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Abstract: Modeling the heat and carbon dioxide (CO2) exchanges in agroecosystems is critical for
better understanding water and carbon cycling, improving crop production, and even mitigating
climate change, in agricultural regions. While previous studies mainly focused on simulations
of the energy and CO2 fluxes in agroecosystems on the North China Plain, their corrections,
simulations and driving forces in East China are less understood. In this study, the dynamic
variations of heat and CO2 fluxes were simulated by a standalone version of the Simple Biosphere 2
(SiB2) model and subsequently corrected using a Random Forest (RF) machine learning model,
based on measurements from 1 January to 31 May 2015–2017 in eastern China. Through validation
with direct measurements, it was found that the SiB2 model overestimated the sensible heat flux
(H) and latent heat flux (LE), but underestimated soil heat flux (G0) and CO2 flux (Fc). Thus, the RF
model was used to correct the results modeled by SiB2. The RF model showed that disturbances in
temperature, net radiation, the G0 output of SiB2, and the Fc output of SiB2 were the key driving
factors modulating the H, LE, G0, and Fc. The RF model performed well and significantly reduced
the biases for H, LE, G0, and Fc simulated by SiB2, with higher R2 values of 0.99, 0.87, 0.75, and 0.71,
respectively. The SiB2 and RF models combine physical mechanisms and mathematical correction
to enable simulations with both physical meaning and accuracy.

Keywords: turbulent flux; CO2 flux; SiB2 model; RF algorithm; wheat field; machine learning model

1. Introduction

Land surface processes modulate the weather and climate primarily through the ex-
change of energy, momentum, water, and carbon dioxide (CO2) across the atmospheric
boundary layer [1–5]. Climate simulations are especially sensitive to the temporal char-
acteristics in the energy partitioning of available energy into sensible heat (H) and latent
heat (LE) fluxes [6–8]. Therefore, investigating the diurnal and seasonal variations of
land-atmosphere interactions is important for improving boundary layer parameterization
schemes and the precision of weather predictions [7].

To deepen our understanding of the surface–atmosphere exchanges of water, surface
energy, and CO2 fluxes, numerous measurement methods [e.g., the Bowen ratio–energy
balance method, the eddy covariance (EC) method, and the scintillometer method] have
been applied [2]. Among them, the EC technique is considered to be the most direct
and trustworthy method to obtain data on soil–plant–atmosphere carbon, water, and
energy fluxes [9,10]. However, rainy days and power outages can cause data losses [11].
Accordingly, a powerful way to obtain accurate flux variations is to model the fluxes using
reliable surface models, while evaluating the outputs against observed data [12,13].
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Land surface process models have broadly experienced four main stages of develop-
ment [14–16]. To begin with, the simple “bucket” model was proposed by Manabe [17],
in which all the land surface parameters were set to fixed values. Next, the biosphere
transfer scheme [18] and the simple biosphere (SiB) model [19] were proposed, which
took into account the role of vegetation in the land surface process. Then, version two of
the SiB model (SiB2) was developed [20,21] which introduced a vegetation biochemical
process, including photosynthesis and respiration. Finally, in the most recent stage of
development, models that can simulate the process of dynamic vegetation changes have
emerged [22], such as the dynamic land ecosystem model [23], albeit there have as yet been
relatively fewer applications of them in these types of models owing to their reliance on
extremely highly complex physical inner mechanisms [16]. Furthermore, there are also
models used to investigate and evaluate the environmental impact of energy production
or consumption processes, such as life cycle assessment [24,25]. SiB2, a widely used land
surface model, is expected to continue to gain importance as a surface flux simulation
method. Previous studies have used SiB2 to investigate the water, energy, and CO2 fluxes
over different underlying surfaces, and verified them with observations [4,7,12,14,26–30].
Most such investigations found that the processes of dynamic vegetation changes could not
be reflected. There has also been some research carried out into revising SiB2 by correcting
its fixed parameters [2,3] and physical equations [31] to address biases that arise from the
model’s complexity and diversity of study area and vegetation. However, few studies have
used machine learning algorithms to correct the outputs of SiB2.

With the development of machine learning, more and more researchers have used
this approach to correct the biases of models [32]. For example, the European Center for
Medium-Range Weather Forecasts model [33–36], the Weather Research and Forecasting
model [37], land surface models such as ORCHIDEE (organising carbon and hydrology
in dynamic ecosystems) [38], and that of Abramowitz et al. [39]. Recently, the random
forest (RF) model has become a popular machine learning technique owing to its success
in selecting and ranking numerous predictor variables [40]. Several works have investi-
gated land surface processes with the RF model, such as the exchange of energy [41] and
CO2 [42,43], and obtained satisfactory results. Accordingly, there is reason to believe
that the RF model could also be a promising method to correct SiB2 outputs. In addition,
the energy and CO2 exchanges simulated by SiB2 have tended to focus on forests and
grasslands, with relatively less concern for agroecosystems, especially plains regions
and different species of wheat [1,4,12,14,44]. In China, the only simulations of agroe-
cosystems have focused on North and Northeast China [45]. Considerable uncertainty
remains as to the current performance of simulations in East China.

East China is one of the country’s main grain-producing areas, with wheat and
rice being the primary crops. The wheat-field ecosystem, as a key component of the
broader terrestrial ecosystem, is important for investigating global-scale ecology, energy
balances, and regional climate [46]. At the same time, rapid urbanization and economic
development are prominent features in East China, both of which can modify nearby
surface energy exchanges and the boundary layer structure [47,48]. Consequently, accu-
rate simulation of the fluxes of surface energy and CO2 for the wheat-field ecosystem in
East China will help to better understand energy and carbon budgets, more accurately
assess the influence of climate change, and increase crop production [31]. The objectives
of the present work were to: (1) quantify the seasonal and diurnal variations in radiation,
H, LE, and CO2 fluxes; (2) compare the radiation, turbulence, soil heat, and CO2 fluxes
modeled by SiB2 against direct measurements; and (3) correct the outputs of the SiB2
model using RF machine learning algorithms.

2. Materials and Methods
2.1. Site Description

The experiment was conducted at a 300 m × 300 m wheat field in Dongtai County,
Jiangsu Province, China (32.76◦ N, 120.47◦ E; 2 m above sea level; Figure 1) from January
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to May 2015–2017. The site was relatively flat and homogeneous, with a clay soil texture.
The climate is classed as “subtropical monsoon”, with an annual mean (1951–2015) air
temperature of approximately 14.8 ◦C and rainfall of 1063 mm [49]. Meanwhile, the average
annual sunshine duration and frost-free period are 2213 h and 220 days, respectively [50].
During the observation period, the “Yangmai 16” variety of winter wheat was planted
around the EC tower. The wheat grew in good drainage and no silt soil conditions. Nitrogen
fertilizer (urea) was applied at 180 kg ha−1. The wheat growing season was divided into
the vegetative stage (15 December–28 February), reproductive stage (1 March–15 April),
and ripening stage (16 April–31 May) [10].
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2.2. Instruments and Data Processing

The H, LE, and CO2 fluxes were collected from an EC tower at 10-m above ground
level (AGL), which consisted of a three-dimensional sonic anemometer (Campbell Scientific,
Inc., UT, USA, CSAT3) and a CO2/H2O open path gas analyzer (LI-COR Biosciences, Inc.,
NE, USA, LI-7500). Downward shortwave/longwave and upward shortwave/longwave
radiation measurements were obtained from a four-component net radiometer (Kipp and
Zonen, Inc., CNR-4) at 3-m AGL. The air temperature, humidity (Vaisala, Inc., Helsinki,
HMP45A), and wind speed (Met One, Inc., 034B) were measured at 3, 5, 8, and 10-m AGL.
The soil heat flux (Hukseflux Thermal Sensors, Netherlands, HFP01), soil temperature
(Campbell Scientific PT100), and soil water content (Campbell Scientific CS616) observations
were collected at depths of 0.05, 0.1, 0.2, and 0.4-m. The data were averaged over 30-min
intervals. In addition, the surface atmospheric pressure (Vaisala, Helsinki, PTB110) and
precipitation (Campbell Scientific TE525MM) were also measured. More details about the
instruments can be found in Duan et al. [10] and Li et al. [51].

Firstly, the Campbell Scientific LoggerNet 4.2.1 software was used to transform the
raw 10-Hz EC data into the 30-min binaries. Then, the LI-COR EddyPro 5.2.1 software was
applied to process the EC 30-min binaries, with the main steps involving averaging and
statistical tests [52], time delay compensation, double rotation, spectral corrections [53],
and compensation of density fluctuations [54]. The quality flags in EddyPro consist of
“excellent” (flag 0), “moderate” (flag 1), and “exclude” (flag 2). The EC data on rainy or
foggy days were discarded [10,47].

The 16-day Normalized Difference Vegetation Index (NDVI) data for the period
2015–2017, available from the 250-m resolution MODIS MOD13Q1 product (https://
ladsweb.modaps.eosdis.nasa.gov/search/), were employed (accessed: 13 September 2022).
The leaf area index (LAI), a fraction of photosynthetically active radiation (FPAR), green
leaf fraction (N), and vegetation cover fraction (V) data were calculated based on the
NDVI data following Sellers et al. [20] and Zhang et al. [11].

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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2.3. Methods
2.3.1. The SiB2 Model

The SiB2 model is a widely used and biophysics-based land surface model developed
by Sellers et al. [20,21]. SiB2 contains a set of physics-based equations that couple the water
balance, energy balance, and vegetation biochemical processes to simulate the exchanges of
water, carbon, momentum, and energy fluxes among the atmosphere, a single canopy layer,
and three soil layers (surface soil layer, root zone layer, and deep soil layer) [2,12,21,55].
As a parameterization scheme describing the processes of exchange between land and
atmosphere, it simulates a more realistic vegetation physiological process owing to the
incorporation of a canopy photosynthesis conductance submodel [3,30].

The SiB2 model requires soil, land-surface properties, initial conditions, and meteoro-
logical forcing data as inputs. The soil in the wheat field studied here consisted of clay, and
thus parameter type 5 (Clay→clay loam) was selected from Table 4 in Sellers et al. [20]. In
addition, the land surface category was defined as “agriculture or C3 grassland” (biome
type 9) (Table 2 in Sellers et al. [20]). The parameter settings in the model for Dongtai
are listed in Table A1. Six meteorological forcing variables—downward shortwave radi-
ation, downward longwave radiation, vapor pressure, air temperature, wind speed, and
precipitation—are shown in Figure 2. From January to May, the daily maximum radiation,
vapor pressure, and air temperature increased substantially, with values of 1020 W m−2,
442 W m−2, 6 hPa, and 301 K, respectively. The daily average wind speed fluctuated be-
tween 1 and 6 m s−1 during the observation period. The seasonal cumulative precipitation
was 247 mm, with a maximum daily value of 35 mm on 17 March 2015.
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2.3.2. The RF Model

The RF algorithm is an extensively used machine learning method that excels at
classification and regression owing to its efficiency and flexibility [56]. Multidimensional
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and multicollinear data can be dealt with satisfactorily, and there is less sensitivity to
overfitting [57]. The method’s feature selection tool can be used to pass judgement on how
significant a predictor is, with the definition of feature importance being the weight of each
of the model’s input factors, and significant variables having a stronger influence on the
outcomes of the model evaluation [58].

In this study, we applied the RF framework to correct heat and carbon fluxes simulated
by the SiB2 model (Figure 3). First, a set of explanatory variables (Table A2) were selected
based on previous research [43,59–62] and currently available in situ measurements. Second,
90% of the outputs of the SiB2 model and explanatory variables (Table A2) from January
to May 2016–2017 were used to train the RF model, with the remaining 10% of them and
100% of the data in 2015 used to validate estimation performance of the model. A 10-fold
cross-validation method was applied in the RF model to find the best hyperparameters and
avoid the issue of overfitting. Two statistical metrics, the coefficient of determination (R2)
and root-mean-square error (RMSE), were used to evaluate the performance of the 10-fold
cross-validation results.
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2.3.3. Radiation and Surface Energy Fluxes

Solar radiation is the key driver of surface energy, momentum, carbon, and water
fluxes [4]. The Rn consists of DSR, USR, DLR, and ULR [7]:

Rn = DSR + DLR−USR−ULR. (1)
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where Rn is the net radiation, DSR is the downward shortwave radiation, DLR is the
downward longwave radiation, USR is the upward shortwave radiation, and ULR is the
upward longwave radiation. The surface energy balance can be estimated by [10]

Rn =H + LE + G0 + ε, (2)

where H is the sensible heat flux, LE is the latent heat flux, G0 is the soil surface heat flux,
and ε is the residual energy term, such as canopy heat storage or the energy consumption of
photosynthesis and respiration. The soil surface heat flux (G0) can be estimated according
to the formula given by Liu et al. [63].

2.3.4. Statistical Analysis

In this study, the traditional statistical analysis indexes (the standard deviation, R2,
and RMSE) were used to evaluate the accuracy of SiB2 and RF models. The comparison
statistics were calculated as follows:

The standard deviation (S), R2, and RMSE:

S =

√
∑n

i−1(xi − x)2

n− 1
, (3)

where xi is the value of the ith point in the data set, x is the mean value of the data set, and
n is the number of the data points in the data set. The standard deviation is the average
amount of variability in the data set.

R2 = 1− ∑n
i=1(Mi −Oi)

2

∑n
i=1
(
Oi −O

)2 , (4)

where Mi are the values modeled by the SiB2/RF model, Oi are the observed values, and O
is the mean value of the observation. When the R2 is high, the simulations of the SiB2/RF
model are close to the observations.

RMSE =

√
∑n

i−1(Mi −Oi)
2

n
. (5)

The discrete situation between the simulation and observation is indicated by RMSE.

3. Results
3.1. Radiation, Turbulence, and CO2 Fluxes

Figure 4 shows remarkable diurnal variations in the median Rn, H, LE, G0, and Fc
in the vegetative, reproductive, and ripening stages. Rn, H, LE, and G0 began to increase
after sunrise (around 05:00–07:00 LST), reached their highest values of 280–615, 59–77,
98–406, and 34–107 W m−2, respectively, in the middle of the day (11:00–14:00 LST),
and then gradually decreased to stable values at around 17:00–19:00 LST. Fc had an
opposite trend of variation to the surface energy fluxes. The positive nocturnal values of
0.4–3.9 µmol m−2 s−1 would have mainly been associated with the respiration of
wheat [47], a lower boundary layer height [64], and poor atmospheric mixing [65], whilst
the negative daytime (07:30–17:30 LST) values of approximately −18.5 to −0.4 µmol m−2

would have been closely related to the strong photosynthesis of wheat and favorable
dispersion conditions [66].
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(d) surface soil heat (G0), and (e) CO2 fluxes (Fc) modeled using SiB2 (yellow lines) against direct
measurements (blue lines) in the vegetative, reproductive, and ripening stage. The filters are the
biases between the SiB2-modeled and directly measured results (former minus the latter). S is the
standard deviation of the biases between the SiB2-modeled and directly-measured results and mean
is the mean value of that.

In addition, the Rn, H, LE, G0, and Fc showed significant seasonal variations in the
vegetative, reproductive, and ripening stages. The middle-of-the-day maximum Rn, LE,
and G0 increased from the vegetative stage (280, 98, and 34 W m−2) to the ripening stage
(615, 406, and 107 W m−2); the H in the ripening stage (59 W m−2) was slightly lower than
that in the vegetative and reproductive stage (77 and 60 W m−2; Figure 4a); and the Fc
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varied with the wheat phenology. The wheat field served as a carbon sink in the vegetative
stage, with a mean value of −0.4 µmol m−2 despite the low photosynthetic rate. The wheat
field then became a CO2 sink in the reproductive and ripening stages, with mean values
of −4.2 and −3.7 µmol m−2 s−1, indicating stronger biological activities of the wheat (i.e.,
photosynthetic rate) during these stages.

3.2. SiB2 Evaluation

The diurnal variations in Rn, H, LE, G0, and Fc modeled by SiB2 were consistent with
the results obtained by direct measurements (Figure 4). The simulation of Rn depended
largely on the simulation of USR and ULR, since DSR and DLR were given as inputs. As
can be seen in Figure 4a, Rn was simulated very well, with both its peak together and
diurnal variation being closely captured. In addition, the R2 and RMSE of the overall
growth period were 1.00 and 18.73 W m−2, respectively. However, the biases indicated
that the SiB2 model overestimated Rn, and this was slightly more apparent at nighttime,
similar to the findings of Jing et al. [2], which may have been caused by underestimated
values of the surface effective radiative temperature at night in the simulation. In
addition, the median bias values in the different growth stages, in ascending order, were
11 W m−2 for the ripening stage, 18 W m−2 for the reproductive stage, and 21 W m−2 for
the vegetative stage; and the median (mean) values of observed and simulated Rn were
−13 (82) and 3 (98) W m−2, respectively. The mean bias and standard deviation for bias
of observed and simulated Rn were 16 W m−2 and 6 W m−2. Overall, the SiB2 model
overestimated Rn by 13%.

Figure 4b compares the H between the SiB2 simulation and observation. The diurnal
variation that was again captured by SiB2 reason well, especially in the vegetative stage,
however, its pattern was less regular than that of Rn. In addition, the R2 and RMSE
of the overall growth period were 0.59 and 32.92 W m−2, respectively. As we can see,
the simulation of H at night was better than during the daytime, especially around the
middle of the day in the reproductive and ripening stages, when SiB2 overestimated
the H. Further, a small part of the biases was attributable to underestimation in the
reproductive and ripening stages. The median (average) values of the observed and
simulated H were −4 (13) and −1 (20) W m−2, respectively. The mean bias and standard
deviation for bias of observed and simulated H were 4 W m−2 and 12 W m−2. In general,
the SiB2 model overestimated H by 25%.

It can be seen from Figure 4c that the simulation of LE was better than that of H
and closer to that of Rn, with R2 and RMSE values that reached 0.75 and 72.87 W m−2,
respectively. The simulation of LE in the vegetative stage was much better than in the later
stages. SiB2 basically overestimated LE, with only a slight underestimation in the daytime
during the reproductive and ripening stages. In addition, the median (average) values of
the observed and simulated LE were 11 (75) and 39 (92) W m−2, respectively. The mean
bias and standard deviation for bias of observed and simulated LE were 24 W m−2 and
14 W m−2. Overall, the SiB2 model overestimated LE by 36%.

The observed and simulated G0 are compared in Figure 4d, which reveals less
consistent temporal changes than for Rn. The R2 and RMSE of the overall growth period
for G0 were 0.60 and 34.33 W m−2, respectively. It is apparent that SiB2 overestimated
the soil heat flux after sunrise in the vegetative and reproductive stages and mainly
underestimated it at nighttime. The simulation of G0 in the ripening stage was relatively
better. In addition, the median (mean) values of the observed and simulated G0 were
−19 (0.4) and −34 (−12) W m−2, respectively. The mean bias and standard deviation for
bias of observed and simulated G0 were −11 W m−2 and 21 W m−2. Overall, the SiB2
model underestimated G0 by 37%. The negative mean value may have resulted from
underestimation, especially at nighttime, in the ripening stage. This would be regarded
as a simulation error when less than −100 W m−2. The reason why SiB2 overestimated
G0 in the daytime of the vegetative stage may be the lower vegetation cover fraction set
in the parameters resulting in higher absorption of radiation by the ground surface.
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Significant diurnal variation is a well-known characteristic of CO2 flux in cropland,
in which the crop absorbs CO2 by photosynthesis and emits it into the atmosphere.
As shown in Figure 4e (in which positive values of biases between the simulation and
observation represent emission and negative values indicate absorption), SiB2 estimated
the CO2 fluxes well, capturing the temporal variations accurately. The R2 and RMSE
were 0.62 and 6.82 µmol m−2 s−1, respectively; and the median (mean) values of CO2 in
the observation and simulation were 0.7 (−2) and 0.2 (−5) µmol m−2 s−1, respectively.
The mean bias and standard deviation for bias of observed and simulated Fc were
−2 µmol m−2 s−1 and 2 µmol m−2 s−1. In general, the SiB2 model underestimated Fc by
40%. In addition, the simulation in the vegetative stage was the best among the three
stages, and the ripening stage was the worst. The simulation of Fc was predominantly
underestimated, with only a slight overestimation in the reproductive stage. There were
some daytimes when SiB2 overestimated Fc, which may have been caused a weaker
photosynthesis resulting from less DSR and lower temperatures before and after rainfall.
Additionally, the simulation of photosynthesis increased and decreased as the winter
wheat grew and died following higher and lower LAI, FPAR, and V.

3.3. Driving Factors of Turbulence and CO2 Fluxes

As demonstrated in Section 3.2, SiB2 captured the diurnal variation in H, LE, G0,
and Fc well, albeit with the simulation results still showing certain errors. Given that
the R2 of Rn reached 1.00, there was less possibility to improve its simulation accuracy.
Therefore, we constructed the RF model to correct the SiB2 model outputs and improve the
simulation accuracies of H, LE, G0, and Fc. The RF model examined the potential drivers
and assessed their relative contributions to H, LE, G0, and Fc (Figure 5). Correlations among
the turbulence and CO2 fluxes and input variables were calculated with all the training
data from the Dongtai site (Figure 6).
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As we can see from Figure 5a, T* showed the greatest importance in the modulation
of H, with a weight of 81% of all variables. Moreover, Figure 6a shows that H correlated
most strongly with T*, consistent with the variable weighting value in Figure 5a, whose
Pearson correlation coefficient (r) was 0.82. Apart from T*, there were two other critical
variables, u* and SiB2H, with weights of 11% and 8%, respectively. T* and u* have been
mentioned previously as significant variables in the calculation of H in EC observations [10].
Comparatively speaking, the influence of the remaining variables was negligible, with
importance values of less than 1%. Moreover, u* was microcorrelated with H despite its
high importance in the RF model, while SiB2H correlated closely with H even though its
importance was lower than that of u*.

Figure 5b shows that Rn was the most essential variable in modulating LE, accounting
for 21% of the importance of all variables. Although the r of Rn reached 0.82, the strongest
positive correlation with LE was not Rn but SiB2LE (Figure 6b), with the highest r of 0.83.
Besides Rn, three other variables, SiB2LE, Tg, and Es0, impacted strongly on LE, with
importance values of 17%, 13%, and 13%, respectively, since Es0 and Tg play important
roles in calculating LE in EC measurements. In contrast, the remaining variables were less
important in modulating LE, with importance values ranging from 7% down to values
approaching 0.
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As illustrated in Figure 5c, SiB2G0 had the strongest influence in modulating G0,
accounting for 60% of the total variable importance. SiB2G0 had the greatest positive
correlation with G0, with the highest r of 0.76 in Figure 6c. Additionally, Rn was the
second most important variable, with a weighting of 17%, and also had the second highest
correlation with G0 (r = 0.74). Both SiB2G0 and Rn had close consistency in their variable
weighting and correlation. Aside from SiB2G0 and Rn, the remaining variables showed
weaker influences in modulating G0, with importance values ranging from 4% down to
values approaching 0.

Figure 5d shows that SiB2Fc played the most critical role in modulating Fc, with an
importance weighting of 39% of all variables. SiB2Fc had the greatest positive correlation
with Fc, with the highest r of 0.63 in Figure 6d. In addition, as the second most significant
variable, the weighting of Rn was 27% and its r was −0.56, which was the second highest
negative correlation. These results were similar to those of SiB2G0 and Rn in their modula-
tion of G0, being consistent in both variable weighting and correlation. In contrast, there
was no apparent influence of VPD, T3, FPAR, LAI, NDVI, and RH3 on Fc, showing lower
relative weights, with importance values of 8%, 7%, 5%, 5%, 5%, and 4%, respectively. Note
that Rn, VPD, T3, LAI, FPAR, and NDVI all correlated negatively with Fc.

3.4. RF Model Evaluation

It is clear that the RF model performed excellently in correcting the H (Figure 7a) in all
three stages. The degree of overestimation in the daytime was slightly reduced, especially
in the reproductive stage. It also resolved the problem of underestimation in the ripening
stage. Accordingly, the estimation with the RF model was consistent with the observation,
basically catching both the peak and diurnal variation. The mean bias and standard deviation
for bias of observed and simulated H were 5 W m−2 and 5 W m−2, respectively. The R2 of the
RF model for H was 0.99, larger than that of 0.59 from SiB2 alone. Likewise, the RMSE was
4.73 W m−2, which was smaller than that of 32.92 W m−2 with SiB2.
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and their biases (red shading, overestimated; blue shading, underestimated) for (a) sensible heat (H),
(b) latent heat (LE), (c) soil heat (G0), and (d) CO2 (Fc), in the vegetative, reproductive, and ripening
stages. S is the standard deviation of the biases between the RF-modeled and directly measured
results and mean is the mean value of that.
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The simulation of LE with the RF model (Figure 7b) was relatively less consistent with
the observaton and worse than it was for H. It was able to capture the diurnal variation
but failed to catch the peak, especially in the ripening stage. The mean bias and standard
deviation for bias of observed and simulated LE were−4 W m−2 and 28 W m−2, respectively.
The correction by the RF model did alleviate the degree of overestimation, especially in
the ripening stage. However, there was a relatively greater underestimation than the SiB2
model in the ripening stage. Nonetheless, the results indicated that the correction still
worked, with the R2 reaching 0.85 and the RMSE reduced to 54.92 W m−2.

It can be seen from Figure 7c that the simulation of G0 after correction with the RF
model was more consistent with the observation. Although the bias of the simulation
for G0 after the correction was still dominated by underestimation, more peaks were
captured. The mean bias and standard deviation for bias of observed and simulated G0 were
−14 W m−2 and 15 W m−2, respectively. The biases, in terms of both overestimation and
underestimation, became much smaller in the vegetative and reproductive stages, resulting
in the simulation by SiB2 in these two stages improving. The R2 reached 0.78 and the RMSE
reduced to 25.53 W m−2. Compared with the results of SiB2 alone, an improvement was
still apparent after correction with the RF model.

Figure 7d shows a better simulation of CO2 following correction with the RF model. It
also displays a better consistency with the observation, especially at nighttime, with the
overall biases at night becoming smaller. The mean bias and standard deviation for bias of
observed and simulated Fc were −4 µmol m−2 s−1 and 28 µmol m−2 s−1. It is apparent
that the simulation values became larger after correction, which were close to 0 originally,
making the simulation more reasonable. Meanwhile, the biases of Fc in the vegetative
and ripening stage decreased and the biases (overestimation) in the reproductive stage
increased. In other words, the correction of the biases in the vegetative and ripening stages
was better. Moreover, the R2 increased from 0.62 to 0.71 and the RMSE decreased from
6.82 µmol m−2 s−1 to 4.70 µmol m−2 s−1.

3.5. Comparison of SiB2 and RF

Figure 8a shows the R2 values for H, LE, G0, and Fc in the different growth stages
for the SiB2 and RF-corrected outputs (hereafter referred to simply as RF). During the
vegetative stage, for the simulation of SiB2 and RF, H had the largest R2, followed by G0, LE,
and then Fc. The H improved significantly in the vegetative stage, reaching 41%, followed
by Fc (33%), G0 (23%), and LE (13%). In the reproductive stage, for the simulation of SiB2,
the largest R2 was that of LE, followed by H, Fc, and then G0; while for RF, the largest R2

was that of H, followed by LE, G0, and Fc. In addition, the degree of improvement for
G0 was the highest, reaching 63%, followed by 46% for H, 17% for LE, and then 9% for
Fc. During the ripening stage, for the simulation of SiB2, Fc had the largest R2, followed
by G0, LE, and then H; while for RF, H also had the largest R2, followed by LE, G0, and
then Fc. Additionally, the degree of improvement for H was the highest, reaching 111%,
followed by G0 (33%), LE (23%), and then Fc (23%). For the simulation of SiB2, for H, the R2

in the vegetative stage performed better; while for RF, the best performing R2 was in the
vegetative stage along with the reproductive stage. The effect of correction was better in
the ripening stage. For the R2 of the simulated LE, both SiB2 and RF performed best in the
reproductive stage. For the simulation of G0, the R2 of SiB2 and RF were also best in the
same stage, namely the ripening stage. However, the effect of correction in the reproductive
stage was the best. For the Fc simulated by SiB2, the best performance in terms of R2 was
in the reproductive stage; for RF, the R2 in the ripening stage performed better. Overall, the
mean R2 of SiB2 (RF) for the reproductive (ripening) stage was the largest, and the effect of
correction in the ripening stage was better. During the whole growth period, the R2 for H,
LE, G0, and Fc all improved greatly (68%, 13%, 30%, and 15%) (Table 1).
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Table 1. The values of R2 and RMSE for the overall growth period in the SiB2 and RF-corrected
model outputs.

Flux
SiB2 RF

R2 RMSE R2 RMSE

H 0.59 32.92 0.99 4.73
LE 0.75 72.87 0.85 54.92
G0 0.60 34.33 0.78 25.53
Fc 0.62 6.82 0.71 4.70

Note: H, sensible heat flux; LE, latent heat flux; G0, soil heat flux; Fc, CO2 flux.
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Figure 8b shows the RMSE for H, LE, G0, and Fc in the different growth stages as
simulated by SiB2 and RF. For the simulation of SiB2, the RMSE of H, LE, and Fc became
increasingly larger as the wheat grew. In other words, the order of RMSE values for H,
LE, and Fc was vegetative stage < reproductive stage < ripening stage, which was similar
to the RMSE of RF for H, LE, and G0. Meanwhile, the RMSE of SiB2 for G0 was lowest
in the ripening stage, while that of RF for Fc was lowest in the vegetative stage. For the
vegetative stage, the best degree of correction was for H, reaching−78%, and the worst was
for Fc, at only −12%. For the reproductive stage, the correction for H also performed best,
while for Fc it was worst. For the ripening stage, the correction with RF also performed
best for H, and for G0 it was negative. Furthermore, the best effect of the correction for
H, LE, G0, and Fc was in the reproductive, reproductive, vegetative, and ripening stages,
respectively. Overall, the best mean correction effect was in the vegetative stage. During
the whole growth period, all the RMSEs for H, LE, G0, and Fc were reduced (Table 1).

4. Discussion

We have evaluated the turbulence and CO2 fluxes with the in situ observations and
remote sensing data. H, LE, G0, and Fc simulated by SiB2 have standard deviations of
12 W m−2, 14 W m−2, 21 W m−2 and 2 µmol m−2 s−1, respectively. H estimation has a
25% positive bias, which was similar to those reported by Chu et al. [14], Gao et al. [7],
Lei et al. [31], Li et al. [3], and Xue et al. [29]. The positive H bias can be attributed to the
higher initial input canopy temperature, which was set to the canopy air space tempera-
ture. The estimated LE has a 36% positive bias, which was consistent with the results of
Gao et al. [7], Yan et al. [30], and Yuan et al. [67]. The soil moisture sensors were not
mounted directly in the wheat field, resulting a in higher soil wetness fraction and mea-
sured LE. G0 was underestimated by 37%, which was similar to the results reported by
Zhang et al. [5]. The SiB2 model underestimated Fc by 40% and most simulated values
were concentrated near to the value of 0, which was also found in Chu et al. [14], and
Yuan et al. [4,67]. The soil respiration (Rsoil) was set to 0 by default (Rsoil = 0) in SiB2,
leading to a relatively lower simulation of respiration in the wheat field, which can be
regarded as a kind of model error. In other words, SiB2 has a tendency to underestimate
ecosystem respiration at night during the growth period [26].

Given the bias of simulation by SiB2, the RF model was used to correct the results
modeled by SiB2 and made great improvements to H, LE, G0, and Fc with values of 68%,
13%, 30%, and 15%, respectively, during the whole growth period. There has also been
some research carried out into revising SiB2 to address biases that arise from the model’s
complexity and diversity of study area and vegetation. Lei et al. [31] adjusted the physical
equation of soil respiration and calibrated the Ball-Berry stomatal conductance model.
Li et al. [3] adjusted optimum growth and inhibition temperature parameters. Jing et al. [2]
revised the SiB2 model by adding an irrigation module and adjusting parameters. The
previous research mentioned above made improvements to the output of the SiB2 model,
nevertheless their corrections, based on the observation, only applied to specific study
regions. It is important to take into consideration the interactions among parameters
and the physical implications of the parameters. Otherwise, there would be great overall
uncertainty for the results of the SiB2 model.

This study only investigated the wheat field in Dongtai County for one growth
season. In the next study, we will make an effort to extend the simulation of the combined
SiB2 model and RF model from Dongtai County to the whole of East China, extend the
species studied from wheat to a rotation of summer rice and winter wheat, and extend the
study period from one growing season to several crop years. Additionally, investigating
land surface processes and improving the accuracy of simulation are of great importance
in future work.
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5. Conclusions

In this study, radiation, turbulence, and CO2 fluxes were observed with an EC system
in a winter wheat field in eastern China from 1 January to 31 May 2015–2017. The Rn, H, LE,
G0, and Fc modeled by SiB2 showed obvious diurnal and seasonal variations during the
whole winter wheat growing season, with R2 values of 1.00, 0.59, 0.81, 0.60, and 0.62 against
the direct observations, respectively. The SiB2 model overestimated the Rn, H, and LE (13%,
25%, and 36%) and underestimated the G0 (−37%) and Fc (−40%). Thus, an RF model was
designed to correct the results modeled by SiB2. The RF-corrected model showed that T*,
Rn, SiB2G0, and SiB2Fc were the key driving factors in the modulation of H, LE, G0, and
Fc. Compared with the results modeled by SiB2, the RF model performed well and made
great improvements to H, LE, G0, and Fc with values of 68%, 13%, 30%, and 15% during the
whole growth period.

The input parameters in SiB2 were dynamically updated every week to reflect the
process of vegetation phenology, making the simulated turbulence and CO2 fluxes more
reasonable and realistic.
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Appendix A

Table A1. Parameter settings in the SiB2 model for Dongtai.

Parameter Value Parameter Value

Z2 Canopy-top height (m) 0.15, 0.58, 0.86 S6
Half-inhibition high temperature,
respiration (K) 328

Z1 Canopy-base height (m) 0.1 Topt
Optimum temperature for
vegetation growth (K) 298

χL Leaf-angle distribution factor −0.02 S3
Low temperature stress factor,
photosynthesis (K−1) 0.2

Dr Root depth (m) 0.1, 0.14, 0.21 S4
Half-inhibition low temperature,
photosynthesis (K) 281

ψc
One-half inhibition
water potential −200 S1

High temperature stress factor,
photosynthesis (K−1) 0.3

δV,l Leaf transmittance, visible, live 0.07 S2
Half-inhibition high temperature,
photosynthesis (K) 308

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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Table A1. Cont.

Parameter Value Parameter Value

δV,d Leaf transmittance, visible, dead 0.25 DT Total soil depth (m) 0.4
δN,l Leaf transmittance, near IR, live 0.22 αsV Soil reflectance, visible 0.1
δN,d Leaf transmittance, near IR, dead 0.38 αsN Soil reflectance, near IR 0.15
αv,l Leaf reflectance, visible, live 0.105 B Soil wetness exponent 8.52
αv,d Leaf reflectance, visible, dead 0.58 ψs Soil tension at saturation (m) −0.36

αN,l Leaf reflectance, near IR, live 0.36, 0.18 Ks
Hydraulic conductivity at
saturation (m s−1) 2.5 × 10−6

αN,d Leaf reflectance, near IR, dead 0.58, 0.4 θs Soil porosity (volume fraction) 0.48

ε
Intrinsic quantum efficiency
(mol mol−1) 0.08 ∅s Mean topographic slope (radians) 0.176

M Stomatal slope factor 13.0 Vmax0
Maximum rubisco capacity, top
leaf (mol m−2 s−1) 1.5 × 10−4

b Minimum stomatal conductance
(mol m−2 s−1) 0.01 G(µ)/µ Time-mean leaf projection 1.0

f d Leaf respiration factor 0.015 G1
Augmentation factor for
momentum transfer coefficient 1.449

βce Photosynthesis coupling
coefficient 0.98 G4

Transition height factor for
momentum transfer coefficient 11.785

βps Photosynthesis coupling
coefficient 0.95 zwind Wind observation height (m) 10.0

S5
High temperature stress factor,
respiration (K−1) 1.3 zmet

Air temperature and humidity
observation height (m) 10.0

Table A2. Variables selected to train the RF model.

Variable Unit Description Variable Unit Description

NDVI – Normalized difference vegetation index RH3 % Relative humidity at 3 m
LAI – Leaf area index P hPa Pressure
FPAR – Fraction of photosynthetically active radiation q g g−1 Specific humidity at 3 m
T3 K Air temperature observed at 3 m VPD hPa Vapor pressure deficit at 3 m
Tg K Temperature of land surface u* m s−1 Friction velocity
Tm K Average temperature of air at 3 m and ground T* K Disturbances in temperature
G5 W m−2 Soil heat flux at the depth of 5 cm WS m s−1 Wind speed at 3 m

dT K Bias of temperature for canopy air space and
observation height WDir

degrees
from north Wind direction at 3 m

Ts5 K Temperature of soil at the depth of 5 cm Rn W m−2 Net radiation
Ts10 K Temperature of soil at the depth of 10 cm SiB2H W m−2 The H modeled by SiB2
Ts20 K Temperature of soil at the depth of 20 cm SiB2LE W m−2 The LE modeled by SiB2
Ts40 K Temperature of soil at the depth of 40 cm SiB2G0 W m−2 The G0 modeled by SiB2
Es0 hPa Saturated vapor pressure of land surface SiB2Fc µmol m−2 s−1 The Fc modeled by SiB2
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