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Abstract: Pilots typically implement the go-around protocol to avoid landings that are hazardous
due to wind shear, runway excursions, or unstable approaches. Despite its rarity, it is essential for
safety. First, in this study, we present three Dynamic Ensemble Selection (DES) frameworks: Meta-
Learning for Dynamic Ensemble Selection (META-DES), Dynamic Ensemble Selection Performance
(DES-P), and K-Nearest Oracle Elimination (KNORAE), with homogeneous and heterogeneous pools
of machine learning classifiers as base estimators for the prediction of aircraft go-around in wind
shear (WS) events. When generating a prediction, the DES approach automatically selects the subset
of machine learning classifiers which is most probable to perform well for each new test instance
to be classified, thereby making it more effective and adaptable. In terms of Precision (86%), Recall
(83%), and F1-Score (84%), the META-DES model employing a pool of Random Forest (RF) classifiers
outperforms other models. Environmental and situational factors are subsequently assessed using
SHapley Additive exPlanations (SHAP). The wind shear magnitude, corridor, time of day, and WS
altitude had the greatest effect on SHAP estimation. When a strong tailwind was present at low
altitude, runways 07R and 07C were highly susceptible to go-arounds. The proposed META-DES
with a pool of RF classifiers and SHAP for predicting aircraft go-around in WS events may be of
interest to researchers in the field of air traffic safety.

Keywords: wind shear; go-around; machine learning; dynamic ensemble selection; SHapley
Additive exPlanations

1. Introduction

An abrupt change in wind direction or speed of at least 14 knots and below 1600 feet
(500 m) above runway level is referred to as wind shear (WS) in the aviation industry [1].
This could be the result of environmental conditions such as a thunderstorm, gust, or
sea breeze, or it could be the result of the airport’s proximity to complex terrain, such as
mountains or man-made structures. The occurrence of wind shear is regarded as one of the
most dangerous phenomena for approaching and departing aircrafts [2].

During the landing phase, the flight deck remains highly engaged, and the pilots must
make a number of split-second decisions to complete their landing checklist. However,
adverse weather conditions such as wind shear, mountainous terrain, and the presence of
buildings close to the airport could increase turbulence along the glide path. While complet-
ing the landing checklist, the pilot must contend with violent updrafts and downdrafts and
abrupt changes in the aircraft’s horizontal and vertical movement. As shown in Figure 1,
the head wind shear or tail wind shear may result in landing short of the runway (loss
of lift) or deviating from the actual flight path during the final approach. Consequently,
pilots initiate a go-around procedure. Despite that this protocol is implemented to prevent
unsafe landings, their complicated maneuvering procedures and limited available time
can raise additional safety concerns, particularly in wind shear events. As a result of this
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operational anomaly, air traffic controllers have a greater workload, and noise levels have
massively increased [3,4]. Additionally, the airport throughput and punctuality of flights
are negatively impacted [5,6]. Majority of go-arounds are performed at low altitudes and
low speeds, necessitating immediate adjustments to the aircraft’s altitude, thrust, and flight
path to avoid collisions with nearby air traffic.
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Figure 1. Occurrence location of WS events in the vicinity of the airport runway.

Since wind shear plays a major role in the execution of go-around protocols, airports
around the world have benefited greatly from the availability of precise remote sensing
technologies, including Terminal Doppler Weather Radar (TDWR) and Doppler Light De-
tection and Range (LiDAR), to timely detect WS events [7–9]. Researchers in the past have
used a wide range of approaches to predict go-around based on various parameters as well
as contributing factors, including the environment, such as wind speed, visibility, and pres-
sure, etc., unstable approach and a change in runway configuration, as well as physiological
conditions associated with the pilot and air traffic controller, as shown in Table 1.

While these studies have shed light on the many factors that can lead to a go-around,
none of them have examined the role that wind shear plays in this phenomenon. There
is a significant gap in the literature about the prediction of go-around under wind shear
conditions. The occurrence of go-around due to wind shear is usually a rare event, however,
predicting its occurrence under wind shear conditions is of utmost importance. Therefore,
the goal of this research is to quantify the factors that contribute to the occurrence of
go-around triggered by wind shear and situational factors, such as time of day, season
of the year, and flight and aircraft type. In this study, our study location is Hong Kong
International Airport (HKIA) and we used HKIA-based pilot report (PIREPs) data. We
then employed dynamic ensemble learning strategies to classify go-around and approaches
of aircrafts. In many practical situations, ensemble learning has outperformed a single
machine learning approach [19–22]. Stacking, bagging, and boosting are the three main
ideas of ensemble learning, which encapsulates the techniques and strategies of model
blending. The fundamental aim of ensemble learning is to pool the efficacy of several
classification models into a single conclusion. A dataset with many factors or characteristics
for each instance constitutes a binary classification problem. One of the considerations is
the decision label, which should be categorical and reveal to which group each instance
belongs. The goal of classification strategies is to build classification models that can predict
and classify the dependent label for the given sample. The two most common kinds of
classification schemes are dynamic and static. A comparison of ensemble and classification
model selection techniques for static and dynamic classification approaches is depicted
in Figure 2 [23,24]. The primary difference between static and dynamic classification
approaches is whether all the test samples are predicted with the same classifier. Similar to
how classifier selection differs from ensemble classifier selection, a single classifier model
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can be comprised of several base classifiers that are employed to predict a test sample,
leading to a wide number of classification techniques that rely on their unique combination.
In most cases, the performance of a static classification strategy is inferior to that of a
dynamic one, as various classification models excel in various settings.

Table 1. Literature on various factors contributing to the occurrence of aircraft go-around.

Serial No. Parameters Contributing Factors Model
Employed Literature

1. Environment

Visibility, wind speed, and localizer deviation
significantly impacted go-around.

Flight simulation of
Airbus A330-200 and

Boeing 737-800
[10]

Visibility, wind speed, and pressure significantly
impacted go-around. Categorical Boosting [11]

Thunderstorms and winds exceeding 29 mph
significantly impacted go-around Statistical model [12]

2. Pilot and air
traffic controller

Unpleasant psychological condition compromised pilot
decision-making and cognitive performance

that resulted in go-around

Neuro-economics brain
imaging protocol [13]

Anomalies in pilot flying performance, including flight path
deviations and visual scanning behaviors caused go-around Flight simulator test [14]

Situational unawareness by air traffic controllers
caused go-around

Path analysis and
bootstrap [15]

Age and experience of air traffic controllers
contributed to go-around Flight simulator test [16]

Pilot and controller experiences and mental states Surveys and interviews [6]

3.
Unstable

approach/runway
configuration

Quantification of aircraft deviation at final approach Sparse Variation
Gaussian process [17]

Approach stability, departure air traffic, flight spacing,
departure traffic, and ceiling contributed to go-around

Principal component
analysis [18]
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For this research, we used three DES models, including Meta-Learning for Dynamic
Ensemble Selection (META-DES) [25], K-Nearest Oracle Elimination (KNORAE) [26], and
Dynamic Ensemble Selection Performance (DES-P) [27], whose input is the pools of ho-
mogenous and heterogeneous classification algorithms. The pools of homogenous and
homogenous classification algorithms are highlighted in Table 2. Afterward, SHAP anal-
ysis interpreted the results of the optimal DES model and illustrated important factors
contributing to go-around under WS conditions.

Machine learning models are typically black boxes, so their predictions may not make
the connection between input and output changes crystal clear. The interpretation of the
model is equally important for an insight of the model’s performance. Factor analysis
methods, such as permutation-based importance scores, were previously employed to
decipher the outcomes of machine learning studies. However, the factor importance
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analysis can only rank the significance of the factors, and it does not comprehend how each
factor affects the model’s prediction on its own. SHapley Additive exPlanations (SHAP)
analysis, inspired by game theory [33], has been used in recent studies to quantitatively
assess the relative importance of each contributing factor [34–36]. Use of SHAP with
machine learning models allows for the interpretation of the relative contributions and the
importance of different factors [37–40].

Table 2. Pools of various classification algorithms for the study.

Ensemble Pools of Algorithm Reference

Homogenous
Random Forest (RF) [28]

Extremely Randomized Tree (ERT) [29]
Bagging Multi-Layer Perceptron (BMLP) [30]

Heterogeneous
K-Nearest Neighbor (KNN) [27]

Support Vector Machine (SVM) [31]
Binary Logistic Regression (BLR) [32]

Our findings would aid pilots, flight attendants, air traffic controllers, and policymak-
ers in estimating when a go-around is requisite. Second, identifying mitigation strategies
to reduce aircraft go-around and, more generally, the circumstances that lend credence
to them, which may be deemed anomalous and inherently unappealing, can be aided by
quantifying the contributing factors of go-around occurrences. It is possible to reduce the
need for go-around by implementing mitigation strategies such as adjustment of protocols,
enhancing pilot education, and revamping hardware.

The remainder of this paper is structured as follows. Section 2 illustrates the research
methodology and discusses our sources of data, DES models, and the SHAP interpretation
strategy. Section 3 details the DES models’ performance as a comparison as well as the SHAP
analysis results. Section 4 encompasses the conclusion of our study and recommendations.

2. Methodology

In this study, we first analyzed the pilot reports (PIREPs) of Hong Kong International
Airport (HKIA) to determine the factors that most likely contributed to the go-around. A
PIREP is an abbreviation for pilot reports used in civil aviation. The pilots who encounter
hazardous weather conditions and go-around are sent to air traffic controllers. The factors
that can influence go-around include weather conditions such as wind shear conditions
(wind shear magnitude, altitude, and horizontal location of wind shear from the runway as
well as its causes), precipitation (rainfall), aircraft and flight (wide or narrow-body aircraft,
international or domestic flight), landing runway, and temporally specific factors such as
the season of the year and time of the day (daytime/nighttime).

Secondly, we built DES models with different pools of homogenous and heterogeneous
classifiers as base estimators to predict aircraft go-around in case of WS events. Based on the
model with the best performance, lastly, we estimated the importance and contributions of
various factors to go-around occurrence using the SHAP interpretation approach. Figure 3
depicts the whole operational paradigm proposed in this study.

2.1. Study Location

The HKIA is located on an artificial Lantau Island on the southeastern coast of main-
land China in a subtropical zone. The tropical cyclones and southwest monsoon are two
typical convective weather conditions that occur in Hong Kong. In addition to bringing
thunderstorms and showers to the region, the convective weather interrupts air traffic.
Due to these reasons, Hong Kong International Airport (HKIA) is among the airports
most susceptible to WS in the vicinity of the runway. Numerous observational and model-
ing studies have shown that HKIA’s intricate orography and complex land–sea contrast
are also conducive to the occurrence of WS [41]. Significant WS events occur once ev-
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ery 400 to 500 flights. From the opening of HKIA in 1998 until 2015, 97.70% of reports
illustrated 15–25 knots of WS [42].
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Figure 4 shows that HKIA is surrounded on three sides by open sea water and moun-
tains to the south, which reaches elevations of over 900 m above sea level. This complex
terrain surrounding HKIA also contributes to terrain-induced WS. The mountainous terrain
to the south of HKIA amplifies WS, disrupting airflow and generating mountain waves,
gap discharge, and other disturbances along the HKIA flight paths. Three runway corri-
dors exist at HKIA: the North Runway (Northern Corridor), the Central Runway (Central
Corridor), and the South Runway (Southern Corridor). The Northern Corridor is a newly
constructed runway, and therefore the previous Northern Corridor is now designated as
the Central Corridor. They are oriented in the 070◦ and 250◦ directions. Since each runway
can be used for takeoffs and landings in either direction, there are a total of twelve possible
configurations. For example, runway ‘07LA’ denotes landing (‘A’ refers to arrival) with
a heading angle of 070◦ (shortened to ‘07’) using the left runway (hence ‘L’). This shows
aircraft landing on the Northern Corridor from the western side of HKIA. Likewise, an
aircraft departing the Southern Corridor in the west would use runway 25LD.
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2.2. Data Processing from PIREPs

As stated earlier, pilot reports are abbreviated as PIREPs in aviation. When pilots
encounter hazardous weather, they notify air traffic controllers. Traditionally, PIREPs
include information about turbulence, aircraft icing, and the flight route phase. However,
because HKIA is vulnerable to WS, information about the occurrence of WS is explicitly
provided, including the occurrence date and time, the horizontal location of WS from the
runway threshold (nearest nautical mile), WS magnitude (nearest 5 knots), vertical location
or altitude of WS (to the nearest 50 or 100 ft), type of aircraft, and flight number. In addition,
if an aircraft performs a go-around during WS caused by a sea breeze or gust front, the pilot
reports go-around in the HKIA-based PIREPs, as indicated in Table 3. Note that in Table 3,
the positive or negative sign associated with the magnitude of WS indicates a headwind
and tailwind, respectively. Moreover, pilots at HKIA can submit PIREPs after landing or use
on-board radio communication to relay pertinent information to the air traffic controller.

Table 3. Extracted environmental and situational factors from HKIA-based PIREPs.

Date Time Runway Flight Type Aircraft Type WS Magnitude WS H-Location WS Altitude PPT Go-Around Cause of WS

2021-01-16 6:17 AM 07RA CX495 A35K –20 knots 3-NM 900 ft No No See breeze
2021-01-21 3:18 PM 25LA 5Y4511 B744 15 knots 2-NM 500 ft Yes No See breeze

— — — — — — — — — — —
— — — — — — — — — — —

2021-03-29 10:12 PM 07CA CX8178 B77W 25 knots RWY 50 ft No Yes Gust front
— — — — — — — — — — —
— — — — — — — — — — —

2021-09-21 3:58 AM 07RA PO980 B748 20 knots 2-NM 200 ft No Yes Gust front

A total of 1731 instances of WS events were illustrated by PIREPs from 2017 to 2021,
including both departing and approaching flights. However, out of 1731 instances, 1388
(80.18%) instances were reported by approaching flights and 343 (19.81%) by departing
flights. In this study, we dealt with the causes of go-around during WS events, and therefore,
the information reported by approaching flights was retained while that from departing
flights was discarded from the dataset. Furthermore, the dataset was preprocessed to
deal with the missing values and other irrelevant information. After carefully cleaning
redundant and erroneous information, the finalized dataset was obtained with 872 instances
in which go-around was observed 196 times. In addition, to develop a binary classification
problem, all the go-around events (being the minority class) were labeled as ‘1’, while all
the approaches (being the majority class) were labeled as “0”. A detailed description of all
the factors is shown in Table 4. The summary statistics of all the factors from HKIA-based
PIREPs are provided in Table 5.

Table 4. Environmental and situational factors’ description and coding.

Factors Descriptions Type of Data Coding

Go-around Go-around/approach Discrete ‘Go-around = 1’, ‘Approach = 0’

Vehicle-Specific Airline Flight Type Discrete ‘International flight = 1’, ‘Others = 0’
Aircraft Type Discrete ‘Wide-body = 1’, ‘Others = 0’

Runway-Specific Corridor Discrete ‘07C = 0’, ‘07R = 1’, ‘25C=2’, ‘25L = 3’

Environment-Specific

WS magnitude Continuous -
WS H-Location Discrete ‘At RWY = 0’, ‘1-NM = 1’, ‘2-NM = 2’, ‘3-NM = 3’

WS altitude Continuous -
Cause of WS Discrete ‘Gust Front = 0’, ‘Sea Breeze = 1,
Precipitation Discrete ‘Yes = 1’, ‘No = 0′

Temporal-Specific Time of day Discrete ‘Day = 1’, ‘Night=0′

Seasons Discrete ‘Winter = 0’, ‘Spring = 1’, ‘Summer = 2’, ‘Autumn = 3’
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Table 5. Descriptive statistics of various environmental and situational factors.

Factors Descriptions Statistics

Mean St. dev Min Max

Vehicle-Specific Airline Flight Type 0.554 0.497 0 1
Aircraft Type 0.741 0.434 0 1

Runway-Specific Orientation 0.897 1.002 0 3

Environment-Specific

WS Magnitude (−/+) 17.17/−19.23 3.86/4.85 −15/15 −40/45
WS H-Location 1.473 0.896 0 3

WS V-Location (ft) 335.52 304.723 15 2000
Cause of WS 0.457 0.492 0 1
Precipitation 0.530 0.497 0 1

Temporal-Specific Time of day 0.623 0.482 0 1
Seasons 1.551 0.865 0 3

2.3. Dynamic Ensemble Selection (DES) Algorithms

As stated before, we proposed three DES models to develop a reliable classification
and prediction model for aircraft go-around and approach during WS events. The DES
models are Meta-Learning for Dynamic Ensemble Selection (META-DES), K-Nearest Oracle
Elimination (KNORAE), and Dynamic Ensemble Selection Performance (DES-P). The DES
modeling process flowchart is depicted in Figure 5.
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2.3.1. META-DES

The objective of the META-DES algorithm [25] is to determine if the selected classifica-
tion model from a pool of latent classification models is able to classify the given test data.
This meta-problem can primarily be tackled in two steps.

Finding the meta-features for each classification model in the pool is the first step.
There are four types of meta-features: (a) posterior likelihood/probability for each target la-
bel, (b) overall local accuracy (OLA) of the classification model in the region of competence,
and (c) the neighbor’s hard classification (NHC) (a vector of ‘n’ is generated, where ‘n’ is
the number of training instances in the region of competence). The value of the vector is set
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to 1 if the classification model correctly classifies the instance within its area of competence;
otherwise, it is set to 0. (d) The confidence of the classifier (the orthogonal distance between
the input instance and the classifiers’ decision boundary).

Step two is to determine, using meta-features, whether a particular classification
algorithm is capable of producing precise predictions for a given set of test instances. As a
result, the ensemble of classifiers for the given test data consisted of every classification
algorithm selected by meta-classification models.

2.3.2. KNORAE

For any given set of test data, the KNORAE algorithm will find the subset of clas-
sification models that correctly classifies all K-Nearest Neighbors. The classification of
the test data is then given to the ensemble of these chosen classification algorithms and
open to voting (the KNORAE algorithm uses the majority voting rule for prediction). In
other words, the algorithm gets rid of classification models that incorrectly classify nearby
data [26]. The algorithm stops prioritizing nearest neighbors and looks for a classification
model that can correctly label all training instances that are close to the test data if it cannot
find a classification algorithm that can do so.

2.3.3. DES-P

By contrasting the effectiveness of each classification algorithm to that of a random
classification algorithm, this DES procedure eliminates the inefficient ones. For a given
number of classes in a training dataset, the efficacy of the random classification algorithm is
1/C (see the explanation in [27]). The dynamic selection of classification models is carried
out by comparing the performance of the classification algorithm to that of a random
classification algorithm in the neighborhood defined by the test data. For the provided
test data, the classification algorithm can be added to the ensemble if its performance is
better than a random classification algorithm. If no classification algorithm is picked, all
the algorithms in the pool will be used on the given test data.

2.4. Pool of Classifiers

The following pool of classifiers was used for the DES algorithms: homogeneous
ensembles such as Random Forest (RF), Extremely Randomized Tree (ERT), and Bagging
Multi-Layer Perceptron (BMLP), and heterogeneous ensembles consisting of pooling of
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Binary Logistic Regres-
sion (BLR) classifiers.

2.5. Performance Evaluation

The Recall, Precision, and F1-scores were used to analyze the performance of the DES
models in classifying the aircraft’s go-around and approach during WS events. For each
diagnostic label, the performance indicators were independently evaluated. For a complete
understanding of all performance metrics, below is a list of terms.

TP (True Positive): The total number of predictions that correctly identified instances of
“go-around” as “go-around.” TN (True Negative): The number of predictions that correctly
identified “approach” as “approach.” FP (False Positive): The total number of instances
in which “approach” was incorrectly predicted as “go-around.” FN (False Negative) is
the total amount of predictions that incorrectly classified “go-around” as “approach.” The
following is an explanation of the evaluation metrics:

Recall
Recall for a single class ‘i’ is the ratio between the TP to the sum of the TP and FN in

the confusion matrix for that class. It can be calculated by using Equation (1):

Recalli =
TP

TP + FN
(1)
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The overall Recall is the average of the Recall of each class, which is given by Equation (2):

Recall =
1
L

L

∑
i=1

Recalli (2)

Precision
Precision for a single class ‘i’ is the ratio between the TN to the sum of the TN and FP

in the confusion matrix for that class. It can be calculated by using Equation (3):

Precisioni =
TN

TN + FP
(3)

The overall Recall is the average of the Recall of each class, which is given by Equation (4):

Precision =
1
L

L

∑
i=1

Precisioni (4)

F1-Score
The F1-Score is a metric that considers both the Precision and the Recall of the test

instances to compute the score. It can be interpreted as a weighted mean of the Recall and
Precision. It can be calculated for class ‘i’ by using Equation (5):

F1-Scorei =
2[ (precision i)(recall i)]

precisioni+recalli
(5)

The overall F1-Score is the average of the F1-Score of each class, which is given by
Equation (6):

F1-Score = 1
L

L
∑

i=1

(
2[ (precision i)(recall i)]

precisioni+recalli

)
(6)

2.6. Dynamic Ensemble Selection Interpretation by SHapley Additive exPlanations (SHAP)

The SHAP analysis is based on a game theory approach for the explanation of the
machine learning-ensemble classifiers’ outputs. As machine learning models are “black-
box”, therefore, when interpreting these models, both a global and local perspective are the
core ideas behind the SHAP analysis. The SHAP values were estimated, which correspond
to the value given to each factor in the instance when a machine learning prediction was
computed. Equation (7) is used to calculate the contribution of each factor, which is shown
as the Shapley value:

ϕi = ∑
γ⊆Π{i}

γ!(n − |γ| − 1)!
n!

[E(γ∪ {i})− E(γ)] (7)

where ϕi illustrates the ith factor contribution, Π is the set of all factors, γ is the subset of the
decision factors, and E(γi) and E(γ) illustrate the best model results with and without ith
factors, respectively. SHAP analysis basically results in interpretable DES models through
an additive factors imputation strategy, wherein the output model is defined as a linear
sum of the input factors (Equation (8)):

g
(
Ψ′

)
= ∆0 +

Λ

∑
i=1

∆iΨ′ Ψ′ ∈ {0, 1}Λ (8)

It is equal to 1 in case when a factor is observed, otherwise it is 0. It illustrates the
amount of all input factors, where ∆0 represents an outcome without factors (i.e., base
value), and ∆i shows the Shapley value of the ith factor.
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In this study, the SHAP analysis was employed for the interpretation of the proposed
DES model, i.e., the global importance and contribution of factors that are likely to cause
aircraft go-around as well as the interactions of factors.

3. Results and Discussion

To predict the occurrence of go-around in WS conditions, the DES models with dif-
ferent pools of base estimators were employed by using HKIA-based PIREPs. Figure 6
shows the frequency distributions of the factors from the PIREPs. To assess the potential
correlations between the factors of the PIREPs, we performed Pearson correlation analysis.
Statistically, Figure 7 illustrates that the absolute value of Pearson’s correlation coefficient
is between 1 and −1. Although we have observed a Pearson correlation coefficient value of
–0.63 for causes of WS and PPT, the correlation is moderate, and we will not exclude them for
subsequent modeling. Both the factors are environmental-specific and their inclusion in the
model may have a significant impact. For the analysis, we used the Python sklearn.metrics,
imbeans, and sklearn.ensemble, Scikit-learn, and SHAP libraries.

3.1. Data Partitioning

The dataset of 872 go-arounds and approaches under WS conditions that was extracted
from HKIA-based PIREPS and used for DES modeling has been split into primarily two
sets, which are known as the training validation set and the test set. Seventy percent of
the data was used for training validation, while thirty percent of the data was used for
actual testing. The training validation set had a total of 468 and 143 records, respectively,
for the number of approaches and the go-around events. The testing set included a total of
209 approaches and 53 records of the go-around attempts.

3.2. Grid Search Strategy for Hyperparameter Tuning

Using Stratified 10-Fold Cross-Validation, the training validation set was evaluated.
The training validation set was split into 10 equal-sized folds. Utilizing stratified sampling,
each fold retained a proportional amount of each label. The Stratified 10-Fold Cross-
Validation strategy was chosen because it maintains a proportional representation of
each label. The DES model was initially trained with nine folds, and then its F1-Score
performance was evaluated with the final fold. This procedure was repeated ten times until
all available folds (those that comprised the training set in the initial fold) comprised the
validation set. The average F1-Score of each 10 folds was then determined.

Grid Search [43] is one of the most frequently employed hyperparameter tuning
techniques for machine learning approaches. Through using the Grid Search technique,
the feasible set (search space) of hyperparameters was pre-determined, and the model’s
best hyperparameters were chosen based on their performance in cross-validation. For our
studies, the model’s hyperparameters were determined by the set of hyperparameters that
maximized the overall F1-Score (mean F1-Score across all folds). The F1-Score was chosen
as the performance indicator because it combines the recall and precision of diagnostic
labels. Table 6 shows the optimal values of the hyperparameter of the models.
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Figure 6. Distribution of go-around with respect to environmental and situational factors (a) Distri-
bution of Landing (approaches) and MAPs (Go-around); (b) Distribution of Go-around in different
season of years; (c) Distribution of Go-around with respect to type of flight; (d) Distribution of
Go-around with respect to type of aircraft; (e) Distribution of Go-around with respect to altitude
(V-Location) of the wind shear; (f) Distribution of Go-around with respect to precipitation (g) Dis-
tribution of Go-around with respect to wind shear magnitude; (h) Distribution of Go-around with
respect to wind shear horizontal (H)-location; (i) Distribution of Go-around with respect to time of
the day; (j) Distribution of Go-around with respect to corridor/runway orientation; (k) Distribution
of Go-around with respect to wind shear causes.
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Table 6. Optimal hyperparameter values of the models.

Model Hyperparameter Space Optimal Value

RF
Number of trees [100, 500, 1000, 1500, 2000, 2500, 3000] 2500

Max depth of tree [3, 5, 7, 9, 11, 13, 15] 11

BMPL
Number of estimators [200, 400, 600, 800, 1000] 500

Batch size [50, 100, 150, 200, 250, 300] 200
Epoch size [50, 100, 150, 200] 110

ERT
Number of trees [100, 500, 1000, 1500, 2000, 2500, 3000] 2000

Max depth of tree [3, 5, 7, 9, 11, 13, 15] 11

SVM
C [0.1, 1.0, 100] 100

Gamma [1.0, 0.1, 0.01, 0.001, 0.0001] 0.01

3.3. DES Models’ Performance Assessment and Comparison

As was previously mentioned, the positive and negative classes were referred to as
approach and go-around, respectively. The Precision, Recall, and F1-Score performance
metrics were extracted from the confusion matrices of each DES algorithm and used to
evaluate all models. Homogeneous and heterogeneous pools of classification algorithms
were used as the base estimators (Tables 7–10). META-DES produced a higher performance
measure for DES algorithms using RF classifiers as base estimators with Precision (86%),
Recall (83%), and F1-Score (84%) (Table 7). KNORAE-RF, the second-best DES model when
used with the RF classifier, produced an F1-Score of 82%, a Precision value of 82%, and a
Recall value of 82%. Similar to this, DES-P-BMLP produced higher performance measures,
with Precision (78%), Recall (75%), and F1-Score (77%), in the case of DES algorithms with
BMLP (Table 8). When using the ERT classifier with other DES algorithms, the META-
DES performed well (Table 9). It displayed a Precision of 78%, a Recall of 76%, and an
F1-Score of 77%. Furthermore, the META-DES with the pool of heterogeneous classifiers
(SVM+KNN+BLR) performed well as compared to DES-P and KNORAE (Table 10). It
showed a Precision of 78%, a Recall of 76%, and an F1-Score of 77%. Overall, it was found
that the META-DES-RF model performed better than the other DES models and could be
used in conjunction with SHAP analysis to determine the relative importance of different
factors as well as their contributions.
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Table 7. Comparison of performance measures of DES algorithms based on the pool of RF.

Approach
Performance Measures

Predicted
Precision Recall F1-Score

Approach Go-Around

KNORAE-RF

A
ct

ua
l

Approach 193 16 0.82 0.82 0.82
Go-around 15 38

DES-P-RF

A
ct

ua
l

Approach 182 27 0.75 0.68 0.71
Go-around 30 23

META-DES-RF

A
ct

ua
l

Approach 195 14 0.86 0.83 0.84
Go-around 16 37

Table 8. Comparison of performance measures of DES based on the pool of BMLP.

Approach
Performance Measures

Class Predicted
Precision Recall F1-Score

Approach Go-Around

KNORAE-BMLP

A
ct

ua
l

Approach 195 15 0.77 0.75 0.76
Go-around 22 31

DES-P-BMLP

A
ct

ua
l

Approach 182 27 0.78 0.75 0.77
Go-around 23 30

META-DES-BMLP

A
ct

ua
l

Approach 195 15 0.73 0.73 0.73
Go-around 23 30

Table 9. Comparison of performance measures of DES based on the pool of ERT.

Approach
Performance Measures

Class Predicted
Precision Recall F1-Score

Approach Go-Around

KNORAE- ERT

A
ct

ua
l

Approach 185 24 0.76 0.73 0.75
Go-around 24 29

DES-P-ERT

A
ct

ua
l

Approach 184 25 0.75 0.72 0.74
Go-around 25 28

META-DES-ERT

A
ct

ua
l

Approach 188 21 0.78 0.76 0.77
Go-around 21 32

Table 10. Comparison of performance measures of DES based on the pool of heterogeneous classifiers.

Approach
Performance Measures

Class Predicted Precision Recall F1-Score
Approach Go-Around

KNORAE-
(SVM+KNN+BLR) A

ct
ua

l

Approach 172 37 0.71 0.72 0.72
Go-around 21 32

DES-P-
(SVM+KNN+BLR) A

ct
ua

l

Approach 168 41 0.72 0.70 0.71
Go-around 23 30

META-DES-
(SVM+KNN+BLR) A

ct
ua

l

Approach 188 21 0.78 0.76 0.77
Go-around 21 32



Atmosphere 2022, 13, 2104 14 of 18

3.4. Sensitivity Analysis

It is vital to develop an evident go-around prediction model because more accurate
models might effectively capture the association between go-around and various envi-
ronmental and situational factors. The ability to comprehend the optimal META-DES-RF
model is immensely valuable. The SHAP method was used in this section to interpret the
best META-DES-RF results and calculate the combined effect of each individual risk factor.

3.4.1. Global Factors’ Importance and Contribution

We utilized the META-DES-RF model for the factors’ importance and contribution
analysis due to its superior go-around prediction compared to other models. There is a
compelling case for determining which factors are most crucial and for quantifying their
contributions to the final predictions. It is important to note that factor contribution and
factor importance are two different concepts. The importance of a factor reveals which
variables have the biggest effects on a model’s performance. The factor contributions not
only point out important factors but also give a logical justification for the observed result,
in our case “go-around” and “approach.”

The SHAP global importance scores for the factors used in the META-DES-RF are
shown in Figure 8a. The result does not, however, show how much each factor contributed
to the likelihood of a go-around happening. It demonstrates that WS magnitude, with
a mean SHAP value of +0.257, was the most significant factor that contributed to the
occurrence of go-arounds, followed by corridor, with a mean SHAP value of +0.190, time of
day (+0.190), and WS altitude (+0.160). Similar to this, a SHAP contribution evaluation was
carried out to examine the META-DES-RF model in greater detail using SHAP beeswarm
plots (Figure 8b). From the SHAP contribution plots, which combined the Shapely values
and expressed the contributions of the various factors to the META-DES-RF model, we
were able to derive a quantitative value. On the vertical axis, the input factors are arranged
from most influential to least influential in order of increasing influence. The horizontal
axis displays the SHAP value, and the color scale, which ranges from blue to red for low
significance to high significance, displays the factor’s significance.
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The META-DES-RF model’s SHAP beeswarm plot showed that majority of the tailwind
led to the commencement of the aircraft go-around. The cause may be that in strong
tailwinds, an aircraft’s airspeed—the speed of the aircraft relative to the airflow around
it—does not significantly decrease as it approaches the ground, and with a high airspeed,
an aircraft may not be able to land at the designated touchdown location. Pilots increase the
throttle to go around, try again, or ask for a different runway to ensure safety. The outcome
is also in line with earlier research [44]. The second important factor was the corridor’s
orientation. Runways 07C and 07R were more likely to initiate go-arounds when there
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was wind shear. Runways 07C and 07R should not be used for landings during WS events
because go-arounds have become a safety concern. The third crucial factor was the time of
day. Although we could not pinpoint any prior research on the effect of the time of day
on the go-around, our data nonetheless revealed that majority of the go-around happened
during the day (07:00 AM to 19:00 PM).

The fourth crucial factor was WS altitude. Figure 8b illustrates how WS events that
took place at lower altitudes were held responsible for the high number of go-arounds. This
is also consistent with a previous study [45]. The cockpit remains incredibly active during
the landing phase, and the captain and co-pilot must make a number of quick decisions to
wrap up their landing checklist. However, the best course of action is to abort the landing
and perform a go-around when an unexpected WS happens very close to the runway. As a
result, majority of go-arounds happened when the aircraft ran into WS close to the ground.

3.4.2. Factor Dependence and Interaction

In the factor importance and contribution (beeswarm) plots, there was no evidence
of a correlation between the alteration in the factor value and the change in the SHAP
value. The interpretation results for the factors are shown in Figure 9, which also adds
more relevant information about how the SHAP values varied with the eigenvalues to the
contribution plot. To assess the extent to which the critical environment factors used to
evaluate the META-DES-RF interacted in terms of their contributions, the SHAP interaction
plots were examined.
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Figure 9a shows how the models’ predictions were impacted by the WS magnitude
and WS altitude. The go-around phenomenon is heavily influenced by the points that
are above the SHAP 0.00 green reference line. Thus, it is evident that the points with
magnitudes of −14 to −32 knots are above the SHAP 0.00 green reference line. Most of the
points have labels in blue and purple, which indicate low altitude between 0 and 600 feet.
It shows that strong tailwinds at low altitudes play a greater role in the occurrence of
go-arounds. Figure 9b depicts how the WS altitude and Corridor influenced the model
predictions. It is apparent that the points with high density that fall between WS altitudes
of 0 and 600 feet are located above the SHAP 0.00 green reference line. Majority of the
points have blue and purple labels, which denote corridors 07C and 07R. It demonstrates
that runways 07C and 07R are highly susceptible to the occurrence of WS at low altitude,
thereby increasing the likelihood of a go-around.

Figure 9c illustrates the effect of the WS magnitude and Corridor on model predictions.
Clearly, the dense points that fall between WS altitudes of −14 and −32 knots are located
above the SHAP 0.00 green reference line. A significant proportion of the points is marked
with blue and purple labels, denoting corridors 07C and 07R. It reveals that runways
07C and 07R are particularly prone to the occurrence of WS at −14 to −32 knots (tailwind
condition), as well as the low altitude of WS, thereby boosting the likelihood of a go-around.

4. Conclusions and Recommendations

In this study, a Dynamic Ensemble Selection model was used with a pool of homoge-
neous (Random Forest, Extremely Randomized Tree, and Bagging Multilayer Perceptron)
and heterogeneous (Support Vector Machine, K-Nearest Neighbor, and Binary Logistic
Regression) classifiers to predict the occurrence of go-arounds using the Hong Kong In-
ternational Airport-based Pilot Reports from 2018 to 2021. The META-DES-RF model
outperformed all the other models in terms of the Precision value, the Recall value, and the
F1-Score. As a result, the META-DES framework that has been proposed presents a novel
approach to modeling and forecasting aircraft go-around in WS conditions.

The lack of inclusivity and interpretability of machine learning models has been widely
criticized. Although these approaches are often more flexible and reliable than traditional
statistical models, this hinders their widespread adoption for prediction. Therefore, in this
study, the results of META-DES-RF were evaluated, and both key risk factors and their
impact on the occurrence of go-around were analyzed using the SHAP strategy to deal
with the problem of interpretability introduced by META-DES-RF.

The top four crucial risk factors that enhance the probability of the occurrence of
go-around under WS events were WS magnitude, Corridor, time of day, and WS altitude.
The SHAP analysis revealed that there was a strong interaction among WS magnitude,
WS altitude, and Corridor. It has been observed that runways 07C and 07R of HKIA were
more prone to the occurrence of go-around. These go-around events occurred when strong
tailwinds of −14 to −32 knots occurred within 600 ft above the runway level.

The novel method used in this research could be applied to a comprehensive investiga-
tion of how WS events have affected air traffic operations. It is a helpful tool for experts in
air traffic safety and decision-makers in the aviation industry. In this study, SHAP analysis
and dynamic ensemble classifiers were only used to predict the aircraft go-around under
WS events. Future research initiatives may employ additional DES algorithms with various
pools of classification models and risk factors. Doppler LiDAR data could also be combined
with PIREPs in future research to evaluate a wide range of other parameters, including the
impact of pressure, the direction of the wind, and others.

Author Contributions: Conceptualization, F.C.; data curation, P.-W.C.; formal analysis, A.K.; funding
acquisition, A.K.; investigation, P.-W.C.; methodology, A.K. and P.-W.C.; project administration, A.K.
and H.P.; resources, H.P.; software, F.C.; validation, F.C. All authors have read and agreed to the
published version of the manuscript.



Atmosphere 2022, 13, 2104 17 of 18

Funding: This research was supported by the National Natural Science Foundation of China
(U1733113), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100),
the Research Fund for International Young Scientists (RFIS) of the National Natural Science Foun-
dation of China (NSFC) (Grant No. 52250410351), and the National Foreign Expert Project (Grant
No. QN2022133001L).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are thankful to the Hong Kong Observatory at Hong Kong International
Airport for providing us Pilot Report data of go-around events.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Airport Council International. World Airport Traffic Forecast 2017–2040 Airport Council International; Airport Council International:

Montréal, QC, USA, 2017.
2. Fichtl, G.H.; Camp, D.W.; Frost, W. Sources of low-level wind shear around airports. J. Aircr. 1977, 14, 5–14. [CrossRef]
3. Metzger, U.; Parasuraman, R. Automation in Future Air Traffic Management: Effects of Decision Aid Reliability on Controller

Performance and Mental Workload. In Decision Making in Aviation; Routledge: London, UK, 2017; pp. 345–360.
4. Prats, X.; Puig, V.; Quevedo, J.; Nejjari, F. Multi-objective optimization for aircraft departure trajectories minimizing noise

annoyance. Transp. Res. Part C Emerg. Technol. 2010, 18, 975–989. [CrossRef]
5. Shortle, J.; Sherry, L. A Model for Investigating the Interaction between Go-Arounds and Runway Throughput. In Proceedings of

the 2013 Aviation Technology, Integration, and Operations Conference, Los Angeles, CA, USA, 12–14 August 2013; p. 4235.
6. Blajev, T.; Curtis, W. Go-around Decision-Making and Execution Project: Final Report to Flight Safety Foundation; Flight Safety

Foundation: Alexandria, VA, USA, 2017.
7. Michelson, M.; Shrader, W.; Wieler, J. Terminal Doppler weather radar. Microw. J. 1990, 33, 139.
8. Shun, C.; Chan, P. Applications of an infrared Doppler LiDAR in detection of wind shear. J. Atmos. Ocean. Technol. 2008,

25, 637–655. [CrossRef]
9. Li, L.; Shao, A.; Zhang, K.; Ding, N.; Chan, P.-W. Low-level wind shear characteristics and LiDAR-based alerting at Lanzhou

Zhongchuan International Airport, China. J. Meteorol. Res. 2020, 34, 633–645. [CrossRef]
10. Zaal, P.; Campbell, A.; Schroeder, J.A.; Shah, S. Validation of Proposed Go-Around Criteria under Various Environmental

Conditions. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; p. 2993.
11. Chou, C.S.; Tien, A.; Bateman, H. A Machine Learning Application for Predicting and Alerting Missed Approaches for Airport

Management. In Proceedings of the2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA,
3–7 October 2021; pp. 1–9.

12. Donavalli, B.; Mattingly, S.P.; Massidda, A. Impact of Weather Factors on Go-Around Frequency (No. 17-03934). In Proceedings
of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017.

13. Causse, M.; Dehais, F.; Péran, P.; Sabatini, U.; Pastor, J. The effects of emotion on pilot decision-making: A neuroergonomic
approach to aviation safety. Transp. Res. Part C Emerg. Technol. 2013, 33, 272–281. [CrossRef]

14. Dehais, F.; Behrend, J.; Peysakhovich, V.; Causse, M.; Wickens, C.D. Pilot flying and pilot monitoring’s aircraft state awareness
during go-around execution in aviation: A behavioral and eye tracking study. Int. J. Aerosp. Psychol. 2017, 27, 15–28. [CrossRef]

15. Jou, R.C.; Kuo, C.W.; Tang, M.L. A study of job stress and turnover tendency among air traffic controllers: The mediating effects
of job satisfaction. Transp. Res. Part E Logist. Transp. Rev. 2013, 57, 95–104. [CrossRef]

16. Kennedy, Q.; Taylor, J.L.; Reade, G.; Yesavage, J.A. Age and expertise effects in aviation decision making and flight control in a
flight simulator. Aviat. Space Environ. Med. 2010, 81, 489–497. [CrossRef]

17. Singh, N.P.; Goh, S.K.; Alam, S. Real-time unstable approach detection using sparse variational gaussian process. In Proceedings
of the 2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT), Singapore,
3–4 February 2020; pp. 1–10.

18. Dai, L.; Liu, Y.; Hansen, M. Modeling go-around occurrence using principal component logistic regression. Transp. Res. Part C
Emerg. Technol. 2021, 129, 103262. [CrossRef]

19. Dong, S.; Khattak, A.; Ullah, I.; Zhou, J.; Hussain, A. Predicting and analyzing road traffic injury severity using boosting-based
ensemble learning models with SHAPley Additive exPlanations. Int. J. Environ. Res. Public Health 2022, 19, 2925. [CrossRef]

20. Guo, R.; Fu, D.; Sollazzo, G. An ensemble learning model for asphalt pavement performance prediction based on gradient
boosting decision tree. Int. J. Pavement Eng. 2021, 23, 3633–3646. [CrossRef]

21. Feng, D.C.; Wang, W.J.; Mangalathu, S.; Taciroglu, E. Interpretable XGBoost-SHAP machine-learning model for shear strength
prediction of squat RC walls. J. Struct. Eng. 2021, 147, 04021173. [CrossRef]

http://doi.org/10.2514/3.44570
http://doi.org/10.1016/j.trc.2010.03.001
http://doi.org/10.1175/2007JTECHA1057.1
http://doi.org/10.1007/s13351-020-9134-6
http://doi.org/10.1016/j.trc.2012.04.005
http://doi.org/10.1080/10508414.2017.1366269
http://doi.org/10.1016/j.tre.2013.01.009
http://doi.org/10.3357/ASEM.2684.2010
http://doi.org/10.1016/j.trc.2021.103262
http://doi.org/10.3390/ijerph19052925
http://doi.org/10.1080/10298436.2021.1910825
http://doi.org/10.1061/(ASCE)ST.1943-541X.0003115


Atmosphere 2022, 13, 2104 18 of 18

22. Zhang, S.; Khattak, A.; Matara, C.M.; Hussain, A.; Farooq, A. Hybrid feature selection-based machine learning Classification
system for the prediction of injury severity in single and multiple-vehicle accidents. PLoS ONE 2022, 17, e0262941. [CrossRef]

23. Khattak, A.; Almujibah, H.; Elamary, A.; Matara, C.M. Interpretable Dynamic Ensemble Selection Approach for the Prediction of
Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5. Sustainability 2022, 14, 12340. [CrossRef]

24. Ko, A.H.; Sabourin, R.; Britto, A.S., Jr. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 2008,
41, 1718–1731. [CrossRef]

25. Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D.; Ren, T.I. META-DES: A dynamic ensemble selection framework using meta-learning.
Pattern Recognit. 2015, 48, 1925–1935. [CrossRef]

26. Walmsley, F.N.; Cavalcanti, G.D.; Sabourin, R.; Cruz, R.M. An investigation into the effects of label noise on Dynamic Selection
algorithms. Inf. Fusion 2022, 80, 104–120. [CrossRef]

27. Cruz, R.M.; Zakane, H.H.; Sabourin, R.; Cavalcanti, G.D. Dynamic ensemble selection vs. KNN: Why and when dynamic selection
obtains higher classification performance? In Proceedings of the 2017 Seventh International Conference on Image Processing
Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6.

28. Zheng, J.; Liu, Y.; Ge, Z. Dynamic ensemble selection based improved random forests for fault classification in industrial processes.
IFAC J. Syst. Control. 2022, 20, 100189. [CrossRef]

29. Li, X.; Zhang, K.; Niu, J.; Liu, L. A machine learning-based dynamic ensemble selection algorithm for microwave retrieval of
surface soil freeze/thaw: A Case Study Across China. GI Sci. Remote Sens. 2022, 59, 1550–1569. [CrossRef]

30. Zhao, Z.; Xu, S.; Kang, B.H.; Kabir, M.M.; Liu, Y.; Wasinger, R. Investigation and improvement of multi-layer perceptron neural
networks for credit scoring. Expert Syst. Appl. 2015, 42, 3508–3516. [CrossRef]

31. Niu, P.; Wei, W. Classification of hyperspectral remote sensing images with dynamic support vector machine ensemble. J. Comput.
Appl. 2010, 30, 1590. [CrossRef]

32. Potha, N.; Stamatatos, E. Dynamic ensemble selection for author verification. In European Conference on Information Retrieval;
Springer: Cham, Switzerland, 2019; pp. 102–115.

33. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30.
34. Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based

SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [CrossRef]
35. Ndichu, S.; Kim, S.; Ozawa, S.; Ban, T.; Takahashi, T.; Inoue, D. Detecting Web-Based Attacks with SHAP and Tree Ensemble

Machine Learning Methods. Appl. Sci. 2021, 12, 60. [CrossRef]
36. Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M. Towards better process management in wastewater treatment

plants: Process analytics based on SHAP values for tree-based machine learning methods. J. Environ. Manag. 2022, 301, 113941.
[CrossRef]

37. Scavuzzo, C.M.; Scavuzzo, J.M.; Campero, M.N.; Anegagrie, M.; Aramendia, A.A.; Benito, A.; Periago, V. Feature importance:
Opening a soil-transmitted helminth machine learning model via SHAP. Infect. Dis. Model. 2022, 7, 262–276. [CrossRef]

38. Alkadhim, H.A.; Amin, M.N.; Ahmad, W.; Khan, K.; Nazar, S.; Faraz, M.I.; Imran, M. Evaluating the Strength and Impact of Raw
Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations
(SHAP) Methods. Materials 2022, 15, 7344. [CrossRef]

39. Li, X.; Zhao, Y.; Zhang, D.; Kuang, L.; Huang, H.; Chen, W.; Fu, X.; Wu, Y.; Li, T.; Zhang, J.; et al. Development of an interpretable
machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP:
Findings of the US NHANES from 2003 to 2018. Chemosphere 2023, 311, 137039. [CrossRef]

40. Jabeur, S.B.; Mefteh-Wali, S.; Viviani, J.L. Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Ann.
Oper. Res. 2021, 1–21. [CrossRef]

41. Chan, P.W.; Hon, K.K. Observations and numerical simulations of sea breezes at Hong Kong International Airport. Weather 2022.
[CrossRef]

42. Hon, K.-K. Predicting low-level wind shear using 200-m-resolution NWP at the Hong Kong International Airport. J. Appl.
Meteorol. Climatol. 2020, 59, 193–206. [CrossRef]

43. Purushotham, S.; Tripathy, B.K. Evaluation of Classifier Models Using Stratified Tenfold Cross Validation Techniques. In
International Conference on Computing and Communication Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 680–690.

44. Chan, P.W. A significant wind shear event leading to aircraft diversion at the Hong Kong international airport. Meteorol. Appl.
2012, 19, 10–16. [CrossRef]

45. Chen, F.; Peng, H.; Chan, P.W.; Ma, X.; Zeng, X. Assessing the risk of wind shear occurrence at HKIA using rare-event logistic
regression. Meteorol. Appl. 2020, 27, e1962. [CrossRef]

http://doi.org/10.1371/journal.pone.0262941
http://doi.org/10.3390/su141912340
http://doi.org/10.1016/j.patcog.2007.10.015
http://doi.org/10.1016/j.patcog.2014.12.003
http://doi.org/10.1016/j.inffus.2021.10.015
http://doi.org/10.1016/j.ifacsc.2022.100189
http://doi.org/10.1080/15481603.2022.2122117
http://doi.org/10.1016/j.eswa.2014.12.006
http://doi.org/10.3724/SP.J.1087.2010.01590
http://doi.org/10.1016/j.engstruct.2020.110927
http://doi.org/10.3390/app12010060
http://doi.org/10.1016/j.jenvman.2021.113941
http://doi.org/10.1016/j.idm.2022.01.004
http://doi.org/10.3390/ma15207344
http://doi.org/10.1016/j.chemosphere.2022.137039
http://doi.org/10.1007/s10479-021-04187-w
http://doi.org/10.1002/wea.4282
http://doi.org/10.1175/JAMC-D-19-0186.1
http://doi.org/10.1002/met.242
http://doi.org/10.1002/met.1962

	Introduction 
	Methodology 
	Study Location 
	Data Processing from PIREPs 
	Dynamic Ensemble Selection (DES) Algorithms 
	META-DES 
	KNORAE 
	DES-P 

	Pool of Classifiers 
	Performance Evaluation 
	Dynamic Ensemble Selection Interpretation by SHapley Additive exPlanations (SHAP) 

	Results and Discussion 
	Data Partitioning 
	Grid Search Strategy for Hyperparameter Tuning 
	DES Models’ Performance Assessment and Comparison 
	Sensitivity Analysis 
	Global Factors’ Importance and Contribution 
	Factor Dependence and Interaction 


	Conclusions and Recommendations 
	References

