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Abstract: Ecosystem water use efficiency (eWUE) is a useful metric to examine the interactions
between water and carbon cycles in ecosystems. To reveal the response and adaptation characteristics
of different vegetation types within the context of global warming on a regional scale, the spatiotem-
poral characteristics and influencing factors of the seasonal eWUE of various vegetation types in
Inner Mongolia from 2001 to 2020 were explored. Based on MODIS gross primary productivity (GPP),
evapotranspiration (ET) data and meteorological data, in this study, we estimated eWUE in different
seasons in Inner Mongolia and used trend analysis and correlation analysis methods to analyze the
relationship between eWUE in spring, summer and autumn and the temperature–precipitation. From
2001 to 2020, in this region, the GPP and ET in spring, summer and autumn showed increasing
trends. In addition, the growth rates of GPP and ET in spring and summer were higher than those in
autumn. Under the combined effect of GPP and ET, eWUE in different seasons showed a significant
decreasing trend (p < 0.05)—this is ascribed to the extent of ET increasing more than GPP, especially
in summer, with the most obvious decreasing rate. In terms of spatial trend, in spring and summer,
there is a decreasing trend from northeast to southwest. The effects of precipitation and temperature
on the eWUE in Inner Mongolia were mainly negatively correlated in the northeastern part of Inner
Mongolia with higher altitudes during the spring and autumn seasons. In total, 95.096% of the total
area had positive correlations between eWUE and temperature in spring. In summer, the region in
which the WUE of the vegetation had an inverse relationship with both the temperature and the
amount of precipitation was the largest compared to these regions in spring and autumn.

Keywords: water use efficiency; hydro-thermal factors; temperature; precipitation; season

1. Introduction

Global climate change is significantly affecting land-based ecosystem productivity
and water use distribution patterns. Climate warming may promote plant growth in
heat-limited high-latitude and high-altitude regions. However, in many water-limited
regions, temperature increases may lead to increased drought, the deceleration of plant
growth and increased ecosystem disturbance, resulting in reduced terrestrial carbon uptake
capacity [1,2]. To evaluate ecosystems’ vulnerability to climate change, scientists employ
indicators such as ecosystem water use efficiency (eWUE), which is a crucial aspect of
research related to carbon–water cycle coupling [3]. The quantification of the temporal and
spatial changes in the water use efficiency of ecosystems in response to climate change is
highly significant in light of the increasing visibility of environmental problems caused
by global change, and it provides a basis for humans to exercise control over scarce water
resources to obtain the greatest yield and economic benefits [4].

The first studies regarding water use efficiency were mainly experimental observations,
and most of them took measurements directly in the field [5]. Later, with the development
of observation technology, eddy correlation technology was gradually applied to the simu-
lation of water–carbon cycles and to determine the productivity and water use efficiency of
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different types of ecosystems [6–8]. In regional ecosystems, to estimate water usage effi-
ciency, extensive use has been made of remote sensing technology due to its robust capacity
to acquire surface information and high temporal resolution [9,10], and breakthroughs have
been made in the study of water use efficiency at the ecosystem level [11]. In recent years,
researchers from both China and elsewhere have used ecosystem process models to assess
the efficacy of water usage at various spatial and temporal scales in China’s terrestrial
ecosystems. Research regarding the former has suggested that drought has different effects
on water use efficiency in different regions [12]. Research regarding the latter has revealed
the zonal law of WUE with increasing latitude [13]. In addition, variations in eWUE are
directly tied to the conditions of the climate, such as temperature [14], precipitation [15],
solar radiation [16] and saturated water vapor pressure difference [17]. However, the
effects of these factors on eWUE are significantly different in different regions and among
different vegetation types. Studies have found that eWUE has a positive correlation with
temperature in areas with high latitudes [18], but it has a negative correlation in relatively
diffuse South America, Southeast Asia and other regions [19]. An increase in precipitation
can reduce the eWUE in forests in eastern China [20]. However, it can promote eWUE in
the temperate grasslands of Inner Mongolia [21]. It can be seen that the response of eWUE
to global change is very complex; therefore, it is necessary to strengthen our understand-
ing of the spatiotemporal patterns of eWUE in different regions and its relationship with
climate factors.

As the global water resource crisis worsens, water usage efficiency, a comprehensive
physiological and ecological gauge of plant growth appropriateness, has become a hot topic
in arid and semi-arid zone research [22]. Inner Mongolia is distinguished by its extreme
climate, water and geographical diversity. Even though it serves as a vital ecological security
barrier in China’s northern regions, the region’s ecosystem is highly vulnerable and delicate.
The scarcity of water is a major contributor to environmental degradation and a barrier
to economic growth in developing regions. Most of Inner Mongolia is becoming warmer
and more humid because of global climate change [23]. In order to utilize limited water
resources reasonably and efficiently, a more comprehensive and in-depth understanding
of the water use efficiency characteristics of different vegetation ecosystems is necessary,
and the water use efficiency of ecosystems should be understood and improved. However,
current research has mostly focused on the interannual fluctuation of eWUE, rather than
interannual variations in seasonal eWUE, which restricts our knowledge regarding the
fundamental mechanism of eWUE to climate response. In addition, related studies have
shown that in spring and winter, the warming rate is higher [24], and seasonal changes in
precipitation also occur [25]. We still need to determine whether these seasonal changes
have an effect on seasonal eWUE. As discussed above, this study aims: (1) To investigate
the temporal and spatial trends of GPP, ET and eWUE in different seasons; (2) To analyze
the relationship between soil temperature utilization efficiency and precipitation and
temperature in different seasons; (3) To quantitatively evaluate the effects of vegetation
types on eWUE, precipitation and temperature in different seasons. This will help us
to learn more about the relationship between plants and climate change and protect the
ecological environment in Inner Mongolia’s steppe region.

2. Study Area and Methods
2.1. Study Area

The Inner Mongolia steppe (97◦12′–126◦04′ E, 37◦34′–53◦23′ N) is a vital piece of the
Eurasian steppe. It is mostly located to the west of the Great Hinggan Mountains, to the
north of the Yinshan and Helan Mountains, in the Inner Mongolia Plateau and in the hills
and mountains in the border zone, as well as in the Ordos High Plain, which has a clear
temperate continental climate. The average temperature of 0~8 ◦C increases from east to
west. Precipitation is 50~450 mm, decreasing from east to west [26]. In this way, the climate
changes from humid to semi-humid to dry as one moves from east to west. Controlled by
the main comprehensive factors of hydrothermal conditions, the horizontal zonation of
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vegetation types in Inner Mongolia is obvious, with coniferous forest, broadleaved forest,
grassland and desert being located from east to west (Figure 1b).
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Figure 1. The geographical distribution of the study area. (a) Digital elevation model, (b) vegetation
types.

2.2. Data Sources
2.2.1. Remote Sensing Data

The MODIS data were derived from the GPP (MOD17A2, NASA, Washington, D.C.,
USA) and ET (MOD16A2, NASA, Washington, D.C., USA) terrestrial grade 4 products.
The GPP product is calculated based on the photosynthetically active radiation utilization
efficiency model, and the ET product is calculated using the improved MOD16 algorithm.
The accuracy of these data has been compared and verified with flux site data in many regions
worldwide, and these data have been widely used in global and regional studies [27–29].

2.2.2. Meteorological Data

The monthly average temperature and precipitation data from 43 meteorological sta-
tions in the research region from 2001 to 2020 were taken from the China Meteorological
Data Network (http://data.cma.cn, accessed on 1 June 2022) (Figure 1a). Long-term meteo-
rological raster data of the research region were tailored using ANUSPLIN interpolation
software, using elevation as a covariate. The spatial distribution maps of precipitation and
temperature in different seasons were obtained (Figure 2).

2.2.3. Vegetation Type Data

The international geo-biosphere program (IGBP) classification method is used to
classify plant type data in the MCD12Q1(NASA, USA) data package, which has a 500 m
spatial resolution. In order to reduce the classification error and the possible impact of
land cover changes, in this paper, we only retained the pixels in which the land cover
types remained unchanged from 2001 to 2020. The main vegetation types were as follows:
Deciduous Needleleaf Forests (0.66%), Deciduous Broadleaf Forests (1.30%), Mixed Forests
(0.26%), Woody Savannas (6.08%), Savannas (1.34%), Grasslands (49.99%), Croplands
(4.65%), Other (25.43%), Change (10.25%).

http://data.cma.cn
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2.2.4. Other Data and Processing

The preprocessing of each remote sensing datum mainly includes image stitching,
projection, extraction, resampling and masking processes. First, in order to ensure the
minimum area deformation of each datum, in this study, we projected all the remote
sensing data into the WGS84 geographic coordinate system and the Albers equal-area
conic projection spatial coordinate system, and we resampled the data to 1 km × 1 km to
ensure that all the remote sensing data could be efficiently matched spatially. All of the data
preprocessing was carried out on ArcGIS (ESRI, Redlands, CA, USA) and ENVI (Exelis VIS,
Boulder, CO, USA).

2.3. Methodology

The data processing process is shown in Figure 3. According to the figure from left to
right, the MODIS data were preprocessed first to extract ET and GPP data. Then, eWUE was
calculated according to GPP and ET data, and the temperature and precipitation climatic
factors were interpolated according to the original climate data of weather stations. Sec-
ondly, the spatial distribution and trend of eWUE were calculated by the linear regression
method. Then, correlation analysis was used to analyze the relationship between rainfall,
temperature and eWUE. The effects of vegetation types on the correlation between rainfall,
temperature and eWUE were quantified.
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2.3.1. eWUE

In this paper, WUE refers to the amount of dry matter produced by the loss of plant
canopy and soil moisture per unit mass [30]. The calculation formula is

eWUE = GPP/ET (1)

where eWUE is the water use efficiency (g C·kg−1 H2O), GPP is the total primary produc-
tivity of the ecosystem (g C m−2) and ET is the ecosystem evapotranspiration (mm).

2.3.2. Trend Analysis

The univariate linear regression trend analysis method was used to simulate the
temporal and spatial trends of eWUE and climate factors from 2001 to 2020 at the pixel scale,
that is, with the season as the independent variable and the eWUE and climate factors of
each pixel as the dependent variables to conduct a univariate linear regression analysis [31].
The calculation formula is

slope =

(
n

n

∑
i=1

i× yi −
n

∑
i=1

i
n

∑
i=1

yi

)
/

n
n

∑
i=1

i2 −
(

n

∑
i=1

i

)2
 (2)

where slope represents the slope of the variable regression equation; n represents the
annual span; i represents the year; and yi represents the seasonal eWUE, temperature and
precipitation data of the ith year.

2.3.3. Correlation Analysis between eWUE and Climatic Factors

From 2001 to 2020, seasonal eWUE data and climatic parameters in the research
region were correlated on a pixel-by-pixel basis, and the geographical distribution of the
correlation coefficient was derived to show the degree of connection between the seasonal
eWUE and climatic factors [32]. The partial correlation coefficient was further obtained by
using the simple correlation coefficient, the partial correlation result was used to control
one of the variables and the correlation of the other two factors was discussed. The method
used to calculate the correlation coefficient r is

rxy =

n
∑

i=1
(xi − x)

(
eWUEi − eWUE

)
√

n
∑

i=1
(xi − x)2

√
n
∑
i

(
eWUEi − eWUE

)2
(3)
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where n represents the length of time; x represents the meteorological element; eWUE
represents the average value of eWUE in each season.

The formula used to calculate the partial correlation coefficient is

rxy,z =
rxy − rxz × ryz√(

1− rxy2
)(

1− ryz2
) (4)

where rxy,z represents the partial correlation coefficients of the x and y variables after the
fixed variable z; rxy, rxz, and ryz are the correlation coefficients between the respective
variables; the value range of the partial correlation coefficient is between −1 and 1.

3. Results
3.1. Temporal Trends in Different Seasons

From 2001 to 2020, the GPP in this region increased at a rate of 0.244% per year,
0.066% per year and 0.041% per year, respectively. The rise in spring was statistically
significant (p < 0.05). There was a statistically significant upward trend in spring, summer
and autumn ET (p < 0.05), with yearly rates of 1.252, 2.746 and 0.824. Spring and summer
displayed faster rates of increase in terms of GPP and ET than autumn did (Figure 4). Under
the combined effect of GPP and ET, the average seasonal eWUE in Inner Mongolia was
0.930 g C·kg−1 H2O, 2.035 g C·kg−1 H2O and 0.828 g C·kg−1 H2O, respectively, and the
eWUE in different seasons showed a significant decreasing trend (p < 0.05), especially in
summer, in which the change in the decreasing rate was the most obvious (−0.045). In
Inner Mongolia, the summertime evapotranspiration rate was much higher than the GPP
rate because the seasonal growth rate in terms of evapotranspiration was higher. This
means that when the amount of rainfall increased, eWUE would drop.
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Figure 4. Seasonal temporal variation characteristics of gross primary productivity (GPP), evapotran-
spiration (ET) and eWUE in Inner Mongolia. (a–c) GPP for spring, summer and autumn, (d–f) ET for
spring, summer and autumn, (g–i) eWUE for spring, summer and autumn.
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3.2. Spatial Trends in Different Seasons
3.2.1. Spatial Distribution Characteristics of ET and GPP

There was a consistent seasonal southward trend in GPP and ET from the northeast to
the southwest (Figure 5a–f). It is clear that the high values of GPP and ET were concentrated
in the northeastern region of the research area. Summer displayed greater maximum values
of GPP and ET (5.634–699.50 g C m−2 d−1, 5.946–494.999 mm) than spring and fall. The
southern part of the research area was characterized by low GPP and ET values because of
the region’s lower mean annual temperature and lower mean annual precipitation values.
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3.2.2. Characteristics of the Distribution, as Well as the General Trend of Change, of the
Yearly Mean Value of eWUE

There were obvious spatial differences in eWUE in different seasons in Inner Mongolia,
and the variation ranges were 0.130–4.012 g C·kg−1 H2O, 0.416–4.147 g C·kg−1 H2O and
0.083–2.531 g C·kg−1 H2O, respectively. The spatial distribution pattern of eWUE in spring,
summer and autumn was high in the northeast and low in the southwest (Figure 6a–c),
and the high-value areas were mainly concentrated in the middle and small undulating
mountainous areas in the northeast and the Hetao Plain in the west. The low-value areas
were located in the plain crops and grasslands in the central and northern regions and the
mountain forest regions in the northeast.

While there was an overall decreasing tendency in eWUE across Inner Mongolia’s
four distinct seasons, there was also evidence of an upward trend in specific regions.
Eighteen percent (18.36%) of the areas exhibited an increasing trend, and twenty-nine
percent (29.31%) showed a declining trend in the spring. It can be shown in Figure 6d
that the general geographical difference in eWUE in Inner Mongolia in spring was not
statistically significant, with the rising areas scattered in sections of the northeastern part of
the research area. Mainly in the study’s central and southern regions, summer temperatures
rose in 28.24% of the areas, fell in 69.36% of the areas and remained stable in 78.65% of the
areas, with all of the changes being statistically significant at the p < 0.05 level (Figure 6e).
In total, 66% of the regions, mostly in the central and southwestern sections of the research
area and some parts of the northeastern region, passed the significance (p < 0.05) test in the
fall, with 33.64% and 42.18% of the regions showing an increasing trend and a downward
trend, respectively (Figure 6f).
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Figure 6. Characteristics of the distribution, as well as the general trend of change, of the yearly mean
value of eWUE. (a–c) Average eWUE for spring, summer and autumn; (d–f) spring, summer and
autumn eWUE trends; (g–i) spring, summer and autumn eWUE significance.

The results showed that, in DNF and GRA, the mean eWUE in spring and summer
was significantly higher than that in autumn. In CRO, DBF, MF, SA and WSA, the mean
eWUE in summer was significantly higher than that in spring and autumn (Figure 7).
In spring and summer, the average eWUEs of DNF were the highest—2.163 g C·kg−1

H2O and 2.165 g C·kg−1 H2O, respectively—which were significantly higher than those of
DBF and MF forest types (p < 0.05); the average eWUE of SA was the lowest, being only
1.676 g C·kg−1 H2O, which was significantly lower than other vegetation types (p < 0.05).
However, in autumn, the average eWUE of GRA was the smallest, which was 0.739 g C·kg−1

H2O. In summer, the eWUE size order of each vegetation type was DNF (2.165 g C·kg−1

H2O) > GRA (2.101 g C·kg−1 H2O) > MF (2.045 g C·kg−1 H2O) > WSA (2.031 g C·kg−1

H2O)> DBF (1.744 g C·kg−1 H2O) > CRO (1.715 g C·kg−1 H2O) > SA (1.676 g C·kg−1 H2O).
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3.3. Results of Correlation Analysis between eWUE and Hydrothermal Factors

Temperature and precipitation are the main climatic parameters that impact vegetation
growth. Figure 6 shows that the correlation coefficient between eWUE and precipitation in
Inner Mongolia in spring was −0.876 to 0.623; 88.169% of regional WUE and precipitation
was negatively connected, especially in the southwest and southeast of the research area,
and 11.831% was positively correlated. It was positively associated, dispersed in the
center of the research region (Figure 8a), and the significance test area accounted for 16.2%
(p < 0.05), mostly near the Wushen Banner in the southwest (Figure 9a). The correlation
coefficients between eWUE and summer precipitation in Inner Mongolia varied from
−0.915 to 0.771, with 89.104% of the region negatively linked with precipitation, mostly
in the center and southwest, and 10.896% favorably connected, mostly in the northeast
(Figure 8b). A total of 56.6% (p < 0.05) of the research region passed the significance test,
mostly in the center and southwest (Figure 9b). The correlation coefficient between eWUE
and precipitation in autumn in Inner Mongolia ranged from −0.887 to 0.775, and 88.828%
of the regional eWUE was negatively correlated with precipitation, mainly distributed
around the Wushen Banner in the northeast and southwest of the study area; 11.172% of
the regional eWUE was positively correlated with precipitation, distributed in the central
part of the study and near the Hetao irrigation area (Figure 8c), and the area that passed
the significance test accounted for 20.3% (p < 0.05), mainly in the northeastern part of the
study area (Figure 9c).

In spring in Inner Mongolia, the correlation coefficient between eWUE and temper-
ature ranged from −0.668 to 0.920. In 4.904% of the area, eWUE and temperature had
a negative correlation, mostly in the central and western parts of the study area, espe-
cially in the Hetao Plain. In 95.096% of the area, eWUE and temperature had a positive
correlation. A total of 52.7% (p < 0.05) of the area that passed the significance test was in
the agro-pastoral cross belt near Chifeng and the northeast of the study area (Figure 8d).
Most of this area was in the northeast of the study area (Figure 9d). In summer in Inner
Mongolia, the correlation between eWUE and temperature ranged from −0.834 to 0.724.
A total of 64.105% of the area was negatively correlated with temperature, mostly around
Chifeng and Tongliao; 35.895% of the area was positively correlated with temperature,
mostly around Hulun Lake and Near Erenhot (Figure 8e). In total, 10.5% of the area passed
the significance test (p < 0.05), mostly around Tongliao and Chifeng (Figure 9e). eWUE
correlated with Inner Mongolian autumn temperature from −0.793 to 0.842. Temperature
was inversely linked with soil usage efficiency in 18.231% of the region, mostly in the
southwest and northeast. eWUE was positively linked with temperature in 81.769% of
the locations, dispersed in the central grassland region of Inner Mongolia (Figure 8f), and
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22.6% passed the significance test (p < 0.05), mostly at the intersection of the middle and
east of the research area (Figure 9f).
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The correlation analysis results of the seasonal eWUE for different vegetation types
and precipitation showed (Figure 10a) that, except for DBF and SA in summer, the eWUEs
of vegetation types in other seasons were negatively correlated with precipitation. Except
for grassland, the eWUE in summer was greater than that in spring and autumn among
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other vegetation types, and the correlation between eWUE and precipitation in summer
grassland was the lowest.
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The correlation analysis results regarding the seasonal eWUE and temperature of
different vegetation types showed (Figure 10b) that, among different vegetation types, the
correlation between eWUE and temperature in spring was greater than that in autumn and
summer. In spring, the eWUEs of different vegetation types were all positively correlated
with temperature, among which, the eWUE of GRA had the largest correlation with
temperature, and the eWUE of DNF had the smallest correlation with temperature. In
summer, except for GRA and WSA, the eWUEs of other vegetation types were negatively
correlated with temperature, among which, the eWUE of GRA had the largest correlation
with temperature, and the eWUE of DBF had the smallest correlation with temperature. In
autumn, except for DNF and WSA, the eWUEs of other vegetation types were positively
correlated with temperature, among which, the eWUE of CRO had the largest correlation
with temperature, and the eWUE of DNF had the smallest correlation with temperature.



Atmosphere 2022, 13, 2085 12 of 17

4. Discussion
4.1. Seasonal Variation Characteristics of eWUE

The findings of this research indicate that there are discernible distinctions to be found
in the patterns of the geographical distribution of eWUE between seasons. It is possible
that this is due to the fact that various types of flora make use of water in different ways
at different times of the year. For instance, the distribution ranges of DNF and GRA both
exhibited increased WUE during the spring, but CRO and SA both showed lower WUE
over the same time period. In the summer, the distribution ranges of CRO and SA showed
lower WUE, whereas the distribution ranges of GRA and DBF showed greater WUE. This
indicates that in the summer, when there is considerable evaporation, grassland with poor
carbon fixation is more likely to be found. Instead, it may adjust to its surroundings by
modifying its tactics for water usage and become more efficient in its water use. Conversely,
MF with higher carbon fixation was less efficient in water use. In autumn, the distribution
range of DNF showed higher WUE, while GRA showed lower WUE. The vegetation
eWUE of DNF in different seasons in the study area was higher than that of DBF, which
was inconsistent with the conclusions drawn by other researchers [33]. This may have
been caused by different vegetation site conditions caused by differences in soil, climate,
hydrology and other environmental factors [34]. Compared with coniferous forests, DBF
has a stronger canopy interception capacity, which makes its evapotranspiration higher, so
the eWUE of DBF is lower [35]. In addition, the eWUE of DBF is also slightly lower than
that of GRA, which is mainly due to the low stomatal conductance of forest vegetation,
and thus, the low photosynthetic rate [36]. At the same time, forests in Inner Mongolia are
mainly distributed in high-altitude areas where the annual average temperature is lower
than zero, and a low-temperature environment is not conducive to the photosynthesis
of vegetation. In addition, typical shrubs (sea buckthorn, caragana, etc.) have small
leaves and low chlorophyll content, so the remote sensing signal cannot truly reflect the
vegetation coverage of low shrubs, and GPP remote sensing products have a certain degree
of underestimation [37,38]. This is also one of the reasons for the lower eWUE of shrubs.
The differences in eWUE caused by natural vegetation types in different seasons may
be related to the heterogeneity of the vegetation community structure in the ecosystem,
the water use strategies of different vegetation types and the limitations of geobotanical
factors [39–41].

In terms of trend, eWUE in different seasons in Inner Mongolia generally showed a
downward trend, but eWUE in some areas showed an increasing trend, and the downward
trend in summer was significantly higher than that in spring and autumn, indicating that
there were differences in vegetation water use strategies and capacities in different growth
stages. The eWUE showed a reverse trend in the eastern and western regions, indicating
that the western arid region will greatly promote the increase in surface evapotranspiration
under the condition of more precipitation in summer, which will lead to the decline in
eWUE, while the eastern region will be affected by increased precipitation. The favorable
climatic conditions of increasing temperature increased the photosynthesis of vegetation,
and the increase in GPP was greater than that in ET, thus, effectively promoting the
significant increase in eWUE.

4.2. Temporal and Spatial Dynamics of Seasonal eWUE in Response to Hydrothermal Conditions

CO2 concentration, leaf area index, air temperature, precipitation, soil moisture, etc.,
will all have an impact on regional eWUE [42–44]. The areas with negative correlations
between eWUE and precipitation in spring and autumn in Inner Mongolia were mainly
concentrated in the middle and high mountains (Figure 8). This was because the vegetation
in the middle and high mountains grows poorly due to the low temperature caused by its
high altitude, the vegetation water demand is limited and the precipitation increases. This
has little significance in terms of vegetation growth but will increase the evaporation of the
site [45]. Therefore, water use efficiency was negatively correlated with precipitation in this
region. However, in these areas, eWUE in Inner Mongolia was positively correlated with
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precipitation in summer, mainly because most of these areas had higher altitudes and lower
evapotranspiration rates, while the higher the altitude in eastern Inner Mongolia, the better
the vegetation growth [46]. That is to say, the greater the potential of vegetation to sequester
carbon, the more the eWUE of vegetation will increase when the temperature satisfies the
requirements for the development of vegetation, which coincides with an increase in
the amount of precipitation. [47–50]. The performance of eWUE varies in regions with
different precipitation levels. In China, areas with annual precipitation levels less than
627 mm showed significant positive correlations (R2 = 0.9, p < 0.01), and areas with annual
precipitation levels greater than 627 mm showed significant negative correlations [51].
When the annual precipitation level was less than 2352 mm, eWUE would increase with the
increase in precipitation. However, when the annual precipitation was more than 4450 mm,
the effective water use efficiency would decrease with the increase in precipitation [52]. In
Europe, the WUE of Quercus suber with a precipitation gradient of 491~1299 mm decreased
with increasing precipitation [53].

In areas which experience less precipitation, the increase in precipitation would pro-
mote plant photosynthesis, resulting in a substantial increase in GPP, while the increase
in ET would be small, resulting in an increase in WUE in areas which experience less
precipitation. Meanwhile, for areas which experience more precipitation, the same increase
would be observed. Precipitation contributed less to GPP but greatly increased the amount
of water available for evaporation, resulting in lower eWUE in the region [54]. Excessive
precipitation would gradually decrease the eWUE [55].

In the study area, the response of water use efficiency of ecosystems to air temperature
in different seasons was different. In spring, the areas with positive correlations between
eWUE and temperature were mainly distributed in the northeastern part of the study
area. More dry matter mass was present, thereby improving vegetation eWUE [56]. In
summer, the areas with positive correlations between eWUE and temperature were mainly
distributed near Hulun Lake and Erenhot, and the areas with negative correlations were
mainly distributed in the agro-pastoral cross belt near Tongliao and Chifeng and the Hetao
Plain. As the response of eWUE to meteorological elements depends on the dominant
process driving plant photosynthesis and ecosystem water loss, that is, the relative change
of GPP to ET [57], the correlation between eWUE and temperature is mainly determined by
vegetation ecosystems and depends on the degree of development. Although a warmer
climate usually results in better vegetation growth, the southwestern part of the study
area was mostly located in low latitudes and had relatively high temperatures. Excessive
temperatures will cause plant respiration to be stronger than photosynthesis, stunting plant
growth and even causing plants to die. Similarly, the increase in temperature will also lead
to the increase in vegetation transpiration, and the increase rate of ET is higher than that
of GPP. Observations of flux in the semi-arid Prosopis velutina community in Arizona,
USA showed that evapotranspiration influenced by temperature significantly changed the
WUE [58].

Therefore, the increase in temperature is not conducive to improving the water use
efficiency of ecosystems in low-vegetation areas. In autumn, the areas with positive
correlations between eWUE and temperature were mainly distributed in the grassland
area in the middle of the study area, and the areas with negative correlations were mainly
distributed in the southwest and northeast of the study area. In these regions, the eWUE
in early spring and late autumn showed an increasing trend, which was due to the low
temperature all year round in high latitudes, and the warmer temperatures in early spring
and late autumn extended the growth period of plants [59]. As a result, the growth of GPP
was higher than that of ET, which meant that eWUE displayed a growing trend. There is a
critical value for the influence of temperature on WUE. A too-high or too-low temperature
is detrimental to eWUE. eWUE increases with temperature when it is below the crucial
value and decreases when it is beyond it. The combined influence of temperature on plant
photosynthesis and transpiration may alter eWUE [60–62].
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4.3. Uncertainties and Limitations

It should be noted that although we used the latest improved GPP and ET products
released by MODIS in this study, there are still certain uncertainties in both. There will be
some differences in the maximum light rate of plant cover types [63]. At the same time, the
input of climatic factors will also introduce certain errors. Uncertainties in ET products
are mainly due to errors introduced by inversion algorithms, climate input data and other
input variables. Nevertheless, the results of this study still reflect the overall seasonal
variation characteristics of eWUE in Inner Mongolia, and more accurate conclusions need
to introduce more data and different methods used to carry out multi-channel integration
research. This research emphasized the analysis of the influence that precipitation and
temperature have on eWUE; however, the impact factors of eWUE are comprehensive
and complicated. Since 2000, the Chinese government has implemented several large-
scale ecological restoration projects, including the conversion of farmland to forest project
(since 1999), the Three-North Shelterbelt Project (since 1978) and the grassland ecological
protection subsidy and incentive policy (since 2010), which have had a significant impact
on the structure and function of the terrestrial ecosystem [64]. Thus, the impact of other
variables such as drought conditions, ecological projects and human activities on eWUE
should be further increased. Additionally, its contribution ratio should be quantitatively
differentiated according to the degree of its effect.

5. Conclusions

Using MODIS remote sensing data to estimate eWUE in different seasons in Inner
Mongolia, the temporal and spatial characteristics of eWUE and its correlation with hy-
drothermal factors were quantitatively studied, and the following conclusions were drawn:

(1) From 2001 to 2020, the GPP and ET in spring, summer and autumn in this region
showed increasing trends. In addition, the growth rates of GPP and ET in spring and
summer were higher than those in autumn. Under the combined effect of GPP and
ET, eWUE seasons showed significant decreasing trends in different regions (p < 0.05),
especially in summer (−0.045). In terms of spatial trend, eWUE in Inner Mongolia
showed a downward trend in different seasons, but in some areas, eWUE showed an
increasing trend.

(2) In DNF and GRA, the average eWUE in spring and summer was significantly higher
than that in autumn. In CRO, DBF, MF, SA and WSA, the mean eWUE in summer
was significantly higher than that in spring and autumn. In spring and summer, the
mean eWUE of DNF was the highest, which was significantly higher than that of the
two forest types, DBF and MF (p < 0.05), and the mean eWUE of SA was the lowest,
which was significantly lower than that of other vegetation types (p < 0.05).

(3) In spring and autumn in Inner Mongolia, temperature and precipitation were mostly
negatively connected in places with relatively high elevations, and in spring, eWUE
was positively correlated with temperature in 95.096% of the area. Summer had the
strongest vegetation WUE–temperature–precipitation negative correlation.

(4) Except for DBF and SA in summer, the vegetation types’ eWUE was negatively corre-
lated with precipitation in other seasons. Except for grassland, the eWUE in summer
was greater than that in spring and autumn among other vegetation types, and the
correlation between eWUE and precipitation in summer grassland was the lowest.
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