields in CNRA representing the driest
climatic condition of northern Senegal.

Due to the short rainy season in CNRA, in general there were negative correlations
between planting dates and yields, but the negative correlation was strongest with the
ANACIM method (Pearson R = −0.8) followed by the BM method (Pearson R = −0.74),
as shown in Figure 7. Relatively weaker correlations with the optimal planting or soil-
moisture-based onset definition in Figure 7 prove that the negative impact of late planting
on yield could be avoided by adjusting planting dates accordingly. In addition, the strong
correlations between onset dates and crop yields (i.e., Pearson R > 0.6) regardless of onset
definitions emphasize the importance of having skillful agronomic onset forecasts for agri-
cultural decision support, while most of the current seasonal forecasting system is focused
on predicting seasonal rainfall amounts. As mentioned above, the crop growing season
largely varies inter-annually (i.e., starting dates from June to August) in CNRA and thus
total rainfall amount forecasts at a fixed period (e.g., June to September) might not provide
a meaningful signal for the expected yield of the coming season to decision makers. On
the contrary, skillful onset forecasts would be much more useful and actionable informa-
tion for farmers to maximize/minimize their gains/risks, and for national government or
humanitarian agencies to counteract in advance.
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Table 1. Summary statistics of simulated yields for each onset definition.

Onset Definition Mean Stdev Min Max
Percentiles

10th 25th 50th 75th 90th

CNRA

ANACIM 667 233 276 1088 384 502 626 815 999

BM 697 239 230 1118 384 512 673 879 1003

AutoP(151) 724 229 337 1087 400 504 753 895 1024

AutoP(166) 731 232 337 1087 400 504 780 911 1024

Optimal 776 265 337 1320 426 522 793 982 1075

NRIP

ANACIM 1822 312 1120 2274 1458 1623 1808 2104 2180

BM 1838 320 1084 2306 1394 1646 1870 2100 2212

AutoP(151) 1846 302 1019 2270 1403 1692 1883 2087 2189

AutoP(166) 1845 325 1019 2257 1360 1692 1883 2089 2210

Optimal 1971 298 1130 2371 1550 1849 2032 2179 2319

SINT

ANACIM 1995 501 998 3323 1345 1685 2018 2290 2621

BM 2082 437 1291 3424 1558 1857 2027 2256 2579

AutoP(151) 2073 424 1329 3032 1583 1754 2100 2341 2550

AutoP(166) 2023 373 1355 2929 1614 1796 1992 2222 2379

Optimal 2197 428 1391 3519 1684 1941 2176 2400 2567

KOLD

ANACIM 2331 567 1205 3861 1664 1997 2353 2590 3152

BM 2377 521 1385 3856 1948 2007 2328 2556 3190

AutoP(151) 2336 479 1206 3513 1959 2062 2291 2428 3076

AutoP(166) 2265 521 1206 3838 1753 2009 2161 2417 3057

Optimal 2384 529 1206 3879 1960 2091 2342 2458 3171

Yields in bold and underline/bold and italic indicate the null hypothesis (i.e., equal mean or equal percentile
between the simulated yields and semi-optimal yields) is rejected at 5%/10% level of significance.

3.2. Nioro du Rip (NRIP)

Compared to CNRA, NRIP had an approximately 10-day-earlier mean onset starting
from DOY 152 (Table S3). The BM method defined an exceptionally early onset (DOY 123)
in 1992 (Figures 8a and 9a), which can be attributed to a significant rainfall event (24 mm)
in early May (DOY 121), as shown in Figure S3. However, the next considerable rainfall
event arrived one month later on DOY 159; thus, planting on DOY 121 would have resulted
in a crop failure. This result shows the weakness of the BM method being too sensitive to a
single rainfall event and not considering following dry spells. The BM method needs to be
further elaborated to filter out unreasonable onset dates.

A few significantly late planting dates were found in the semi-optimal planting dates
in Figure 8a (i.e., 1993, 2002, and 2003). To better understand the reason, we looked at the
case of 2003. In 2003, the minimum soil moisture requirement for planting was met from
DOY 160, but due to the following long dry spells, the maximum yield was obtained when
planted on DOY 212 (Figure S4). When comparing two different planting dates (DOY 195
vs. DOY 212) in 2003, the later planting on DOY 212 allowed a higher yield with a higher
harvest index (0.145 and 0.213 with DOY 195 and 212 planting, respectively). Severe water
stress around the anthesis was the primary factor for the lower harvest index/yield with the
DOY 195 plating (Figure S5). The case of 2003 shows the critical role of prolonged dry spells
during the growing season, especially in a relatively dry year. Therefore, it emphasizes that
the skillful forecasting of dry spells during the crop growing season could add value to
agricultural decision making. It may be difficult for farmers to wait, but delayed planting
(after the dry spell) could be better for higher yields. For instance, a 20% higher yield could
be achieved when planting on DOY 212 (1708 kg ha−1) compared to planting on DOY 195
(1427 kg ha−1), as shown in Figure S4.
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The statistical analysis showed that all four onset definitions had statistically different
yields in the mean and 90th percentile from the semi-optimal (Table 1 and Figure 9b) at a 5
or 10% significance level. Particularly in the case of the ANACIM definition, statistically
significant differences from the semi-optimal were found across the full distribution of the
simulated yields (i.e., mean, 25th, 50th, and 90th percentiles) at a 5 or 10% level (Table 1).
This result indicates that farmers could reduce overall risks ranging from the 25th to 90th
percentiles of yield distribution by switching from the ANACIM to a better onset definition.
There is little room to improve yield in bad years (e.g., lower 10% of the yield distribution)
regardless of onset definitions, but improved onset definitions and forecasting capability
could increase yields at a range greater than the 25th percentile in NRIP.

3.3. Sinthiou Malème (SINT)

Similar to the results of the CNRA, the ANACIM definition resulted in highly inter-
annually varying onset dates (Figures 10a and 11a). Very late planting dates by the
ANACIM in 1985, 1995, 1997, 2000, and 2013 contributed to substantially lower yields than
the other methods (Figure 10b). Therefore, statistically significant differences between the
ANACIM and the semi-optimal results were found in the mean, 10th, and 25th percentiles
at a 10% significance level (Table 1). The current ANACIM definition has a potential risk of
missing optimal planting dates and thus of inducing a significant yield drop.
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Both the ANACIM and BM definitions generated very early planting dates, even in
May in several years, but these unusually early planting dates did not cause low yields,
unlike the negative effects of the late planting. The AutoP(166) starts to count planting
windows from DOY 166, not allowing earlier planting before DOY 166. This threshold date
(DOY 166) hampers the potential yield as indicated in the significant difference between the
mean and 75th percentile of simulated yields between the AutoP(166) and the semi-optimal
(Table 1 and Figure 11b). Therefore, in SINT, farmers seem to be able to move planting dates
forward (earlier than DOY 166) with lower risks, rather than sticking to the traditional
planting window (i.e., June 24 to July 11 in Diop [52]) or delaying the planting dates.

3.4. Kolda (KOLD)

In KOLD, in general, there was no significant difference in the yields between the
semi-optimal and all the other onset definitions (Figures 12 and 13b, and Table 1). Due to
the relatively favorable climatic (rainfall) conditions (Figure 2d), how to define the onset of
the rainy season seems not to be very critical in KOLD as long as the crop growing season
is secured before the demise of a rainy season. The ANACIM and BM definitions caused
much earlier planting dates than the semi-optimal (Figure 12a and Table S3). However,
negative effects of the earlier planting on yield were not found because the rainy season
in KOLD starts relatively early without prolonged dry spells. Counting the onset from
mid-June (i.e., AutoP(166)) seems to be a naïve approach considering the slightly lower
yields with the AutoP(166), as shown in Figure 12 (e.g., 1986, 1989, 1993, 1997, 2010, and
2011). However, the yield difference is not statistically significant in Table 1. The results
demonstrated that the optimal planting dates in KOLD are more flexible than in the other
three sites. This in turn suggests that farmers in KOLD also have more flexibility to plant
their crops within a wider range of dates as compared to the other three regions.

3.5. Limitations and Future Work

In the present study, we used a well-validated DSSAT–CERES–Sorghum model. De-
spite the innumerable benefits of using the crop simulation model, its limitations should be
kept in mind. For the ex ante crop simulation experiments, we applied fixed amounts of
fertilizers on fixed days after planting, following ISRA’s recommended fertilizer practices.
However, in reality, the fertilizer amounts used could vary year to year depending on the
crop growth status and farmers’ accessibility to fertilizer. For instance, farmers would not
invest in fertilizer if a drought resulted in poor crop growth. They may also use small
quantities of fertilizers, due to a lack of funding or access to credit. For future studies, the
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“automatic N application” option of the DSSAT and a detailed economic analysis could be
applied to investigate the economically optimal N application rate.
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Another limitation of the current modeling study could be the imperfect mechanisms
of the crop model, particularly a simple soil water balance algorithm of the DSSAT. As
Ritchie [55] argued, the empirical equations used to calculate soil water balance components
in the DSSAT can be improved with more detailed input and experimental data to make
the root zone soil water dynamics more realistic. If in situ soil moisture measurements had
been available during crop growth, then the model performance in simulating soil water
dynamics and its impact on crop yield could have been further evaluated.
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Detailed soil properties including soil water-holding capacity are one of the most
critical inputs to crop modeling, particularly in determining soil-moisture-based onset
dates. We used soil analysis data from the literature for only four target locations in this
study. To expand the findings of this study to the entire country, the development of a
reliable national soil database should precede. Recently, a global high-resolution gridded
soil database has become increasingly available [56,57]. The global soil database must be
validated against national field survey data, if available.

4. Conclusions

In accordance with the increasing improvement of climate services in Senegal, we eval-
uated the values of diverse onset definitions, from meteorological (rainfall-based) to agro-
nomic (soil-moisture-based) approaches, in terms of sorghum yield production. The me-
teorological onset definitions provide a high inter-annual variability of onset/planting dates
due to their intrinsic weaknesses (i.e., being sensitive to certain threshold amounts/durations
of rainfall/dry spells). The problems of highly variable onsets by the meteorological defi-
nitions were found to be detrimental when the onsets were delayed. Especially in drier
regions, delayed planting caused severe water stress before and during a critical growth
stage, anthesis, and thus significant yield decrease. Soil-moisture-based onset definitions
were more robust and closer to the semi-optimal planting dates than the meteorological
ones, mainly in drier regions (CNRA, NRIP and SINT), but not in the relatively wetter
southern region (KOLD). We found more benefits of planting early than procrastinating
through the ex ante crop modeling experiments. In the field, the possibility of a false onset
(i.e., prolonged dry spell after onset) impedes farmers’ active response to the onset. This
study emphasizes the importance of skillful and reliable forecasts of agronomic onset in
the agricultural sector.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/atmos13122122/s1, Table S1: Soil profile input for DSSAT–
CSM–CERES–Sorghum model for target locations; Table S2: Calibrated genetic coefficient of CSM–
CERES–Sorghum model for Fadda sorghum cultivar; Table S3: Summary statistics of estimated
planting dates for each onset definition; Figure S1: Inter-annual variation of simulated soil-moisture-
based planting dates, anthesis dates, maturity dates, and duration from anthesis to maturity of Fadda
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dates determined by shifting planting windows day by day; Figure S3: Rainfall in NRIP in 1992;
Figure S4: Simulated sorghum yield with automatic planting dates determined by shifting planting
windows day by day at NRIP for selected years; Figure S5: Simulated water stress indices in NRIP
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Appendix A

Performance of the calibrated DSSAT–CERES model was evaluated with the observed
sorghum yields using mean absolute error (MAE), root-mean-square error (RMSE), and
normalized RMSE (nRMSE).

Root − Mean − Square Error =

√
∑n

i=1(Si − Mi)
2

n
(A1)

nRMSE =
RMSE

M
× 100 (A2)

where Si is the simulated value, Mi is the measured value, n is the number of values, and
M is the average of the measured values. The RMSE summarizes the average difference
between observed and predicted values [58]. The nRMSE shows the relative size of the
average difference without units and this statistic is unbounded [58]. For small sample
datasets (e.g., n ≤ 11) that were used in this study, we consider nRMSE ≤ 15% as “good”
agreement; 15–30% as “moderate” agreement; and ≥ 30% as “poor” agreement [45–47].
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