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Abstract: Efforts to ensure households transition to modern fuels are expected to reduce household
air pollution. However, exposure to toxic particles and gases in fuel stacking households remains
under-researched. We implemented a household survey to identify household energy sources and
assess exposure to particulate matter with diameter of ≤5 microns (PM2.5), ≤10 microns (PM10) and
select polluting gases (Sulfur Dioxide (SO2), Total Volatile Organic Compounds (TVOCs), Carbon
Dioxide (CO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO)) in a rural community. Wood
was the main cooking fuel in 94.2% (1615/1703) households with fuel stacking reported in 86.1%
(1462/1703) of total households. Daily time-weighted average concentrations of PM2.5 and PM10

were beyond World Health Organization (WHO) limits in wood-using households (189.53 (Standard
deviation (SD) = 268.80) µg/m3 and 592.38 (SD = 623) µg/m3, respectively) and Liquid Petroleum
Gas (LPG) -using households (57.2 (SD = 53.6) µg/m3 and 189.86 (SD = 168) µg/m3, respectively).
Only daily average CO and TVOC concentration in wood-using households exceeded recommended
levels. Household socio-economic status, education level of the head of household, use of a separate
kitchen and household size influenced household energy choices. Rural households using wood as
the main cooking fuel are exposed to high levels of particulate matter, carbon monoxide and total
volatile organic compounds. LPG-using households may not realize health benefits if stacking with
polluting fuels is practiced.

Keywords: household air pollution; household energy; PM2.5; TVOCs; Kenya

1. Introduction

A third of the global population relies on biomass and kerosene to meet their cook-
ing and heating energy needs [1]. In Kenya, combined estimates indicate that 74.5% of
households use biomass and kerosene for cooking, with rural areas having the highest
proportion (93.4%) compared to urban areas at 44.6% [2]. This is despite growing concerns
on the effect of biomass fuels and kerosene on household air quality and its associated
health and non-health impacts.

The responsibility for collection, transportation and use of wood fuel largely lies
on women and children. They not only bear the largest burden of exposure to risks
during wood collection and transportation [3], but also endure toxic kitchen emissions
associated with traditional fuels, with added implications for health including adverse
pregnancy outcomes [4–8]. Most times, women and young girls are also the caretakers of
young children and spend time in kitchen environments causing early life exposure to air
pollutants which may influence subsequent health outcomes [9].

The combustion of biomass fuels in rudimentary stoves such as the three-stone stove
commonly found in rural African homes, has been associated with high levels of pollutant
emissions. Evidence from rural Kenya show that women and girls were expose to extremely
high levels of particulate matter [10,11] as well as high levels of carbon monoxide [12,13].
These studies reported peaks in pollutant concentrations during cooking episodes, indi-
cating higher personal exposure for cooks and other household members present in the
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kitchen environment during cooking. Similarly high levels of kitchen emissions have been
documented in other countries across Africa [14–16].

This study seeks to characterize the fuel-stove mix in a rural community in Eastern
Kenya, and profile fine particulate matter and gaseous pollutants in kitchens.

2. Materials and Methods
2.1. Study Design

We use cross-sectional data from a baseline survey targeting 2000 households sampled
using a two-stage approach. We implemented a household baseline survey to assess current
household sources of energy and willingness to shift to cleaner options.

We purposively sampled 20 households from the survey participants based on primary
cooking fuel to ensure representation of the range of fuels used in the community (Table A1).
In addition, we considered equipment safety and ease of access to the households for
deployment of the monitoring equipment.

The Handheld 3016 IAQTM Airborne Particle Counter (Lighthouse Worldwide Solu-
tions, Medford, MA, USA) uses a laser-diode light source and collection optics for particle
size detection (particle size range 0.3–10 µm). Particulate matter was monitored using
the Lighthouse Handheld 3016 IAQ Airborne Particle Counter set in mass concentration
mode, and mass concentration logged every minute. Purging procedure was done weekly
according to manufacturer instructions.

The particle counter was anchored on a Wolfpack® Modular Area Monitor as an
integrated system via the respective brackets. Each instrument logged data separately
and left to run for at least 12 h to cover the typical three cooking periods in a day. The
Wolfpack® Modular Area Monitor had two GrayWolf DirectSense® probes plugged in
and simultaneously monitoring Sulfur Dioxide (SO2), Total Volatile Organic Compounds
(TVOCs), Carbon Dioxide (CO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), temper-
ature and Relative Humidity. After setting up the Wolfpack unit, probes were allowed to
stabilize, and data logged at one-minute intervals. All monitors were placed one meter off
the ground and a similar distance from the cookstove.

For each household, air quality monitoring was conducted every other day over a
7-day period to allow for an assessment of variation in emission levels between weekdays
and weekends. This translated to four days of monitoring in a week for most households
(Table A2), totalling to 71 days or 1505 h of monitoring. Monitoring ran from February to
April 2021, which coincided with the end of the dry season (in mid- March) and the long
rains (late March/April). It is worth noting that 2021 long rains in the area failed and the
period was relatively dry.

2.2. Kitchen Characteristics

Most of the households sampled for air quality monitoring had a separate kitchen
(stand-alone house) which was mostly a one-roomed structure with earthen floors. A
traditional three-stone stove (Figure 1a) or a variation of this with the stones covered with
mud (Figure 1b) was the most common type of cooking stove in the area. In a few of the
sampled homes, the kitchen was part of the main house/room.

2.3. Data Analysis

Survey data was analysed using Stata software version 15.1 [17] to produce descriptive
tables using the svy command, after applying sample weights. Analysis of fine particulate
matter was done separately from gas pollutants. We excluded from the analysis two
households that were monitored for less than three days and computed time weighted
daily average concentrations of particulate matter, CO, SO2, NO2, CO2 and TVOCs by fuel
types as well as the overall average over the monitoring period for each household. Average
CO concentrations were computed at 24 h, 8 h, 1 h, and 15 min intervals. The Kruskal-Wallis
rank-sum test method is suitable for testing differences in particulate matter concentrations
among fuel types (4 levels) because particulate matter observations are independent in each



Atmosphere 2022, 13, 2115 3 of 10

fuel type and the distribution type of PM2.5 and PM10 data is unknown. Kruskal-Wallis
test was used to check for differences in PM2.5 and PM10 concentrations between different
types of fuel at a significant level of 5%.
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Figure 1. (a) Traditional three-stone stove, (b) A variation of the three-stone stove.

3. Results
3.1. Household Cooking Fuels

Table 1 presents the range of primary and secondary fuels used in the study community.

Table 1. Adjusted distribution of primary and secondary fuels.

Primary Fuels Wood LPG Charcoal Kerosene Total

Percent (%) 94.2 2.4 3 0.4 100
Frequency 1615 36 46 6 1703

Secondary fuels * Wood LPG Charcoal Kerosene Electricity Ethanol

Percent (%) 3.1 39.5 84.8 17.6 0.1 0.1
Frequency 45 576 1239 256 1 2

Households using secondary fuels Households not using
secondary fuels

Percent 86.1 13.9
Frequency 1462/1703 241

* Total percent is more than 100% due to multiple responses.

Secondary fuels were used alongside the primary fuel in 1462/1703 (86.1%) house-
holds, reportedly for their ability to cook fast in 927/1703 (63.6%) households.

We present stacking behaviour in households and coin terminologies for different fuel
combinations as described and shown below (Figure 2). In this paper, we use the terms
“higher rung” and “lower rung” fuels to refer, respectively, to fuels that fall higher on the
fuel ladder such as LPG, and those falling lower on the ladder such as firewood. Results
show up-stacking (use of a “lower rung” primary fuel and a “higher rung” secondary fuel)
accounting for 8.2% while down-stacking (use of a “higher rung” primary fuel and a “lower
rung” secondary fuel) accounting for 2.3%. In addition, 58.7% of households used “lower
rung” fuels as both primary and secondary fuels- in what we term as horizontal stacking
while 30.8% of households used both “higher rung” and “lower rung” secondary fuels (we
coin the term partial up-stacking for such households).
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Figure 2. Graph showing the proportion of households using different fuel stacking levels.

3.2. Kitchen Emissions Levels

The levels of particulate matter are presented in Table 2 below across the different
primary cooking fuels reported. We present hourly and daily variations of PM2.5 and
PM10 by fuel type. Emission trends of SO2, NO2, CO and TVOC are also shown making
comparison with WHO guidelines for short-term exposure (24 h).

Table 2. Comparison of mean PM concentrations by fuel types.

Fuel Particle Size
Mean Concentration (µg/m3) Four Days’

Mean (SD)
p Value *

(Wilcoxon Test)Day 1 Day 2 Day 3 Day 4

LPG PM2.5 82.77 49.47 48.10 45.03 57.18 (53.6)
PM10 234.10 182.91 155.47 186.62 189.86 (168)

Charcoal PM2.5 15.47 25.35 15.95 15.74 18.41 (39.2)
PM10 106.29 496.58 857.78 499.73 470.62 (392) (p < 0.001)

Kerosene PM2.5 97.30 79.20 108.91 115.61 100.25 (15.7)
PM10 254.37 221.37 483.32 351.20 327.56 (155) (p < 0.001)

Wood PM2.5 200.00 189.42 246.53 106.67 189.53 (268.8)
PM10 617.78 922.20 436.44 326.93 592.38 (623) (p < 0.001)

* LPG is the reference group.

Time-weighted average (TWA) daily concentrations of PM2.5 and PM10 was highest
in wood-using households and varied significantly (χ2 (2) = 22,978, df = 3, p < 0.001 and
χ2 (2) =8677.4, df = 3, p < 0.001, respectively) between different fuel types. We compare
PM2.5 and PM10 levels in households that use LPG as their primary fuel with households
using other primary cooking fuels.

PM2.5 hourly mean concentrations were high in wood- and kerosene-using households
with consistent peaks in the morning and evening hours, typical cooking time among
households in the study area (Figure 3). Households using charcoal and wood had high
PM10 hourly mean concentrations with peak concentrations coinciding with morning and
evening cooking times (Figure 4). PM10 concentration in LPG-using households was low
and stable. PM2.5 and PM10 concentration varied by day of the week and was stable in
kerosene- and LPG-using households (Figures 5 and 6). In some of the days, PM2.5 and
PM10 concentration spikes were observed in charcoal- and wood-using households. This
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could point to households switching between the two fuels with lower use of charcoal
accompanied by increased use of wood over the weekend. This potentially points to
availability of children at the end of the school week, who can accompany older females to
collect more firewood for use over the weekend.
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Daily mean SO2 and NO2 concentrations were below 1µg/m3, which is indicative of
minimal to zero traffic-related sources (Table 3). CO emissions across different cooking
fuels was low and within recommended levels (Table 3).
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Table 3. (a): Mean 24 h concentrations (µg/m3) of SO2, and NO2. (b): Mean CO concentrations
against WHO limits.

(a)

Pollutant Fuel Type Mean SD Min Max WHO AQGs *

SO2 Wood 0.17812 0.49526 0.00 8.750

Charcoal 0.01044 0.02028 0.00 0.450 40 µg/m3

LPG 0.03435 0.05445 0.00 0.550

Kerosene 0.21717 0.77785 0.00 8.130

NO2 Wood 0.02295 0.12354 0.00 2.710

Charcoal 0.00107 0.00633 0.00 0.110 25 µg/m3

LPG 0.00250 0.01273 0.00 0.260

Kerosene 0.01216 0.02146 0.00 0.240

(b)

Fuel Type
Mean CO Concentration (µg/m3)

24 h 8 h 1 h 15 min

Wood 24.48 24.7 24.7 24.7

Charcoal 3.70 3.29 3.29 3.30

LPG 2.27 1.40 1.40 1.40

Kerosene 6.42 7.02 6.73 6.71

WHO limit (µg/m3) 4 10 35 100
* AQGs denotes Air Quality Guidelines.

4. Discussion

Our study has demonstrated the dominance of wood (94.2%) as a primary source
of cooking energy for households in this rural community, while also showing the high
prevalence of stacking with charcoal being the most preferred secondary fuel. Recent
findings from a cooking sector study showed that 86% of rural households relied on
firewood for cooking [18].

We present the levels of gaseous emissions and particulate matter in households
using wood, charcoal, LPG or kerosene as their primary cooking fuel. Daily average
concentrations of PM2.5 were high and beyond WHO limits in households using wood
fuel, kerosene and LPG. Studies have found wood using homes to have extremely high
particulate pollution, in some cases exceeding guideline levels in the order of 100 or
higher [10,11,19]. This underscores the potential risk to health in an area where 94% of
households rely on wood as their primary fuel. Although LPG is a more processed fuel
compared to traditional cooking fuels like wood, PM2.5 levels in LPG using households
were considerably high in this setting. This is likely due to fuel stacking practices common
in rural households where emissions from traditional cooking fuels compound exposure
to fine particles. Similar findings were reported for urban slum households where wood,
charcoal and kerosene using homes had the highest PM2.5 levels while LPG and electricity
users also had high levels [20]. In addition, most kitchens in the study community have
earthen floors which when swept contribute to particulate pollution from dust.

Gaseous pollutants were below guideline levels. The low prevalence of LPG as well as
the rural nature of the study community where traffic influence on indoor levels of SO2
and NO2 was very low explain these findings.
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The spatial orientation and location of rural kitchens is a key factor to consider in
characterizing collective household exposure to fine particles and toxic gases. Rural house-
holds in this community have a separate kitchen a few yards from the main house as a
‘corrective strategy’ to reduce exposure to other household members during cooking times,
with the cook having the highest exposure. Therefore, these emission profiles provide
crude estimates and are not an accurate measure of personal exposure to fine particles and
toxic gases.

Limitations
We acknowledge the following limitations in our study:

1. Emissions were not analysed separately when households switched between fuels to
characterize confounding secondary fuels.

2. We present uncorrected values since we did not collect data to compute a correction factor.
3. Kitchen HAP levels estimated in this study may not reflect actual exposure to individ-

ual household members. Monitoring personal exposure to fine particles and gaseous
pollutants would give more accurate exposure assessment and shed light into the
effectiveness of building kitchens a few yards from the main house.

4. The study did not assess the emissions associated with the use of LPG

We are, however, confident that the findings of this study present critical evidence
needed for action to improve air quality in rural kitchens and in effect protect the health of
the most exposed household members i.e., women and children.

5. Conclusions

Rural households in this study community primarily depend on wood fuel for cooking,
exposing household members to fine particulate matter and toxic gases. To reduce HAP in
rural households, interventions that encourage the transition to affordable cleaner fuels
need to be scaled up.
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Appendix A

Table A1. Distribution of primary and secondary fuels in households recruited for air quality
monitoring.

Primary Fuel
Secondary Fuel

Total
Wood Charcoal LPG Kerosene None

Wood 5 3 8
Charcoal 3 3
LPG 1 3 1 2
Kerosene 2 5

Table A2. Hours per day when particulate matter monitoring was done in different households.

Primary Fuel HH No Hours Monitored Per Day Days Monitored

Wood

Day 1 Day 2 Day 3 Day 4

4 * 24 1
5 23 23 24 24 4
6 24 24 24 3
7 18 24 16 24 4

8 * 23 11 2
9 24 24 24 3

11 24 24 24 22 4
12 24 23 23 24 4
13 24 24 24 19 4
20 24 24 24 24 4

Charcoal
14 21 24 24 24 4
17 24 24 24 24 4
19 24 20 15 3

LPG

1 24 24 22 24 4
2 22 24 24 4

10 24 24 20 3
15 22 24 24 20 4
18 12 16 12 8 4

Kerosene
3 24 24 24 24 4

16 24 24 24 24 4
* Denotes households that were not included in analysis due to reduced days of monitoring.
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