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Abstract: To monitor the spread of the novel coronavirus (COVID-19), India, during the last week
of March 2020, imposed national restrictions on the movement of its citizens (lockdown). Although
India’s economy was shut down due to restrictions, the nation observed a sharp decline in particulate
matter (PM) concentrations. In recent years, Delhi has experienced rapid economic growth, leading
to pollution, especially in urban and industrial areas. In this paper, we explored the linkages between
air quality and the nationwide lockdown of the city of Delhi using a geographic information system
(GIS)-based approach. Data from 37 stations were monitored from 12 March, 2020 to 2 April, 2020 and
it was found that the Air Quality Index for the city was almost reduced by 37% and 46% concerning
PM2.5 and PM10, respectively. The study highlights that, in regular conditions, the atmosphere’s
natural healing rate against anthropogenic activities is lower, as indicated by a higher AQI. However,
during the lockdown, this sudden cessation of anthropogenic activities leads to a period in which
the natural healing rate is greater than the induced disturbances, resulting in a lower AQI, and thus
proving that this pandemic has given a small window for the environment to breathe and helped the
districts of Delhi to recover from serious issues related to bad air quality. If such healing windows are
incorporated into policy and decision-making, these can prove to be effective measures for controlling
air pollution in heavily polluted regions of the World.

Keywords: air quality index (AQI); COVID-19; lockdown; PM2.5; PM10; interpolation of AQ parame-
ters; satellite remote sensing; GIS

1. Introduction

Air pollution is a major concern worldwide; according to the World Health Orga-
nization (WHO) survey, 14 out of 15 of India’s most polluted cities have been affected.
Air pollution, particularly in megacities, has an unfavorable impact on daily human life.
Delhi has experienced rapid economic growth in recent years, which has led to pollution,
especially in urban and industrial areas. In Delhi, the main contributors to PM10 con-
taminants are road dust (56%), concrete batching (10%), industrial-level sources (10%),
and automobiles (9%) [1]. Air quality management in urban environments is required to
safeguard human health, reduce industrial losses, maximize workers’ productivity, and
enhance indoor air quality. In this regard, air quality monitoring, networks of Continuous
Air Quality Monitoring (CAQM) stations, satellite datasets, and geographic information
system (GIS) technology play a crucial role.
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In India, since 1974, the Central Pollution Control Board (CPCB) has been responsible
for air quality monitoring [2]. In major cities, networks were developed for air quality
calculations. CPCB and other state pollution control boards currently maintain and manage
a network of 133 ground stations, Continuous Air Quality Monitoring Stations (CAQM),
and 37 CAQM stations within the Delhi area. The Government of Delhi has sought to
regulate air pollution through vehicle enforcement laws such as the odd-even formula,
the prohibition of 10-year-old diesel vehicles, the introduction of Compressed Natural
Gas (CNG) vehicles, public incentives for carpooling, etc. Delhi’s major contaminants in
the atmosphere are particulate matter (PM2.5 and PM10), nitrogen oxides, sulfur dioxide,
carbon monoxide, ozone, benzene, toluene, xylene, carbonaceous and organic aerosols,
metals, and volatile organic compounds [3]. The research published in May 2014 by the
WHO used datasets from 2008–2013 and ranked Delhi as the most polluted city in the
World, with an average yearly PM2.5 concentration of 153 µg/m3.

Many studies have been performed earlier on GIS techniques to track air pollution.
This technology provides a detailed overview of the city, identifies the significant sources
of pollution and the distribution pattern, helps decide where to make efforts to reduce
pollution rates, and agrees on any relation between city characteristics and air pollution
distribution. A GIS-based methodology has been established [4–7] and is increasingly
utilized in the natural environment’s measurement, analysis, perception, simulation, and
management [8–12]. The statistical interpolation process also uses GIS to create ‘virtual
stations’ [13]. In light of this, on 14 April 2020, the Government of India extended the
lockdown that had been put in place on 24 March, 2020 until 3 May, 2020. This action
was taken to combat the virus’s lethality through social isolation and other measures, as
recommended by the WHO [14]. India has developed a far-reaching strategy to address
the pandemic and its economic woes properly. Zoning the COVID-19 epicenters is one
such method. The federal government and the individual states are dividing the country
into zones of varying danger; the zone with the greatest number of confirmed cases will be
quarantined for a lengthy period of time [10].

During the first week of February 2020, the novel coronavirus (COVID-19) epidemic
broke out in India. After monitoring its propagation, India imposed a nationwide lockdown
from 24 March, 2020, leading to major declines in economic activities and related emissions.
Although India’s economy was shut down to prevent COVID-19 from spreading, the nation
observed a sharp decrease in particulate matter. Many researchers carried out the study of
lockdown impact on air pollution in the Delhi and other cities of India [15–18] and have
reported a reduction of AQI in the range of 30–50% and 40–60% for NOx.

Air quality assessment is carried out in Delhi based on ground measurements of 37
CAQM stations throughout this paper. The study highlights the impact of the lockdown
on air quality standards due to an outbreak of Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2). The observation period of this study is taken from 12 March
to 2 April 2020. The study further aims to show the potential of GIS in monitoring the
Air Quality spatial distribution, mapping it on a microscale level, and analyzing the par-
ticulate matter concentrations of the Delhi region. Moreover, this research also hopes to
demonstrate the potential rate of nature’s ability to heal from anthropogenic activities.

2. Materials and Methods
2.1. Study Area

Delhi is the capital of India and is also the country’s economic capital. Delhi is the
most densely populated city in the country and the World. Delhi city has an area of
approx. 1490 sq. km and extending between north latitudes 28◦25’ and 28◦55’ and east
longitudes 76◦45′ and 78◦20′. It is surrounded on three sides by Haryana and on the
east by Uttar Pradesh. According to the 2011 census, the population of Delhi was more
than 11 million [19], India’s second-largest city after Mumbai, while the overall NCT city
was around 16.8 million. Delhi has a subtropical humid dry-winter climate bordering a
hot semi-arid climate. The warm season occurs between 21 March and 15 June, with a



Atmosphere 2022, 13, 2090 3 of 17

daily average high temperature of 39 ◦C (102 ◦F). The coldest day of the year is 4 January,
between the mean of 2 ◦C (36 ◦F) and 14 ◦C (57 ◦F). The wind moves from the northwest
to the southwest in early March. The selection of this study area is attributed to dramatic
environmental changes due to the nationwide lockdown and the availability of air quality
data for CAQM stations. The study area map is shown in Figure 1.
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Figure 1. The study area map depicting the CAQM stations. The distribution of the 37 CAQM
stations is shown on the map.

The methodology employed to assess the Air Quality parameters includes Data Acqui-
sition from Delhi CAQM stations, Data Processing and Data Analysis. The Data Processing
portion consists of converting all non-spatial data into spatial data. After conversion,
spatial data was used for geospatial mapping of various pollutants, viz. PM10 and PM2.5.
In the Data Analysis part, an error assessment of various interpolation techniques was
performed, and the best interpolation technique was chosen. Then, the Air Quality Index
was evaluated using the linear interpolation technique provided by the Environmental
Protection Agency (EPA) [20]. The other processed result was analyzed to determine the
variation in air pollution before and during the nationwide lockdown period. The period
was chosen so that the effect of rainfall is minimal. The image below shows the rainfall in
the pre- and during-lockdown period (Figures 2 and 3).
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Figure 2. Rainfall in the pre-lockdown period.
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Figure 3. Rainfall during the lockdown period.

It can be observed that during the pre-lockdown period, only one rainfall event took
place, on 14 March, 2020, measuring around 16 mm. During the lockdown period (23 March
2020, to 2 April, 2022), only two precipitation events occurred in the study area that too, on
the first two days of lockdown (i.e., on 23 and 24 March 2022), with an average precipitation
of a meager 3.74 mm as shown in Figures 2 and 3. This rules out any possibility of the
influence of rain on the washing of atmospheric PM before and during the lockdown
period. Using this study, we intended to show how the atmosphere gets influenced due
to anthropogenic activities in the capital of India, New Delhi, considered the second most
polluted city in the World. COVID-19, although it had its negative impacts on the human
systems, it did show that if the human influence on the environment is reduced, the
environment has an inbuilt mechanism to recover to its original state.

Wind can play a major role in concentrating the PM2.5 and PM10 in the atmosphere.
However, it must be noted that Delhi is completely surrounded by industries on all sides.
Under normal circumstances, winds act as the force for concentrating the PM in the Delhi
region. Since the industries were shut down during the lockdown period, the lockdown
provided the best opportunity to study their influence on the air quality index during the
no-work (lockdown) period. The particulate matter due to industries was also reduced
during the lockdown period. Therefore, this period was the best period for assessing the
role of anthropogenic activities on atmospheric particulate matter.
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2.2. Data Acquisition

The first step includes the processing of data. Data used in this study are from 37
CAQM stations (Table 1), air pollutants, and GIS data. The air pollution data consists of
two (2) pollutant components (PM2.5 and PM10) between 12 March, 2020, and 2 April, 2020.
The date range for the study was split into two sections. One is the average from 12 March,
2020, to 22 March, 2020 (before lockdown) and the other from 23 March, 2020, to 2 April,
2020. The GIS dataset includes the administrative boundary of Delhi districts and locations
of CAQM stations in the study area. The adopted methodology flow chart is shown in
Figure 4.
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Table 1. List of Continuous Air Quality Monitoring Stations (CAQM) stations maintained by the
Central Pollution Control Board (CPCB), Delhi Pollution Control Committee (DPCC), and India
Meteorological Department (IMD).

Sl. No. Station Name Sl. No. Station Name

1 Anand Vihar, Delhi-DPCC 20 NSIT Dwarka, New
Delhi-CPCB

2 Ashok Vihar, Delhi-DPCC 21 Najafgarh, Delhi-DPCC
3 Aya Nagar, New Delhi-IMD 22 Narela, Delhi-DPCC
4 Bawana, Delhi-DPCC 23 Nehru Nagar, Delhi-DPCC

5 Burari Crossing, New Delhi-IMD 24 North Campus, DU, New
Delhi-IMD

6 CRRI Mathura Road, New
Delhi-IMD 25 Okhla Phase-2, Delhi-DPCC

7 DTU, New Delhi-CPCB 26 Patparganj, Delhi-DPCC
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Table 1. Cont.

Sl. No. Station Name Sl. No. Station Name

8 Dr Karni Singh Shooting Range,
Delhi-DPCC 27 Punjabi Bagh, Delhi-DPCC

9 Dwarka-Sector 8, Delhi-DPCC 28 Pusa, Delhi-DPCC
10 East Arjun Nagar, Delhi-CPCB 29 Pusa, New Delhi-IMD

11 IGI Airport (T3), New Delhi-IMD 30 R K Puram, New
Delhi-DPCC

12 IHBAS, Dilshad Garden, New
Delhi-CPCB 31 Rohini, Delhi-DPCC

13 ITO, New Delhi-CPCB 32 Shadipur, New Delhi-CPCB
14 Jahangirpuri, Delhi-DPCC 33 Sirifort, New Delhi-CPCB

15 Jawaharlal Nehru Stadium,
Delhi-DPCC 34 Sonia Vihar, Delhi-DPCC

16 Lodhi Road, New Delhi-IMD 35 Sri Aurobindo Marg,
Delhi-DPCC

17 Major Dhyan Chand National
Stadium, Delhi-DPCC 36 Vivek Vihar, Delhi-DPCC

18 Mandir Marg, New Delhi-DPCC
37 Wazirpur, Delhi-DPCC

19 Mundaka, Delhi-DPCC

2.3. Data Processing

The GIS Spatial Database and Spatial Analysis Software can help track air pollutants’
effects. Air contamination maps may be used to calculate areas, which also help determine
the sensitivity locations involving different pollutants. The number of people impacted can
also be computed using air quality maps. Plans and decisions aided by air quality maps
can positively impact lowering pollution levels. This paper evaluates air pollution through
the Air Quality Index and maps over the study area. GIS provides a versatile toolkit to store
and locate, convert and display real-world spatial data for different purposes [21]. A GIS
cataloging and metadata management system could be used at every process stage to track
data manipulation [22]. Those involve input data update, data simplification, interpolation
methods, measurement methods, calculation parameters, and other considerations that
can impact the precision of the results. Therefore, in the research on the future effects of
air pollution, GIS is becoming more relevant. GIS allows the electronic representation of
air quality impacts and is an essential method for the outcomes study. Integrating GIS
with air pollution prediction models generates a quick and accurate environmental impact
assessment of air pollution. GIS Database Management System makes storing, collecting,
controlling, and managing noise data easier. Air pollution maps can be produced based
on the interpolation techniques available in GIS. A continuous spatial model of pollution
levels can be created within GIS. The GIS provides a convenient environment for publishing
pollution maps on the internet. The air pollution map can be integrated with other thematic
maps depending on their use.

2.4. Data Pre-Processing and Cross-Validation

The objective evaluation procedures were carried out using cross-validation techniques
to analyze the different interpolation methods’ precision, applicability, and efficacy. Cross-
validation is the traditional technique for testing the precision of the effects of interpolation.
Cross-validation is done by extracting information from the location, usually by one
measurement at a time, measuring the value with the remaining evidence at that location,
and then calculating the discrepancy between the true and the approximate value for each
location [23]. The cross-validation method has been done by choosing five stations out of
37 stations in Delhi. We evaluated the difference between the actual data and the expected
data of each interpolated process by measuring the mean error (ME) Equation (1) and the
Root Mean Squared Error (RMSE) Equation (2) by various interpolation techniques. The
ME tests the estimation, and the unbiased interpolation target should be near 0 [24,25]. The
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RMSE is a test of the accuracy of the different prediction methods. It is as low for unbiased
and reliable forecasts as possible. The ME and RMSE were determined using the following
equations [24–30].

ME =
1
n

n

∑
i=1

[Z(Pi)− z(ai)] (1)

RMSE =

√
1
n

n

∑
i=1

[Z(Pi)− z(ai)]
2 (2)

where Z(Pi) is the prediction value, and z(ai) is the actual value of validating point i, n =
the number of validation points, ME = mean prediction error, RMSE = root mean square
error, i = validating point, ai = the position of validating point “i”.

2.5. Data Estimation–Air Quality Index

Implementing ambient air quality standards is necessary to enhance a system to
effectively regulate ambient air quality and avoid the adverse effects of air pollution [31–
33]. Air Quality Index (AQI) may be calculated using pollutant concentration data and
linear interpolation, as shown below [34,35]. Table 2 displays the breakpoints (BP) relating
to each air quality parameter. The results corresponding to each CAQM station were then
mapped using the Inverse Distance Weight technique in the ArcGIS environment and were
further classified into different levels of AQI [36].

Table 2. Breakpoints (BP) for the AQI parameters.

Breakpoints (BP) Air Quality Index
(AQI)

Category
PM2.5 (µg/m3) PM10 (µg/m3)

0.0–15.4 0–54 0–50 Good
15.5–40.4 55–154 51–100 Moderate

40.5–65.4 155–254 101–150 Unhealthy for
sensitive groups

65.5–150.4 255–354 151–200 Unhealthy
150.5–250.4 355–424 201–300 Very unhealthy

>250.5 >425 301–400 Hazardous

3. Results and Discussion
3.1. Cross-Validation-Error Estimation

Equations (1) and (2) measured each interpolation layer’s ME and the RMSE. Four
interpolation methods (IDW, Kriging, NN, Spline) statistical parameters were calculated
using ArcGIS and provided in Table 3.

Table 3. Statistical overview of the air pollution model interpolation errors (with measured sample
values minus interpolated (µg /m3)).

IDW Kriging NN Spline

MIN 37.11 51.92 37.58 −17.20
MAX 82.37 71.66 82.21 120.80

RANGE 45.26 19.74 44.63 138.01
MEAN 62.57 60.67 62.04 60.30

STD 6.95 4.76 7.88 21.40
ME 2.18 2.25 3.63 9.85

RMSE 5.62 6.05 5.70 24.40
GOODNESS

RANK OF ME I II III IV

GOODNESS
RANK OF RMSE I III II IV
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The goodness rating is reserved separately for ME and RMSE. The mathematical
parameter suggests the lowest error in the ME of IDW with 2.18. This indicates that IDW
is less partial than the other interpolators [37]. Although IDW displayed a lower RMSE
when comparing RMSE values, specific IDW is better than other interpolators. IDW shows
a low ME since uncertain position estimation is based on spatial autocorrelation, and the
rate of air quality in known areas is anisotropic. IDW demonstrates lower RMSE than other
interpolation strategies, as the reference points are still in the same place in IDW modeling
as the nodes or edges. This means that IDW preserves all the consistency of the input data
when also modeling the values between known points [38]. IDW techniques were therefore
used in this paper.

3.2. Data Interpolation and Mapping-Particulate Matter Concentration

The concentrations of air pollutants obtained at the CAQM stations (Table 1) have been
measured, and their spatial distribution is mapped out. Figure 5 shows the distribution of
PM2.5, and Figure 6 indicates the concentration of Particulate Matter 10 (PM10).
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Figure 5. Distribution of PM2.5 concentrations before and during the lockdown. The same classes
have been provided with the same colour scheme for easy visualization of assessing the changes in
the PM2.5 before and during the lockdown. It must be noted that pre-lockdown period PM2.5 ranges
from 36.27 to 95.06 µg/m3. In contrast, during the lockdown, it went down and ranged from 28.70 to
72.09 µg/m3.
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Figure 6. Distribution of PM10 pollutants before (12–22 March 2020) and during the lockdown (23
March–2 April 2020). It must be noted that only one class overlapped between the two periods of
analysis, i.e., 101.28–122.49. This class has been provided the same color scheme in pre-lockdown
period and during lockdown period maps. It must be noted that pre-lockdown period PM10 ranged
from 101.28 to 233.69 µg/m3. In contrast, during lockdown, it went down and ranged from 49.37 to
122.49 µg/m3.

The levels of the concentrations are differentiated using color palettes (green is low
concentration, and red is high concentration). In the distribution of PM2.5 pollutants map,
it is found that before the lockdown period, the maximum level of the concentrations of
PM2.5 was 95.06 µg/m3, and the minimum was 36.27 µg/m3, and during the lockdown, it
reduced to the maximum value of 72.09 µg/m3 and minimum value of 28.70 µg/m3. It is
also found that the North and North-West district of the Delhi region has the maximum
concentration just before the lockdown period. Subsequent high concentrations were
recorded in Delhi’s West and Southwest districts, and the places near the South and New
Delhi districts have recorded low concentrations. During the lockdown period due to
SARS-CoV-2, the concentration of PM2.5 was reduced in all districts.

The same trend was observed in the case of PM10. Before the lockdown period, the
concentration of PM10 had a maximum value of 233.69 µg/m3 and a minimum value of
101.28 µg/m3. During the lockdown, it showed the same trend as PM2.5 and reduced in
all Delhi districts. The concentration of PM10 level reduced to almost half of what it was
before the lockdown period. Figures 5 and 6 clearly show the change in the concentration
level of PM2.5 and PM10, respectively.

3.3. Data Interpolation and Mapping-Air Quality Index

The Air Quality Index (AQI) was estimated and displayed on the map for the measured
PM 2.5 concentrations (Figure 7). In the AQI map, it is found that the AQI was classified
into two groups before the lockdown period. One is an unhealthy level, and the other
is unhealthy for sensitive groups of people. However, during the lockdown period, due
to SARS-CoV-2 it changed, and the AQI levels fell into unhealthy for sensitive groups of
people and moderate, respectively.
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The district, namely Northwest, North, and Southwest, changed from unhealthy to
unhealthy for sensitive groups due to the SARS-CoV-2 lockdown. The remaining districts
changed from unhealthy for sensitive groups to moderate levels.

Figure 8 shows the values of AQI estimated for each CAQM station before and during
the lockdown period. During the lockdown, the station IHBAS, Dilshad Garden, Delhi–
CPCB, showed the maximum reduction in the AQI, i.e., from 156 to 60 (62%), and the
station ITO, Delhi–CPCB, showed the minimum decrease, from 160 to 148 (8%). However,
for the Pusa, Delhi–IMD, the AQI level increased from 102 to 155 (52%).
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Figure 8. Comparison plot of AQI for PM2.5 between the pre- and during-lockdown periods.

On comparing the districts-wise AQI for PM2.5 (Table 4), it was found that the maxi-
mum reduction of mean AQI was in the case of Shahdara district, i.e., from 154 to 83 (46%).
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The minimum reduction of mean AQI was found in the West district, i.e., from 147 to 102
(28%). Also, before the lockdown period, the mean AQI was highest in the North district
(161) and lowest in the South and New Delhi districts (139). However, during the lockdown
period, AQI reduced, and the same trend of maximum and minimum mean AQI levels is
observed, i.e., highest for the North district (112) and lowest for the South (82), New Delhi
(83), and Southeast (84) districts. Overall, the mean value of AQI for PM2.5 showed a net
reduction of 37%.

Table 4. District-wise comparison of AQI for PM2.5.

S No. District
Name

12–22 March 2020 23 March–2 April 2020

Min Max Mean Min Max Mean

1 North 151 170 161 95 125 112
2 North East 151 156 154 74 99 89
3 West 102 169 147 71 155 102
4 East 137 157 146 75 129 90
5 South West 138 162 154 87 120 108
6 Central 125 160 150 73 148 99
7 New Delhi 103 161 139 68 153 88
8 South 127 156 139 72 93 82
9 Shahdara 150 158 154 60 104 83
10 South East 123 154 144 74 93 84
11 North West 128 169 158 73 120 109

The air quality index (AQI) for the recorded PM10 concentrations was calculated and
depicted on the map shown in Figure 9. The AQI map shows that the AQI falls into two
categories before the lockdown period: one is unhealthy for sensitive groups, and the
other moderate. During the lockdown period, however, most of the AQI levels changed to
moderate levels and some to, good levels.
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Figure 10 represents the AQI for PM 10 before and during the lockdown; it is evident
from the graph that the AQI level was reduced by almost 50% in almost all of the stations.
The Dwarka-Sector 8, Delhi PCC station, showed a maximum reduction from 145 to 66
(55%), and the station ITO, New Delhi–CPCB, showed a minimum reduction, i.e., from 88
to 62 (30%).
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On comparing the district-wise AQI for PM 10 (Table 5), it was found that the maxi-
mum reduction of mean AQI was in the case of the Northwest district, i.e., from 121 to 64
(47%). The minimum reduction of mean AQI was found in the West district, i.e., from 101
to 57 (43%). As well, before the lockdown period, the mean AQI was highest in the North
district (122) and lowest in the South district (97). During the lockdown period, however,
AQI reduced, and the same trend of maximum and minimum mean AQI levels is observed,
i.e., the highest for the North district (68) and the lowest for the South district (53). Overall,
the mean value of AQI for PM10 showed a net reduction of 46%.

Table 5. District-wise comparison of AQI for PM10.

S No. District
Name

12–22 March 2020 23rd March–02nd April 2020

Min Max Mean Min Max Mean

1 North 102 134 122 59 76 68
2 North East 99 114 104 55 63 58
3 West 89 136 114 52 64 59
4 East 89 128 101 55 62 57
5 South West 101 144 113 54 65 59
6 Central 86 124 102 47 68 58
7 New Delhi 84 145 101 46 66 54
8 South 75 133 97 42 61 53
9 Shahdara 95 131 107 57 63 60
10 South East 84 121 101 52 58 56
11 North West 97 137 121 55 69 64

As a result of COVID-19, normal life on Earth has been disrupted in ways that have
not been seen in the last one hundred years [39,40]. Workers and the impoverished are hit
worst by COVID-19′s restrictions, which have led to the global shutdown of all commercial
and industrial units [41]. While a reduction in air pollution is desirable, it is not acceptable
if this comes at the expense of food insecurity [42]. Multiple large, populated cities in
northern India appear to have seen significant improvements due to the lockdown [43–46].
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Over the past two decades, the phenomena underpinning global warming, climate change,
and pollution in the Earth’s atmosphere have become central issues of scientific inquiry [47].
Air pollutants such as ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), par-
ticulate matter (PM) in various size fractions (PM0.1 m, PM2.5 m, and PM10 m), volatile
organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) have had a
significant impact on ecology, environment, and human health [48–51]. Toxic nitrogen
oxide (NOx) emissions in both developing (India, China, etc.) and western industrialized
countries were drastically reduced due to COVID-19 limitations on diesel, gasoline, and
other petroleum fuel combustion [47–49]. Multiple studies have been done to learn how
long-term lockdowns affect local and worldwide air quality [52–63]. The air quality greatly
improved, according to these studies, once factories and cars stopped running. Despite the
lockdowns, environmental and human health are again negatively impacted by particulate
matter and pollutant gases (NOx/SOx/CO) in the post-COVID era [64,65]. Aerosols have
been found to affect the radiation budget, human health, and even the strength of monsoons
in a number of studies [66,67]. Increasing cardiovascular mortality is a known effect of
chronic exposure to particulate matter, NOx, and ozone [68,69]. Particulate matter (PM2.5
and PM10) emissions are the greatest in India, followed by NO2, SO2 and CO, according to
the national ambient air quality monitoring programme [70].

The study has demonstrated how, due to the lockdown, after years of poor air quality,
certain Delhi neighborhoods were able to breathe easier. The findings also suggest that
emergency lockdown tactics could be an option to deal with extreme air pollution if they
are executed in a way that does not negatively impact the economy and poorer classes
of society [71–76]. Based on this, there is a need to identify nature’s cyclic healing rate
against anthropogenic activities. The government should focus on formulating specific
policies to curb air pollution in Delhi. Some short-term policies like intermittent banning of
certain anthropogenic activities (construction, mining, and burning of farm waste) based
upon cyclic AQI patterns, medium-term policies such as preventing open incinerations,
smog tower installations, and long-term policies such as vehicle emission norms, industrial
operational timings, and public awareness campaigns.

4. Conclusions

While the whole nation was terrified by the outbreak of the SARS-CoV-2 pandemic,
nature, on the other hand, was healing temporarily. This paper helped to explore the
linkage between the air quality and nationwide lockdown due to SARS-CoV-2 for the city
of Delhi using GIS technology. Data from almost 37 CAQM stations were observed before
and during the lockdown period. The city’s Air Quality Index was reduced by nearly 37%
and 46% concerning PM2.5 and PM10, respectively, due to the lockdown. Air pollution
reduction could be mainly due to the decline in economic activities, related emissions, and
vehicular emissions. The methodology employed in GIS technology helped to monitor the
Air Quality Index changes efficiently. Furthermore, geo-visualization using GIS proved a
better method for monitoring air pollution. However, the weather parameters such as wind
speed, temperature, and altitude, which affect pollution dispersion, must be studied for
high precision. Finally, it is possible to conclude that when human activities are abruptly
ceased, the natural pace of healing exceeds the caused disruptions, resulting in a lower
AQI, proving that this pandemic has given a small window for the environment to breathe
and helped the districts of Delhi to recover from serious air quality situations. Also, the
results show that such lockdown strategies, if implemented so that the economy and lower
segments of society are not affected, could be a possible emergency measure to combat
severe air pollution.
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