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Abstract: The 2-m temperature is one of the important meteorological elements, and improving the
accuracy of medium- and long-term forecasts of the 2-m temperature is important. The similarity
forecasting method is widely used as a calibration technique in the statistical postprocessing of
numerical weather prediction (NWP). In this study, the analogue ensemble averaging method is used
to correct the deterministic forecast of the 2-m temperature with a forecast lead time from 180 h to
348 h using the CMA-GEPS model. The bias, mean absolute error (MAE), and root mean square
error (RMSE) are used as the evaluation metrics. In comparison with NWP, the systematic error
of the model for 2-m temperature is effectively reduced during each forecast period when using
the analogue ensemble averaging method. In addition, the differences in forecast errors between
regions are reduced, and the accuracy of 2-m temperature forecasts over complex terrain, especially in
Southwest China, Northwest China, and North China, is improved using this method. In the future,
there is certainly potential to apply the analogue ensemble averaging method to the bias correction of
medium- and long-term forecasts of more meteorological elements.

Keywords: bias correction; similarity method; medium and long-term forecast

1. Introduction

Medium- and long-range weather predictions represent the transitions between short-
term and sub-seasonal forecasts. These predictions are used for drought, flood, and
warm and cold trends, and critical, catastrophic, and transitional weather forecasting
services [1,2]. Improving the accuracy of medium- and long-range weather forecasting is of
great research significance and application value for disaster prevention and mitigation, and
other meteorological security. However, due to the chaotic nature of the atmosphere and
the deficiencies of the numerical model (i.e., observation errors, imperfect data assimilation
techniques, and physical parameterization schemes) [3–11], numerical weather forecasts are
subject to inevitable systematic errors. It is necessary to carry out statistical postprocessing
methods to remove systematic errors before these forecasts can be used [12,13].

There have been many studies on the bias correction methods of numerical weather
prediction. Klein et al. [14] proposed the Perfect Prognostic (PP) method in 1959. In this
method, only the predictors of dynamic predictions are used when making forecasts. Then,
the Model Output Statistical (MOS) method was proposed and widely used in meteo-
rological centers in many countries [15–17], including the Netherlands [18], the United
Kingdom [19], Italy [20], China [17,21], Spain [22], Canada [23], and the United States [15].
This method can include the influences of the specific characteristics of different forecast
lead times of the model in the regression equation. The Kalman filter (KF) technique [24–26],
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Back Propagation (BP) neural network algorithm [27,28], Support Vector Machine (SVM)
method [29], and Deep Learning (DL) methods have also been increasingly researched and
developed in recent years [30–34].

However, most of the methods require complex techniques to simulate all sources of
numerical weather forecast uncertainty, which consumes many computing resources. In
2006, Hamill et al. [35] proposed a theory for the statistical correction of weather forecasts
based on observed analogues. The first step of this method is to find similar forecasts
in the historical forecast dataset, and then use the corresponding observation results to
generate deterministic forecasts or probabilistic forecasts. Mayr and Messner tested three
variants of this method in the idealized Lorenz 96 system, and the results showed that
these methods excel at longer lead times [36]. Delle Monache et al. [37] evaluated 0–48 h
probabilistic predictions of 10-m wind speed and 2-m temperature after correction by the
analogue ensemble (AnEn) method. The skill and value of AnEn predictions were compared
with forecasts from an NWP ensemble system, and it was found that AnEn exhibits high
statistical consistency and reliability and the ability to capture the flow-dependent behavior
of errors. On this basis, some researchers have attempted to improve the performance
of the AnEn method. Junk et al. [38] explored predictor-weighting techniques to assign
unequal weights to the predictors. Yang et al. [39] used two NWP models to postprocess
predicted wind speed during storms and found optimal weights for the predictors. A
variant method, the Kalman filter predictor-corrector algorithm (ANKF), was applied to
the analogues arranged into a series that was rank ordered by descending distance to
the current forecast. The improved methods have achieved good results. Alessandrini
et al. [40] applied the AnEn method to wind power forecasts and solar power forecasts,
effectively improving the accuracy of forecasts and increasing the production of renewable
energy. Other studies have used this method to predict atmospheric variables (e.g., wind
speed, temperature) [41–43], precipitation [44,45], tropical cyclone (TC) intensity [46–48],
and surface particulate matter (PM2.5) [49].

The 2-m temperature is one of the most popular weather elements in daily weather
forecasting and has attracted people’s attention. Improving the accuracy of 2-m temperature
forecasts plays an important role in refining forecasts and improving disaster prevention.
In this paper, the AnEn method is applied to the correction of the medium- and long-
term deterministic forecasts of 2-m temperature. The forecasts of the CMA-GEPS model
during 180–348 h forecast periods are used in the modified approach, and the results
before and after the modification are examined and compared to explore the potential
application of the analogue ensemble method for medium- and long-term forecasts of
meteorological elements.

Section 2 describes the forecast and observation data. Section 3 briefly summarizes the
analogue ensemble average method and verification scores used in this paper. Section 4
contains the results from the postprocessing method compared to CMA-GEPS model
forecasts and presents the results from two aspects, forecast lead time and site distribution.
Finally, a summary and conclusions are given in Section 5.

2. Forecast and Observation Data

In this study, the 2-m temperature element is statistically interpreted, and the CMA-
GEPS model is used to make 168–360 h control forecasts from 25 December 2018 to
28 June 2022, with a period of 1282 days. These data are used for the release of the analogue
ensemble averaging method. The CMA-GEPS model is a global ensemble forecast system
developed by the China Meteorological Administration and is based on the SVs initial
perturbation method and integrating the tropical cyclone initial perturbation techniques
TCSV, SPPT, and SKEB model perturbation schemes. The control forecast is generated
by the CMA-GFS model with a horizontal resolution of 50 km and a vertical resolution
of 60 layers. The model starts at 00:00 (UTC, same as below) and 12:00 (only the forecast
results from 00 h are used in this article.). The maximum forecast lead time is 15 days. In
this paper, 17 forecast lead times of 168–360 h (with an interval of 12 h) are tested.
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The contemporaneous surface observation data from 2405 meteorological stations in
China were obtained from the data-sharing platform of the China Meteorological Data
Service Centre. The outlier values of the observation data were detected with three times
the standard deviation and removed. The missing values were filled by linear interpolation
to form a more precise and complete observation dataset.

The CMA-GEPS model forecast outputs are grid point data. First, the outlier samples
exceeding the climate extreme values of the model data were removed, and then the existing
2-m temperature forecast operational test matching scheme, which does not take into ac-
count the vertical height difference between the elevation of the station and the topographic
height at which the forecast is located, and a bilinear interpolation method was used to
obtain the test station forecast using four grid point forecasts around the observation.

3. Methods and Verification Scores
3.1. Analogue Ensemble Averaging Method

In this study, the theory of analogue ensemble forecasts is applied to address the
medium-and long-term forecast bias of the 2-m temperature, assuming that long-term,
stable numerical models have similar forecast results and error distribution characteristics
for similar weather conditions [35]. The analogue ensemble averaging forecasting method
is developed based on this idea, and the post-processing process is simplified to find similar
forecasts by using historical forecast data and observation data, and the complete revision
process is shown in Figure 1.

Figure 1. Flow chart of the analogue ensemble averaging method (MAnEn).

The realization process of the analogue ensemble averaging method is divided into
three steps. First, it is assumed that the similarity measure formula is used to calculate the
similarity between the current forecast and the historical forecast datasets with the same
forecast time at the same location for the model forecast data starting from the moment
t = 0 with forecast time t in the future. Then, the top n most similar historical forecasts
are selected to find the corresponding actual observations as members of the analogue
ensemble forecasts. Finally, a deterministic forecast or probabilistic forecast is generated
(in this paper, the arithmetic mean of the members is used as the deterministic forecast
result to compare with the model control forecast result.). The similarity measure formula
is as follows:

‖Ft, At′‖ =
1
σ

√√√√ t̃

∑
i=−t̃

(Ft+i − At′+i)
2 (1)

In the above formula, Ft is the deterministic forecast of the future time t, At′ is the
forecast of the historical time t′ at the same spatial position, the same starting time and
the forecast lead time, σ is the standard deviation of the time series of the forecast factor,
and t̃ is the selected similar forecast time window (t̃ = 1 in this paper). Then, the results



Atmosphere 2022, 13, 2097 4 of 13

of the current forecast time and the one before and after the forecast lead time are used in
the calculation of the similarity measure. In contrast to only using the forecast value at a
given time, the information over a period of time can be used through the selection of the
window to find similar forecast trends when looking for similar historical forecasts. The
smaller the result of Equation (1) is, the more similar the prediction of historical time t′ is to
the prediction of current time t.

Using Equation (1), n observations corresponding to the most similar historical fore-
casts (n = 30 in this paper) are selected from the historical forecast dataset as the ensemble
members, and the ensemble average is used as the deterministic forecast.

FAnEnA =
1
n

n

∑
i=1

Oi (2)

where n is the number of ensemble members, and Oi is the observation value corresponding
to the i-th historical forecast.

In this paper, the forecast lead time from 180 h to 348 h of the 2-m temperature (forecast
time interval is 12 h) is statistically interpreted by using the analogue ensemble averaging
forecast method. The number of similar forecast members is 30. The data duration and
parameter settings used in the experiment are shown in Table 1.

Table 1. Data duration and parameter setting for each forecast time.

Forecast Lead Time Testing Period Training Period Selected Lead Time Analog Ensemble
Members

180 h

20220501–0628
(59 d)

20181225–20220423
(1216 d) 168 h, 180 h, 192 h

30

192 h –20220422 (1215 d) 180 h, 192 h, 204 h
204 h 1215 d 192 h, 204 h, 216 h
216 h –20220421 (1214 d) 204 h, 216 h, 228 h
228 h 1214 d 216 h, 228 h, 240 h
240 h –20220420 (1213 d) 228 h, 240 h, 252 h
252 h 1213 d 240 h, 252 h, 264 h
264 h –20220419 (1212 d) 252 h, 264 h, 276 h
276 h 1212 d 264 h, 276 h, 288 h
288 h –20220418 (1211 d) 276 h, 288 h, 300 h
300 h 1211 d 288 h, 300 h, 312 h
312 h –20220417 (1210 d) 300 h, 312 h, 324 h
324 h 1210 d 312 h, 324 h, 336 h
336 h –20220416 (1209 d) 324 h, 336 h, 348 h
348 h 1209 d 336 h, 348 h, 360 h

3.2. Verification Scores

For the deterministic forecast, bias reflects the degree of deviation between the pre-
dicted results and the real results of the sample. The closer the value is to 0, the smaller the
degree of deviation between the predicted relative observations. The MAE and the RMSE
measure the deviation between the predicted value and the real value. The RMSE is very
sensitive to large or small errors in a set of data, and it will also punish the high difference
more. The smaller the value is, the higher the forecast accuracy.

In this paper, the bias, MAE and RMSE are used as verification scores. The formulas
are as follow:

BIAS =
1
n

n

∑
i=1

( fi − oi) (3)

MAE =
1
n

n

∑
i=1
| fi − oi| (4)
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RMSE =

√
1
n

n

∑
i=1

( fi − oi)
2 (5)

In the formula, n is the total number of samples, fi is the predicted value of the i-th
sample, and Oi is the observed value of the i-th sample.

4. Results
4.1. Comparisons of Different Forecast Lead Time Results between Analogue Ensemble Averaging
Forecast and Numerical Weather Prediction Methods

The bias corrections of 15 forecast periods of 180–348 h at 2405 stations in China were
carried out using the analogue ensemble averaging forecast method. The bar chart of the
bias of 2-m temperature model forecasts and analogue ensemble averaging forecasts from
1 May 2022, to 28 June 2022, are shown in Figure 2. It can be seen from the figure that
the biases of the 2-m temperature model forecasts for the 15 forecast lead times are above
0.5 ◦C, and the largest bias is 1.29 ◦C. After correction, the biases are obviously reduced
and the values are closer to 0. With the extension of forecast lead times, the biases gradually
change from positive to negative and below 0.7 ◦C. In addition, the bias of the model
forecasts for the adjacent forecast lead times is distributed in the high and low phases. This
is because the 00 h model forecasts are better than the 12 h forecasts. In other words, the
morning forecasts are better than the night forecasts.

Figure 2. The biases of 2-m temperature between analogue ensemble averaging forecasts and model
forecasts for the forecast lead times of 180–348 h.

The MAE distributions for the analogue ensemble averaging forecasts and model
forecasts under different forecast lead times at 2405 national stations are shown in Figure 3
(the mean of all stations with the same forecast lead time). After bias correction, the MAEs
of all forecast lead times are reduced to below 3 ◦C, with decreases between 15% and 25 %.
Figure 3a shows the MAEs of the daily 12 h forecasts for 7–14 days, and Figure 3b shows
the MAEs of the daily 00 h forecasts. Comparing Figure 3a with Figure 3b, it can be seen
that for the model forecasts, the daily 00 h forecast are always better than the 12 h forecasts.
After bias correction is performed, using the analogue ensemble averaging method, the
forecast gap between 00 h and 12 h forecasts improves.
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Figure 3. MAE and percentage decrease of analog ensemble averaging forecasts and model forecasts.
(a) Daily 12 h forecasts for 7–14 d; (b) daily 00 h forecasts for 8–14 d.

The conclusions embodied in Figure 4 are similar to those in Figure 3, i.e., the RMSE
and percentage decrease of the forecasts of 2-m temperature at 2405 national stations
with forecast lead times of 180–348 h using the analogue ensemble averaging method and
NWP model.

Figure 4. RMSE and percentage decrease of the analog ensemble averaging forecasts and model
forecasts. (a) Daily 12 h forecast for 7–14 d; (b) daily 00 h forecast for 8–14 d.

The analogue ensemble averaging method is used to test the 240 h forecasts of 2-m
temperature for 2405 national stations from 1 May to 28 June 2022, and to examine the
variation of the RMSE (Figure 5). As shown in Figure 5, the RMSE of the daily model
forecast with a forecast lead time of 10 d is approximately 3.5 ◦C. After bias correction
using the analogue ensemble averaging method, the RMSE is reduced to approximately
2.5 ◦C–3 ◦C, and the RMSE is reduced by 16% during the test dates.
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Figure 5. RMSE of daily 240 h forecast for 1 May–28 June 2022.

4.2. Tests of Forecast Ability at the Stations

The RMSE distributions of the model forecasts and analogue ensemble averaging
forecasts of 2405 stations with forecast times of 192 h, 240 h, 288 h, and 336 h from 1 May to
28 June 2022, are compared and analyzed, as shown in Figure 6.

It can be seen from the diagram that with the extension of the forecast lead times, the
RMSE at the 2405 stations increase (comparing Figure 6a,c,e,g, and b,d,f,h, respectively),
for both the model forecasts and the analogue ensemble averaging forecasts. The forecast
difficulty of 2-m temperature gradually increases with the extension of the forecast lead
times. For the same forecast lead time (comparing Figure 6a and b, c and d, e and f,
g and h), the RMSE of the model forecasts are reduced for most stations, especially in
Northwest, Southwest, and North China, when using the analogue ensemble averaging
forecast method. The 8-d, 10-d, 12-d, and 14-d forecasts are greatly improved, and the rest
of the region is also improved. For the four forecast lead times, the percentage of stations
with reduced RMSE to all stations is shown in the following table (Table 2).

Table 2. The decreasing percent of RMSE of the stations.

Forecast Lead Time Decreasing Percent

192 h 31.4%
240 h 29.6%
288 h 23.5%
336 h 24.4%

The RMSE (a, c, e, and g) of 2-m temperature forecasts by the model are obviously
smaller in South China, Central China, and East China, than in other regions. This is greatly
related to the amount of observation data and the difference in terrain height between
the actual measurement and the topographic height at which the forecast is located. In
general, the more distributed the stations are, the more abundant the observation data and
the more accurate the model forecast. In addition, the temperature forecast error related
to the terrain height difference is part of the systematic bias of the model forecast and can
be corrected by statistical methods. Figure 7 shows the RMSE distribution for the 2-m
temperature forecasts using the 240 h forecast lead time at each station. The terrain height
of the observation stations is ordered from smallest to largest after the model forecast and
bias correction using the analogue ensemble averaging method.
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Figure 6. RMSE distribution of model forecasts and analog ensemble averaging forecasts for
2405 stations. ((a,c,e,g) are model forecasts; (b,d,f,h) are analog ensemble averaging forecasts).
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Figure 7. RMSE of model forecasts and analog ensemble averaging forecasts and the terrain height
of stations.

Figure 7 shows that the RMSEs for the 2-m temperature forecasts at stations with
higher terrain height have an increasing trend compared with plain areas, and the errors
are larger. This indicates that the temperature prediction error in the complex terrain area
has greater uncertainty than that in the plain area. However, after bias correction using
the analogue ensemble averaging forecast method, the RMSEs of the 2-m temperature
forecasts of each station decrease, obviously, and a relatively consistent size is observed.
This indicates that this method corrects the systematic error caused by the terrain height
difference between the elevation of the station and the topographic height at which the
forecast is located, and the correction effect is more significant for the stations with larger
terrain heights.

4.3. Forecast Case

According to the above results, the analogue ensemble averaging method forecasts
have better performance than the model forecasts, and the model forecast errors are effec-
tively reduced.

Figure 8 shows the results from the 240-h model forecasts results and analogue ensem-
ble averaging method forecasts starting from 00 h on 5 June 2022, and the 336-h forecast
results from 00 h on 22 May 2022. For both the 240-h and the 336-h 2-m temperature
forecasts, the results after the correction of the analogue ensemble averaging method are
closer to the actual observation than the model forecasts. From the overall regional point of
view, after correction, the results from the Southwest, Central and North China are closer
to the station observations.
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Figure 8. Observations, 240-h, and-336 h model forecasts, the analogue ensemble averaging forecasts
of 2-m temperature ((a,c): model forecasts; (b,d): analogue ensemble mean forecasts; (e): observations)
at 00:00 UTC on 5 June 2022.

5. Conclusions and Discussion

In this paper, the ‘analogue’ concept is applied to the statistical interpretation of the
medium- and long-term forecasts of the model, and the analogue ensemble averaging
correction method is developed. Based on the CMA-GEPS model, the 180–348 h forecasts
of 2-m temperature and the observation data of 2405 stations in China are tested and
analyzed, and compared with the model forecasts. The performance of the analogue
ensemble averaging method is analyzed by several key test indexes, such as bias, MAE,
and RMSE. The following conclusions are obtained:

(1) The analogue ensemble averaging method has a good correction effect on the long
forecast time of 180–348 h and effectively reduces the systematic error of the model
forecasts of the 2-m temperature, which is higher at night and lower during the
day. The forecast deviation is reduced by approximately 0.5 ◦C, and the MAE and
RMSE are reduced by approximately 10–20%. During the test period from 1 May to
28 June 2022, the RMSE reduction rate of 240 h forecast reached 91% (the proportion
of samples with reduced RMSE to all samples). Comparing the correction effect of
different forecast lead times, the analogue ensemble averaging forecast method still
has a better correction effect in longer forecast lead times.

(2) After comparisons based on the spatial prediction results from 2405 stations, it is
shown that the application of the analogue ensemble averaging forecast method
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effectively reduces the RMSEs of forecasts in Southwest China, Northwest China, and
North China. The improvement rate of different forecast times reaches 31.4%. This
method has a more obvious effect on the correction of complex terrain areas.

In this paper, only a factor of 2-m temperature is comprehensively tested and eval-
uated. In the future, multifactor application tests and evaluations need to be carried out.
In addition, for the analogue ensemble averaging correction method, the length of the
historical forecast dataset, the design of the similarity measure, the meteorological elements
used in the selection of similar historical forecasts, and the forecast lead times are the key
factors affecting the correction effect. Therefore, in the future, we will focus on the different
forecast elements: (1) establish a longer historical forecast dataset so that there are more
opportunities to find results similar to the current forecast; (2) for different forecast ele-
ments, more model predictors are used as similar reference factors, and the optimal weight
combination is found to improve the correction effect; and (3) the actual data corresponding
to the historical forecast selected by the analogue ensemble method can not only generate
deterministic forecasts by averaging, but also generate probability forecasts, and can be
used for objective correction of precipitation forecasts.
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