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Abstract: In this study, a deep learning method called Lightning-SN was developed and used for
cloud-to-ground (CG) lightning identification. Based on artificial scenarios, this network model
selects radar products that exhibit characteristic factors closely related to lightning. Advanced time of
arrival and direction lightning positioning data were used as the labeling factors. The Lightning-SN
model was constructed based on an encoder–decoder structure with 25 convolutional layers, five
pooling layers, five upsampling layers, and a sigmoid activation function layer. Additionally, the
maximum pooling index method was adopted in Lightning-SN to avoid characteristic boundary
information loss in the pooling process. The gradient harmonizing mechanism was used as the loss
function to improve the model performance. The evaluation results showed that the Lightning-SN
improved the segmentation accuracy of the CG lightning location compared with the traditional
threshold method, according to the 6-minute operating period of the current S-band Doppler radar,
exhibiting a better performance in terms of lightning location identification based on high-resolution
radar data. The model was applied to the Ningbo area of Zhejiang Province, China. It was applied to
the lightning hazard prevention in the hazardous chemical park in Ningbo. The composite reflectivity
and radial velocity were the two dominant factors, with a greater influence on the model performance
than other factors.

Keywords: weather radar; cloud-to-ground lightning identification; deep learning; semantic segmentation

1. Introduction

Lightning is a type of intensive discharge phenomenon that can produce instantaneous
destruction because of the powerful currents, scorching heat, intense electromagnetic
radiation, violent shock waves, and other physical effects it produces. Lightning itself
can be divided into intra-cloud lightning, which does not come into contact with the
ground, and cloud-to-ground (CG) lightning. However, CG lightning is the primary cause
of lightning disasters, making it the focus of lightning monitoring. The meso- and small-
scale features of strong convective weather make it difficult to monitor and provide early
thunderstorm warnings [1].

Advanced time of arrival and direction (ADTD) lightning positioning has been widely
used in the field of lightning monitoring and warning [2,3]. The time of arrival (TOA)
positioning technique adopted in this system uses the time difference between the arrival
of lightning-generated electromagnetic pulses at different stations to position and locate
the lightning. The lightning positioning data obtained using the TOA method are CG
lightning data. Moreover, the ADTD system can be used to obtain the geographic position
of the CG lightning, its amplitude, polarity, and other parameters. It is an important
tool for analyzing the spatiotemporal distribution of CG lightning activity [4]. Owing to
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environmental interference, the actual TOA detection errors can reach several hundred
meters or even several kilometers, and the detection efficiency is not uniform [5]. Although
the ADTD lightning positioning system is a real-time monitoring system, it is unable to
identify the structure and evolution of convective weather, making it difficult to construct
models for its generation, dissipation, and evolution [6].

Weather radar is one of the tools for strong convective weather monitoring and can
detect the structure of convective systems over a broad area with high spatiotemporal
resolution [7]. Consequently, meteorologists have proposed various methods for thun-
derstorm weather monitoring and warning based on radar data. Previous studies have
mainly focused on threshold parameter extraction for lightning occurrence by analyzing
radar data [8,9], including echo intensity (reflectivity), radial velocity, and spectral width.
Physical variables with clear meteorological meaning can be obtained by examining raw
radar data [10]. Li et al. [11] proposed nine identification indicators based on radar echo
intensity products at different heights. Through a comparative analysis of these nine indi-
cators, the lightning identification indicators for thunderstorms in Nanjing, China, could
be obtained—that is, a −10 ◦C altitude and an approximate echo intensity of 40 dBz. These
results were consistent with those of previous studies [12–14]. Based on these indexes, a
statistical analysis was conducted of 41 convective cloud clusters within 200 km of the
Qihe radar station, China, in July–August 2009 and June 2010 [15]. The results showed that
the probability of detection (POD) was 96%, the false alarm ratio (FAR) was 14%, and the
critical success index (CSI) was 83% [15].

Most traditional identification methods employ the principle of characteristic thresh-
olds. They require extensive prior knowledge and do not benefit from abundant historical
data. Despite the advantages of simplicity and efficiency, they only consider the radar echo
characteristics at grid points, and spatial variations are not considered. Consequently, these
methods are sensitive to noise and have a high FAR and poor performance in nonlinear
processes, such as strong convective weather. Accordingly, the study of the spatiotempo-
ral relationship between CG lightning and radar products to establish an identification
algorithm for nonlinear lightning areas based on radar data—which could result in better
lightning monitoring and early warning—is of great significance.

Deep learning (DL) is a new branch of machine learning. It has garnered wide
attention in many fields, including voice and image recognition, and computer vision. In
general, machine learning methods require specialized prior knowledge, and the features
are selected manually. However, DL methods avoid these drawbacks. By constructing DL
models with many hidden layers, DL methods can learn features using large volumes of
training data, improving feature representation [16]. Lightning area identification involves
identifying the time and area where lightning could possibly occur based on available
meteorological data. Semantic segmentation networks in the field of DL assign each pixel of
an input image with a semantic category, before obtaining a dense pixel-wise classification.

The fully convolutional neural network (FCNN) was first proposed in 2015 and re-
alized pixel-level semantic segmentation [17]. The FCNN algorithm replaced the full
connection layer of the convolutional neural network (CNN) with a 1 × 1 convolution
layer to achieve pixel-level dense prediction. Deconvolution was used to upsample the
feature map, and a jump layer connection was proposed to fully integrate the global se-
mantic information and the local position information to achieve accurate segmentation.
Although the FCNN could realize the conversion from a classification network to a segmen-
tation network, the upsampling process was still rough, resulting in significant semantic
information loss in the feature map, heavily impacting segmentation accuracy [18]. Con-
sequently, Liu et al. [19] constructed an inversion algorithm for daytime sea fog based on
geostationary meteorological satellite data, which used an FCNN for preprocessing and
a fully connected conditional random field (CRF) for post processing. With the help of
the CRF, this algorithm could overcome the problem of over-smoothed and ambiguous
images extracted using the FCNN and provide clearer fog area boundaries. Additionally,
researchers have attempted to distinguish between pixel-wise clouds and snow based
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on the FCNN algorithm and GF-1 satellite remote sensing images [20]. SegNet (Vijay
Badrinarayanan, Cambridge, UK) is a semantic-segmentation network that can transfer
the location index of the maximum pooling values to a decoder to further improve the
resolution of segmented images [21]. Consequently, many scholars have applied SegNet to
image segmentation. For example, Li et al. [22] applied SegNet to perform effective cloud
classification by training a cloud classification neural network based on multiangle remote
sensing image information. Using multi-source observational data and high-resolution
numerical forecast data, Zhou et al. [23] established a lightning nowcast model based on
the SegNet semantic segmentation model. The performance of the nowcast model was
considerably better than that of traditional methods. However, its algorithm was aimed
at forecasting, and the model structure was unsuitable for identification assignment. The
employed data were mainly satellite data, and the spatiotemporal resolution could not
satisfy the requirements of refined meteorological services. Among radar products, only
composite reflectivity was used; thus, it was difficult to reflect the spatial structure of the
cloud body. The model used cross-entropy as the loss function, so the effects of detection
error and sample imbalance on model performance could not be eliminated.

At present, a key challenge for lightning warning services is to further exploit deep
semantic segmentation algorithms to achieve more accurate lightning location identification
by extracting lightning features from meteorological data with high spatiotemporal resolution.

Owing to the overlapping physical meaning of radar products, the characteristic
factors in DL algorithms have not improved [24,25]. Consequently, based on the spatiotem-
poral correlation between lightning and radar data, this study referred to the results of
previous studies and manual experience to select radar products that were closely related to
the characteristic factors of lightning—including composite reflectivity (CR), echo-top (ET)
height, radial velocity (V), liquid water content (LWC), and the echo of the plane-position
indicator (PPI). Quality-controlled lightning positioning data were used as labeling fac-
tors. Based on SegNet, the model structure was further optimized after considering the
large sample imbalances and the characteristics of radar data, after which the lightning
features were extracted from the radar products. Finally, the model performance was
validated experimentally, and the importance of each characteristic factor in the model was
examined. Different types of strong convection were tested to compare and analyze the
performance of the proposed model, the traditional threshold method, and other semantic
segmentation methods.

2. Methods: Data Sources and Preprocessing
2.1. Data Sources

The data used in this study included S-band Doppler radar data and CG lightning
records from the ADTD lightning positioning system provided by the Ningbo Meteorologi-
cal Bureau between August 2009 and December 2021. As shown in Figure 1, the radar is
located on Dapeng Mountain, Ningbo City, China (30.0697◦ N, 121.5094◦ E). In 2019, the
radar was upgraded to a dual-polarization radar with a resolution of 250 m. However, to
fully utilize the historical data, all the radar data used in this study were single-polarization
data. The single-polarization radar had an effective detection radius of 230 km and a
spatiotemporal resolution of 1 km and 6 min. The ADTD lightning positioning system
comprised six observation stations (Beilun, Yuyao, Hangzhou Bay, Ninghai, Damutu, and
Shipu) and one central data processing system. The theoretical detection efficiency of the
system was 80%, the temporal resolution of the CG lightning monitoring was of the order
of milliseconds, and the theoretical spatial resolution was 300 m.

Nineteen radar products were utilized as the characteristic factors in this study (Table 1),
including ET, CR, V, vertically integrated liquid (VIL), vertically integrated liquid density
(VILD), recognition of clouds (ROC), and PPI. The ET indicates the strength of vertical
airflow within a thunderstorm—that is, the higher the ET, the more intensive the convection.
The ET is an essential factor in strong lightning processes [26]. The echo intensity, expressed
as the PPI and CR, reflects the development stage of convection. The spatial distribution
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of lightning is consistent with that of strong echoes [27]. The V product can reveal the
strengthening or weakening of lightning activity. To some extent, there is a correlation
between the V product and the lightning activity [28]. Both the VIL and VILD indicate
the water vapor conditions in the convective cloud, with suitable water vapor being
favorable for lightning generation [29]. The ROC product combines the SHY95 method
and the Biggerstaff and Listemaa (BL) algorithm to distinguish stratus, warm clouds, and
convective clouds [30,31]. The probability of lightning in different cloud bodies varies, and
convective clouds are most likely to produce it. The CR at different altitudes and V and PPI
at different elevation angles help to better extract the spatial characteristics of lightning.
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Figure 1. Locations of the weather radar and ADTD lightning positioning system stations in Ningbo.
The red star denotes the radar station, the purple crosses represent the lightning observation stations,
and the blue box indicates the experimental area with color representing the topography.

Table 1. Radar products used for cloud-to-ground (CG) lightning identification.

No. Data Physical Meaning No. Data Physical Meaning

1 CR Composite reflectivity 11 0.5 PPI Echo information at E 0.5◦

2 0 CR Composite reflectivity of 0 ◦C altitude 12 1.5 PPI Echo information at E 1.5◦

3 −10 CR Composite reflectivity −10 ◦C altitude 13 2.4 PPI Echo information at E 2.4◦

4 ROC Stratus clouds, warm clouds, and convective clouds 14 3.4 PPI Echo information at E 3.4◦

5 0.5 V Radial velocity at a 0.5◦ elevation angle 15 4.3 PPI Echo information at E 4.3◦

6 1.5 V Radial velocity at a 1.5◦ elevation angle 16 6.2 PPI Echo information at E 6.2◦

7 2.4 V Radial velocity at a 2.4◦ elevation angle 17 9.9 PPI Echo information at E 9.9◦

8 VIL Vertically integrated liquid 18 14.6 PPI Echo information at E 14.6◦

9 VILD Vertically integrated liquid density 19 19.5 PPI Echo information at E 19.5◦

10 ET Echo-top height

The electromagnetic waves generated in CG lightning return strokes can be used
for lightning positioning. The positioning accuracy of the system can be affected by the
positioning technology, terrain environment, and climatic conditions, which can greatly
impact the quality of the labeling factor. Accordingly, quality control of the lightning



Atmosphere 2022, 13, 2112 5 of 18

positioning data is required to ensure data accuracy. In the 1980s, it was proposed that
ADTD lightning positioning systems could mistake intra-cloud lightning for CG light-
ning [32]. In this study, following the suggestion of the IEEE working group, CG lightning
data with an absolute current amplitude of less than 2 kA and greater than 200 kA were
removed [33]. Based on the measurement principle, there are four types of CG lightning
positioning methods: two-station amplitude, two-station hybrid, three-station hybrid, and
four-station algorithm methods. It was found that errors were produced primarily by the
first two methods, whereas the three-station hybrid and four-station algorithms exhibited
smaller errors [34]. Data quality is one of the factors that determines model performance.
Based on the technical requirements for lightning monitoring and warning in explosive
and fire-hazardous places (Standard No. T/CMSA0012-2019) [35], the algorithm records
the data of three stations or more to improve the quality of the labeling factors as much as
possible. In this study, the overlapping area (28.0492◦–32.0812◦ N, 119.185◦–123.8442◦ E)
of the radar and lightning positioning system was chosen as the experimental area to test
the proposed algorithm. The horizontal resolution of the experimental area was 1 × 1 km,
with 448 × 448 grid points.

2.2. Data Preprocessing

First, the 19 radar products were converted from polar coordinates to Earth coordinates
(latitude and longitude) and then interpolated to 448 × 448 grids. Subsequently, the data
were folded into a three-dimensional grid of size 448× 448× 19 based on the corresponding
spatial dimension. Lightning records could be obtained for each scanning period based
on the starting and ending times of the volume scan. The records were mapped onto
448 × 448 grids based on the spatial relationship of the radar data. For each grid, the data
denote whether lightning occurs within 1 km2 of the surrounding area during each volume
scan. The value was set to one for occurrence and zero for non-occurrence. Finally, the
characteristic and label factors were folded into the data samples of lightning identification
with a size of 448 × 448 × 20.

The radar and lightning data between August 2009 and September 2021 were selected
for this study, permitting the construction of a sample dataset A. Owing to the meso- and
small-scale characteristics of severe convective weather, the positive and negative CG
lightning volume imbalance in the samples was a challenge for model training. As the
accuracy of the model without lightning prediction is relatively good, the data selection
needed to be adjusted to reduce the model losses caused by negative samples—that is,
the lightning occurrence frequency in the volume scanning period was chosen as an
indicator to select as many lightning occurrence samples as possible for model training.
As the frequency of lightning per unit time is inversely proportional to its probability,
the higher the set lightning number threshold, the smaller the number of data samples
available. A decrease in the number of samples reduces the generalization performance
of the model. Consequently, the lightning number and sample number thresholds were
mutually constrained for model performance. To select the appropriate lightning number
threshold, 580,168 samples were extracted from dataset A for the period 2011 to 2017.
Furthermore, 30,628 data samples with lightning were extracted and used to generate
pre-training dataset B. The number of samples in dataset B was approximately 5.28% of
that in dataset A, and the maximum value of the lightning number was 672. The samples
in dataset B were then classified into 10 categories according to the multiple relationships
of the lightning number, the number in each category being counted separately. The
classification statistics are shown in Figure 2.

To identify the appropriate lightning number threshold, this study conducted pre–
training on dataset B. The specific method was to first divide sample dataset B into a
training dataset and test dataset at a ratio of 9:1. The training dataset was then filtered
one-by-one using thresholds of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512. After each filtering,
the training dataset was pre-trained using the SegNet model. The validation set was then
randomly selected from the filtered training set during the training process, its number
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accounting for 10% of the total number of training sets. The model loss function used cross-
entropy with a model learning efficiency of 0.001. The test dataset was evaluated using the
CSI after pre-training. Figure 2 shows the variations in algorithm performance for different
threshold cases. It is evident that the algorithm performance increases and then decreases
as the number of training datasets decreases. The optimal lightning threshold was found to
be between 4 and 16. The filtering and pre-training procedures were then repeated using
this threshold range as a boundary and setting the variation step of the lightning number
threshold to 1. The lightning number threshold with the best performance was 10. Finally,
sample dataset A was filtered with a lightning threshold of 10 to obtain sample dataset C
for formal model training. The ratio of the CG positive to negative category in dataset C
was 0.00014. Sample dataset C was divided into training and testing datasets at a ratio of
10:1, while the validation dataset was randomly selected from the training dataset during
the training process, the number being 20% of the total training dataset. Considering
the specificity of the elevation angle of the radar echo data, each grid corresponded to
a different spatial distance and altitude. Consequently, conventional data enhancement
methods—such as displacement, rotation, and deformation—were not adopted.
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3. Deep Learning (DL) Network
3.1. Network Structure

SegNet is a well-proven and high-performance semantic segmentation DL model. In
other semantic segmentation algorithms, the conventional sampling operation loses spatial
information and decreases the feature map resolution. However, one of the advantages
of SegNet is that it introduces a specially designed downsampling method that solves
the problem of boundary information loss. The lightning location in the CG lightning
samples can be extremely small and scattered; therefore, the algorithm must have fine
segmentation capabilities to accurately segment it. Based on the advantage of SegNet
in refining segmentation and the fusion of multiple characteristic factors, a lightning
location identification network model that could be adapted to the characteristics of radar
data—namely, the Lightning-SN model—was built in this study. The model structure is
shown in Figure 3.
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Compared to the classical SegNet network model, the Lightning-SN model adds the
upsampling and downsampling operations and adjusts the size of the convolutional kernel
to adapt the radar data. Similar to the SegNet network model, the Lightning-SN model was
built with a symmetrical encoder–decoder structure, followed by a pixel-wise classification
layer. The encoder directly employs the first five modules of the VGG16 DL model with
a total of 13 convolutional layers. The decoder maintains a structure symmetrical to the
encoder, the network structure of which is illustrated in Figure 3. The input of the model
is 448 × 448 × 19 grid data. In the encoder structure, the convolutional layer with a
3 × 3 convolutional kernel is abbreviated as Conv, the batch normalization layer is marked
as Batch Normalization, and the activation function layer is marked as ReLU.

The convolutional layer extracts features from the input data by using a randomly gen-
erated convolutional kernel. The value distribution of the output data of the convolutional
layer can be adjusted following the batch regularization rules, which enables the neural
network to be trained without adapting to the data distribution, accelerating convergence
and suppressing overfitting. The adjusted data can then be input to the activation function
ReLU, which increases the nonlinear relationship between the layers of the neural network
and improves the gradient descent efficiency. The three hidden layers constitute a fixed
pairing widget that combines the contextual information for feature extraction. The pooling
layer employs a maximum pooling method with a pooling kernel size of 2 × 2 and a
step size of 2. At each downsampling step, the resolution of the feature map is reduced
to a quarter of its original size, and the number of feature channels is doubled. At each
upsampling step, the feature map resolution is increased four times, and the number of
feature channels is halved. These two layers perform downsampling and upsampling
functions, while the pooling layer is used to increase the receptive field, enabling the later
convolutional nuclei to obtain more global contextual information.

As downsampling reduces the output resolution, an upsampling layer must be added
to increase the output resolution. In this study, the entire network was operated sym-
metrically with five down samples and five up samples to achieve a constant resolution.
To avoid feature map boundary information loss during this processing procedure, the
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network saves the positioning information of the maximum characteristic value in each
pooling window in the downsampling operation during the encoding phase—namely, the
maximum pooling index. In the decoding stage, the input feature map is upsampled using
the maximum pooling index, enabling reconstruction from low-dimensional vectors to
high-dimensional vectors by mapping the low-resolution feature map to a high-spatial-
resolution feature map. Finally, the convolution operation is performed in the final layer
of the network with a 1 × 1 convolution kernel. The characteristic vector is then mapped
by the sigmoid activation function to a probability vector between 0 and 1 for each pixel,
which can be used as a probabilistic description of the binary prediction with a resolution
of 448 × 448.

3.2. Loss Function Improvement

The loss function can be used to measure the proximity between the model output
distribution and sample labeling distribution, which can have a major impact on model
performance. However, CG lightning data identification is a dichotomous problem, as the
majority of the space and time series within the radar detection range are free of CG light-
ning, even during thunderstorms, which is manifested by the presence of a large number
of negative samples. The negative samples contribute to the loss values by dominating
the update direction of the gradient, leading to model performance degradation when
the loss values are calculated using the cross-entropy loss function conventionally used
for dichotomous recognition [23]. Moreover, the suspected CG lightning features in the
radar image are generally located in the transition zone between CG lightning areas. As
the network model cannot learn the information of complex samples with suspected CG
lightning, it can be difficult to distinguish the boundary of a lightning region. Further,
lightning can be recognized in areas far from the convection owing to the long discharge
paths of a few lightning bolts or due to measurement errors from the lightning detection
equipment. The processing of these outliers can have a major impact on algorithm per-
formance. Li et al. [36] proposed a gradient harmonizing mechanism (GHM) algorithm
based on a standard cross-loss function. The concept of gradient modulus can be expressed
as follows:

g = |p− p∗| =
{

1− p(p∗ = 1)
p(p∗ = 0)

, (1)

where g denotes the difficulty level of the sample and its contribution to the overall gradient;
g is large when the number of simple samples is large.

The contribution of simple samples dominates gradient sharing. A certain number of
outlier samples exist in the large gradient modulus because the distribution of the gradient
modulus of the outlier samples is quite different from that of the overall gradient modulus,
and it can be difficult for the model to process these samples. Consequently, training
the model with outlier samples can lead to overall performance degradation. However,
the GHM method sets the gradient interval based on the gradient distribution range, the
number of samples in each gradient interval being counted. The gradient density (GD(g)),
which represents the number of samples in a certain unit interval, can be defined based on
the number of samples in the interval and the length of the interval, as follows:

GD(g) =
1

lε(g)
∑N

k=1 δ(gk, g), (2)

where δ(gk, g) denotes the number of samples with a gradient modulus length in the range(
g− ε

2 , g + ε
2
)

in samples of 1–N, and lε(g) denotes the interval length. The reciprocal
of GD(g) indicates the weight loss of the sample. The larger the density, the smaller the
weight. For each sample, the new classification loss can be obtained by simply multiplying
the cross-entropy loss (LCE) of the sample by the reciprocal of GD(g), as follows:

LGHM = ∑N
i=1

LCE(pi, p∗i )
GD(gi)

. (3)
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To balance the positive and negative samples without focusing too much on out-
lier samples, the GHM algorithm with a 10-gradient interval was adopted to calculate
the losses.

4. Model Training
4.1. Hyperparameter Setting

Hyperparameters are parameters that can be set before model training, rather than
those obtained via training. In general, the hyperparameters require manual optimization,
and the model training performance can be improved by selecting an optimized set of
hyperparameters. The proposed Lightning-SN network model also requires setting the
sample size, batch size, iteration times, training learning rate, and other hyperparameters,
as shown in Table 2.

Table 2. Model hyperparameter information.

Hyperparameter Setting

Training sample size 448 × 448 × 19
Batch size 8

Iteration times 30
Learning rate 10−3

Optimizer Adam optimizer
Loss function GHM (bin = 10)

Padding The resolution of the input and output feature maps remain constant,
with no padding.

4.2. Model Tuning

The parameters of the weights and offsets in the Lightning-SN model are the founda-
tion for classification. Moreover, the model training process involves continuously adjusting
the parameter values. The model can achieve a classification function only through effective
training. The backpropagation (BP) algorithm is the most commonly employed model
optimization algorithm [37], which adjusts the parameters in the direction of the negative
gradient of the target. In this study, the Lightning-SN network model was trained based on
the BP algorithm, as shown in Figure 4.

First, one batch of training samples is selected before the start of iteration training and
is used as the model input (the forward propagation algorithm) to obtain the prediction
results of the entire batch. The loss value between the predicted and true values is then
calculated using the GHM method. Finally, the loss values are optimized using the extended
BP algorithm (Adam algorithm), and the model parameters are updated according to the
opposite direction of the loss gradient [38]. Iterative model training reduces the loss. Testing
based on the validation set is implemented and recorded for each fixed cycle. The training
is terminated when the losses in the validation set no longer decrease after five epochs, and
the model with the lowest loss in training is saved.

A graphics processor (GPU) was used to display the calculation progress during
training. An NVIDIA RTX 1080TI graphics card (NVIDIA Corporation, United States)
was used as the hardware. The test results indicated that lightning identification can be
completed within 30 ms in the experimental area with a 1-km grid interval, indicating that
the proposed algorithm can be used in practice.
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5. Experimental Results and Analysis
5.1. Evaluation Metrics

Considering an extreme case with unbalanced positive and negative samples, the
generic accuracy (ACC) index was inapplicable. To precisely reflect the model identification
capability, CSI, POD (also referred to as recall), FAR, and F1-score were used to quantify
the model performance. The valid POD, FAR, CSI, and F1-score values were in the range of
(0, 1). Higher CSI, POD, and F1-score values and lower FAR values indicate better model
performance. Table 3 lists the related definitions of CG lightning identification.

Table 3. Definitions of CG lightning identification results.

Identification

Presence Absence

Observation
Presence TP FN
Absence FP TN

The POD denotes the ratio between the number of lightning events correctly identified
by the algorithm and the number actually observed, indicating the identification strength
of the algorithm. The FAR represents the lightning misreport rate of the algorithm. The
precision is the ratio of the number of lightning events correctly identified by the algorithm
to the total number of identified lightning events. CSI refers to the probability of successful
lightning detection by the algorithm, which reflects the capability of the algorithm to
successfully identify actual lightning. The POD and precision seem to have no relationship
based on their expressions, but they are mutually constrained in terms of the identification
results. The F1-score is the weighted average of the POD and precision. The F1-score is
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large only when both the POD and precision are large, and it is the more rigorous model
evaluation metric. The equations for calculating the five evaluation metrics are as follows:

Precision =
TP

TP + FP
, (4)

FAR =
FP

TP + FP
, (5)

POD =
TP

TP + FN
, (6)

CSI =
TP

TP + FP + FN
, (7)

F1-score = 2· POD·Precision
POD + Precision

. (8)

5.2. Importance of the Characteristic Factors

One approach to measure the importance of a characteristic is to train the classifier
without this characteristic and then observe the score. However, this approach requires
retraining of the classifier for each characteristic, which is computationally expensive.
Breiman et al. [39] proposed a permutation importance method for the random forest
method, which could be used to evaluate the importance of the characteristic factors in
traditional machine learning and DL models. In particular, a random arrangement of
the characteristic factor in the testing set is disrupted (i.e., inputting noise for a variable)
and then input into the prediction model to obtain identification results; the difference
between this identification and the normal prediction results is calculated—the larger the
difference, the more important it is. If the difference is not significant, it is possible that
the characteristic factor is not important or that there is an information overlap with other
characteristic factors, such as a linear correlation. The importance evaluation in this study
was based on the CSI scoring method, the relative importance of each characteristic factor
being defined as:

CSIi
relative =

CSIi
original −CSIi

shuffled

CSIi
original

(9)

To minimize random errors in the evaluation process, five random disruption opera-
tions were performed for each characteristic factor, and the final results were averaged.

As shown in Figure 5, all characteristic factors provide positive effects. CR, −10CR,
and 0.5 V are three very effective factors. Note that −10CR is also an identification factor
of the traditional threshold method. It is evident that manual experience can provide
a reference for selecting model characteristic factors. The radial velocity at a 0.5-degree
elevation angle is the largest contributor to the model accuracy among all factors, indicating
that the model extracts the velocity feature well. The importance of 0CR, 2.4 V, VIL, and
VILD indicates that the water vapor condition is also correlated with lightning occurrence.
The importance of PPI factors is relatively low because they are likely to be collinear with
the CR factors. The ET is an essential index for the manual identification of lightning;
however, it is not important in the model.

5.3. Comparison between Algorithms

It is generally accepted that the probability of lightning is extremely high when the
echo reaches 40 dBz at a −10 ◦C altitude [11–14]. The lead time used in this study was
6 min, which is shorter than the lead time commonly used by the traditional threshold
method. Thus, the threshold method using this value was used as a comparable algorithm
to measure the performance of the Lightning-SN model. Furthermore, a comparative
study with other semantic segmentation algorithms—including FCNN, DeepLab-V3, and
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BiSeNet—was conducted under the same conditions to further verify the effectiveness of
the Lightning-SN model.
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CR (composite reflectivity), ROC (recognition of clouds), V (velocity), VIL (vertically integrated
liquid), VILD (vertically integrated liquid density), ET (echo-top height), PPI (echo of the plane-
position indicator).

DeepLabV3 is an image–semantic segmentation model of ASPP (atrous spatial pyra-
mid pooling) with dilated convolution. BiSeNet is a bidirectional segmentation network
that contains both spatial and context paths. Consequently, a feature fusion module was
used to fuse the feature maps of both. These algorithms were then compared experimen-
tally using the testing sets under the same hyperparameters. The results of the quantitative
analysis are shown in Table 4.

Table 4. Performance comparison between different models.

Algorithm LOSS CSI POD FAR F1-Score

FCNN GHM 0.0251 0.07705 0.96411 0.04897

DeepLab–V3 GHM 0.02687 0.0822 0.96162 0.05233

BiSeNet GHM 0.02772 0.08588 0.96068 0.05394

Threshold / 0.01688 0.0191 0.9809 0.0332

Lightning-SN Binary cross-entropy 0.02239 0.03555 0.94294 0.04381

Lightning-SN GHM 0.04145 0.09165 0.92965 0.0796
Note: Each model was trained five times to avoid random errors, and the best model results were used
for comparison.

It is evident that these DL models perform better than the traditional threshold meth-
ods. The CSI and FAR index scores for the Lightning-SN model were 0.04145 and 0.92965,
respectively. Compared to the traditional threshold method, the Lightning-SN model
improved the CSI by 0.02457 (a rate of increase of 145.6%), the POD by 0.07255 (a rate of
increase of 379.8%), and FAR by 0.05125 (a reduction rate of 5.2%).

Overall, the accuracy of the Lightning-SN model showed a great improvement. The
improvement in model performance depends primarily on an increase in the identification
accuracy of the positive samples. The FCNN only uses the deepest semantic information
for prediction, and it can be difficult to achieve accurate segmentation owing to the under-
utilization of detailed information. The FCNN is optimized by DeepLab-V3+ using atrous
convolution, which can help extract image features and increase the receptive field. Com-
pared with the FCNN, the proposed model decreased the downsampling depth, adjusted
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the role of deep characteristics in the prediction, and further improved the segmentation
of the lightning location. BiSeNet also achieved good results by designing a spatial path
component to address the missing spatial information issue. The Lightning-SN model
designed in this study obtained the best segmentation results by using a specially designed
upsampling method with a pooling index to reduce the information missing during the
upsampling and downsampling operations and to enhance the estimation of boundaries
and contours. Moreover, the selection of the loss function had a remarkable impact on the
model performance; the selection of cross-entropy as the loss function did not converge in
multiple model training. For the Lightning-SN model, the CSI score improved by 85.13%
after the GHM loss function was replaced by cross-entropy. Additionally, other semantic
segmentation models (such as RefineNet, PSPNet, U-Net, and Mask RCNN) were tested.
The results show that they were less effective than the traditional threshold method, which
may be because of the lack of spatial transformation invariance.

As is evident from the numerical values, the model had low accuracy and a high false
alarm ratio. This is because a strict metric was used during model evaluation, and lightning
is considered to be a strike—that is, it is correctly predicted—only when the lightning
falls strictly in the recognition grid. By contrast, other studies have used domain–based
metrics to relax the “strike” criterion by specifying grid points within a radius (r) [23,40,41].
The Lightning-SN model has a high spatiotemporal resolution of 1 km and 6 min, but
in other related studies, coarser spatiotemporal resolutions have often been used [42,43].
Moreover, systematic errors in the lightning location data of the ADTD can cause the
lightning data to contain a large number of outlier points. Previous studies have often
directly used the threshold method to remove these points [44]. Although this can improve
model performance, it weakens the identification ability of the model for weak lightning.
Despite the low evaluation index of the proposed Lightning-SN model, its identification
results can be satisfactory in practical applications owing to the higher spatial resolution.

5.4. Case Test Results

In this study, different types of strong convective weather in the Ningbo area were
selected to illustrate the identification effects of the algorithm.

Case 1: Influenced by the eastward movement of the bow echo, strong convective
weather occurred in most parts of Zhejiang Province from the night of 10 May to the
morning of 11 May 2021. Figure 6 shows the radar echoes, algorithm identification re-
sults, and identification results of the comparable algorithm between 00:36 and 00:54 on
11 May 2021. As is evident, the Lightning-SN algorithm improved the mean CSI value by
42.3% compared with the threshold method in three consecutive identifications. Owing to
the better portrayal of the CG lightning location with a similar bow echo shape, the CG
lightning location identified by the threshold method was only sporadically distributed on
the bow echo with a relatively high missing alarm ratio.

Case 2: In the early evening of 14 May 2021, influenced by the southwest airflow from
the northwest side of the western Pacific subtropical high, severe convective echoes began
to develop and move in an east-north-easterly direction from northwest Jiangxi and south
Anhui to southwestern Zhejiang Province. From 23:36 to 23:54, the supercell storm affected
Hangzhou Bay and the Shaoxing Area. Figure 7 shows that the Lightning-SN algorithm
improved the mean CSI score by 20.3% over the threshold method in three consecutive
identifications. The recognition results better identify the distribution of the CG lightning
location in this weather system. The objective identification of the CG lightning location
using the Lightning-SN algorithm is consistent with the observed CG lightning in multiple
volume scanning periods. By contrast, the falling areas of CG lightning identified by other
comparable algorithms are much smaller.
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(a–g) 23:36–23:42; (h–n) 23:42–23:48; (o–u) 23:48–23:54.

Case 3: A western-Pacific subtropical high gradually moved northward during the
daytime on 10 July 2021. Influenced by the high-level shortwave trough from late afternoon
to early evening, scattered thunderstorms occurred from the south of Jiangsu to the north
of Zhejiang, with hourly rainfall exceeding 50 mm at partial stations, accompanied by
8–10 grade thunderstorm gales. As is evident from Figure 8, the Lightning-SN algorithm
improved the mean CSI score by 300% over the threshold method in three consecutive
identifications, and the mean FAR value decreased by 1.43%. The identification results
accurately capture the CG lightning location at the center of scattered strong storms. By
comparison, the comparable algorithm had a large number of false alarms in northwestern
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and southwestern Zhejiang. It is clear that the Lightning-SN algorithm exhibited good
nonlinear identification capabilities and strong robustness.
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The above cases show that for the banded severe convective storms, supercell storms
and dispersed intense storms, the DL algorithms generally have higher accuracy in identi-
fying the ground location of CG lightning than traditional threshold methods. There are
fewer misreports, while the range of false alarms is significantly reduced. Although the
Lightning-SN algorithm is optimal in terms of batch evaluation, it is not the most effective
in a specific case. Additionally, the observed lightning location was found to have a large
number of outliers. In this regard, both traditional and DL algorithms have difficulty
extracting their features.

6. Conclusions

In this study, multiple radar products closely related to lightning were used as char-
acteristic factors, and quality-controlled lightning positioning data were used as label
factors. Subsequently, a network model that could be adapted to the characteristics of radar
data (namely, the Lightning-SN model) was designed based on the SegNet model. The
loss function—which could overcome the imbalance between the positive and negative
proportions of the data, the imbalance of the difficulty levels, and multiple outliers—was
selected. Through model training and testing, the following conclusions could be drawn.

The Lightning-SN algorithm designed in this study attempted to address the lightning
identification problem with a DL approach. The validation test results showed that the
algorithm exhibited large performance improvements in comparison to a traditional generic
threshold method under the 1-km and 6-minute spatiotemporal resolution conditions of the
experimental area. Additionally, the Lightning-SN model exhibited excellent segmentation
capabilities of lightning locations.

Due to the serious imbalance between positive and negative labeling factors in the
training samples, the model structure, loss function selection, and data quality can have a
major impact on model training effectiveness. Improper selection not only weakens model
performance, but also causes the trained model to have “garbage outputs,” such as all zeros
or ones. The samples in the dataset were not better. In this study, the lightning occurrence
frequency in the volume scanning period was used as the threshold to filter the algorithm
dataset, and the size of this threshold was balanced to enhance the proportion of positive
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samples and prevent the degradation of model generalization. The best threshold was then
determined using pre–training experimental methods. The experimental results revealed
that a suitable threshold could greatly improve the algorithm performance.

Considering the characteristics of radar data, the model structure should be designed
to avoid data enhancement operations such as translation and rotation, and to preserve
spatial invariance as much as possible. Moreover, the quality control of lightning posi-
tioning data can effectively enhance the training accuracy of the model. In this study, the
training accuracy of the model was greatly improved after the quality control for the train-
ing lightning positioning data, using the conditions of “excluding two-station amplitude
locations, two-station hybrid locations, and lightning current amplitudes of less than 2 kA
and more than 200 kA.” Consequently, the lightning location could be identified using
DL techniques.

In future work, higher resolution meteorological data could be introduced as character-
istic factors to improve the model identification performance. The identification technique
combined with the radar extrapolation technique works well in operational systems for
short-term lightning warnings. Integrating the lightning recognition algorithm and radar
echo extrapolation method could help realize the purpose of lightning short-term forecast-
ing. The performance of the lightning-warning algorithm could be optimized by adjusting
the lead time of the deep learning algorithm. Moreover, the approach is applicable to the
identification of other strong convective weather, including hail and thunderstorm gales.
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Glossary

Pooling
The pooling operation is also called undersampling or downsampling. It is mainly applied to feature
downsampling and to compress the data and number of parameters.

Convolution
The convolution operation is used to extract the features of the original data using the parameters of
the convolution kernel. Each convolution kernel represents one feature.

Semantic segmentation
An image is composed of numerous pixels. The semantic segmentation is the segmentation of pixels
according to the different semantic meanings expressed in the image.

Encoder–decoder structure
The encoder is an unsupervised neural network model. It learns the implicit features of the input data.
The decoder is also a neural network model. It reconstructs the original input data with new features
learned by the encoder. The encoder-decoder structure is a general model framework in deep learning.

Batch normalization
To achieve the objective of homogeneous data distribution, the distribution of the input values of each
neuron in each layer of the neural network is forced back to a standard normal distribution with
mean 0 and variance 1 by some normalization means.

ReLU
The Rectified Linear Unit is a common activation function used in artificial neural networks.
Compared with other activation functions, it can achieve more efficient gradient descent and
back propagation.
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Dilated convolution
The dilated convolution is designed to expand the reception field by injecting holes into the standard
convolution map. The size of the reception field symbolizes the network’s learning of global features.

ASPP
The atrous spatial pyramid pooling is a module using multiple parallel cavity convolution layers with
different sampling frequencies. The purpose is to increase the reception field and enhance the ability
of the network to obtain multi-scale contextual information without degrading the sampling accuracy.

Context path
BiSegNet is a specially defined module in the network. This module improves the reception field and
semantic level with a series of convolutions to obtain a large range of contextual information.

SHY95 SHY95 is a classification method for precipitation clouds
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