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Abstract: The evaporation duct is a particular type of atmospheric structure that always appears on
the open ocean. Predicting the evaporation duct height (EDH) accurately and in a timely manner
is of great significance for the practical application of marine wireless communication equipment.
Understanding the characteristics of EDH time series is an essential prerequisite for establishing an
appropriate prediction model. Moreover, the sampling timescales of EDH data may influence the
dynamic characteristics of the EDH time series as well. In this study, EDH time series datasets at
three timescales, hourly, daily, and monthly, were constructed as the case study. Statistical methods,
namely the augmented Dickey–Fuller test and Ljung–Box test, were adopted to verify the stationary
and white noise characteristics of the EDH time series. Then, rescaled range analysis was applied
to calculate the Hurst exponent to study the fractal characteristics of the EDH time series. An
extensive analysis and discussion of the chaotic dynamics of the EDH time series are provided.
From the perspective of nonlinear dynamics, the phase space was constructed from the time delay
τ and embedding dimension m, which were calculated from the mutual information method and
the Grassberger–Procaccia algorithm, respectively. The maximum Lyapunov exponent was also
calculated by the small data volume method to explore the existence of chaos in the EDH time
series. According to our analysis, the EDH time series are stationary and have a non-white noise
characteristic. The Hurst exponents for all three timescales were greater than 0.5, indicating the
predictability of the EDH time series. The phase space diagrams exhibited strange attractors in a
well-defined region for all the timescales, suggesting that the evolution of the EDH time series can
possibly be explained by deterministic chaos. All of the maximum Lyapunov exponents were positive,
confirming the chaos in the EDH time series. Further, stronger chaotic characteristics were found for
the finer-resolution time series than the coarser-resolution time series. This study provides a new
perspective for scholars to understand the fluctuation principles of the evaporation duct at different
timescales. The findings from this study also lay a theoretical and scientific foundation for the future
application of chaotic prediction methods in the research on the evaporation duct.

Keywords: evaporation duct height; time series; stationary; Hurst exponent; chaotic dynamics; phase
space reconstruction; maximum Lyapunov exponent

1. Introduction

The evaporation duct is a particular atmospheric structure, which results from the
rapid change of moisture with height at the lower interface of the marine atmospheric
boundary layer (MABL) [1]. The evaporation duct has a anomalous refractivity profile
structure. From the sea surface to a certain height, the refractivity decreases gradually until
it reaches a local minimum. This height is referred to as the evaporation duct height (EDH).
Then, as the height continues to increase, the refractivity keeps increasing from the local
minimum. This unique refractivity profile structure allows the evaporation duct to trap
electromagnetic (EM) waves and extend the EM propagation over the horizon [2]. This
phenomena is also known as the ducting effect. The EDH is a significant parameter for
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the practical quantitative evaluation of the ducting effect. Therefore, understanding the
variations of the EDH precisely over time is critical for the effective application of marine
radio equipment, and this has always been the focus of the research on the evaporation
duct [3–5].

Currently, the research on the EDH falls into two broad categories: research on the
data acquisition methods for the EDH and research on the spatio-temporal characteristics
of the distributions of the EDH based on the acquired data. The data acquisition methods
for the EDH can be further divided into in situ measurement methods and physics-based
model methods. There are two types of in situ measurement methods: direct measurement
and inversion measurement. For the direct measurement, microwave refractometers or
meteorological gradient towers are primarily used [6–8]. According to the physical pa-
rameters applied in the inversion, the inversion methods can be classified as radar sea
clutter inversion [9–11], reflected Global Navigation Satellite System (GNSS) signal inver-
sion [12–14], or path loss inversion [15–17]. There are many challenges involved in the
in situ measurement of the EDH [18–21]. First, since the atmospheric humidity rapidly
changes from the saturated state at the sea surface to the background levels within a few
centimeters above the sea, it is difficult to accurately capture this process. Secondly, since
the sea surface is always fluctuating, the sea surface height used in research is typically
the statistical average of the height values over a period of time, rather than the value at
a certain instant. Again, due to the influence of turbulence, a single measurement will
be impacted by the atmospheric fluctuations. Therefore, taking the average of multiple
measurements has been adopted to attenuate the impact of these fluctuations. In practice,
however, measurement equipment is difficult to deploy and operate. All of these factors
restrict the wider application of in situ measurement.

The physics-based model methods are the dominant one to obtain the EDH compared
to in situ measurements [22]. These methods employ the Monin–Obukhov surface layer
similarity theory to simulate the profile distributions of the atmospheric temperature, atmo-
spheric pressure, and saturated water vapor pressure using the sea surface temperature and
some meteorological elements (i.e., air temperature, atmospheric pressure, wind speed, and
relative humidity) at fixed altitudes. Then, the modified refractivity profiles of the evapora-
tion duct are obtained, as well as the EDH values. Depending on how the Monin–Obukhov
scale parameters are calculated, the physics-based models can generally be divided into two
categories. The first type uses the empirical relationship between the Richardson number
and the Monin–Obukhov length to calculate the relevant scale parameters [23]. The second
uses an iterative algorithm derived from the empirical air–sea flux principles proposed by
Liu, Katsaros, and Businger [24], hence also referred to as the LKB model [25]. The LKB
model provides a framework for calculating the refractivity profiles of the evaporation
duct, that is using the sea surface temperature, air temperature, atmospheric pressure, wind
speed, and relative humidity at a certain height, combined with the air–sea flux coupling
relationship to calculate the parameters of the Monin–Obukhov correlation scale iteratively.
Then, these parameters are used to obtain the temperature, atmospheric pressure, specific
humidity profiles, and finally, the refractivity profiles. Since then, based on the LKB model
framework, researchers have proposed a series of models [26–30]. The data of the air–sea
variables are also obtained from different sources, for example from numerical weather
prediction (NWP) [31,32].

Based on the collection of the EDH data, there has been additional extensive research
examining the spatio-temporal characteristics of the evaporation duct over the globe [33,34]
and some regional seas [2,35–38]. Most of these studies focused on the climatological
features and performed various statistical analysis on the annual, seasonal, monthly, daily,
diurnal, and hourly EDH time series. Various statistics have been constructed to study the
historical variations of the EDH. Among these works, only the principles of how the histor-
ical data vary have been discussed. While conducting in-depth research on the historical
data, it is also possible to use these historical data to predict the future variations based on
the time series theory. More recently, some scholars have taken the time series (TS) charac-
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teristics of the EDH data into account and proposed some prediction models for the EDH
based on the TS theory. Javeed et al. [39] proposed a modified artificial-neural-network
(ANN)-based model to predict the refractivity. Mai et al. [40] applied the Darwinian evolu-
tionary algorithm to realize the short-term prediction of the EDH. Zhao et al. [41] proposed
a pure data-driven back propagation neural network (BPNN) EDH prediction model.
Hong et al. [42] proposed a seasonal autoregressive integrated moving average (ARIMA)
model to fit and forecast the monthly EDH time series data. Yanez [43] explored the appli-
cations of several artificial intelligence/machine learning (AI/ML) algorithms, including
linear regression, decision trees, random forest, and neural networks, in nowcasting the
EDH. Zhao et al. [44] and Han et al. [45] constructed EDH prediction models based on
the long short-term memory (LSTM) neural network, respectively. According to the above
introduction of the current research status, some progress has been made in the EDH
prediction models based on time series theory. However, these works have not analyzed
the characteristics of EDH time series in detail, and the models lack a theoretical support.

In order to forecast the EDH, it is necessary to determine whether the EDH time series
is predictable and what the predicted scale is. These problems can be solved by fractal the-
ory. Fractal theory has been proven to be very powerful in mining the hidden trends of time
series data. Some excellent examples where fractal theory has been successfully applied
have been given for air temperature time series [46], air contamination time series [47],
atmospheric carbon emission time series [48], precipitation [49], and so on. This can provide
a basis for analyzing the rationality of existing EDH time series modeling methods and
laying the foundations for applying time series theory to EDH prediction. Thus, the fractal
properties of EDH time series are explored in this study, along with detailed descriptions
of their fractal characters at various timescales. The evaporation duct derives from the
complex air–sea interactions. EDH time series display a high degree of nonlinearity and
uncertainty [42]. Considering this, it is difficult to precisely grasp the inherent characteris-
tics and evolution law in EDH time series. There is a similarity between the evaporation
duct and the oceanic chaotic system. Nonlinear chaotic systems appear to be random and
irregular, but they are actually governed by laws and order [50]. Observing nonlinear
dynamic behavior can also reveal some important internal laws of time series [51]. With
chaos theory, EDH predictions will be more accurate and objective because the modeling
process is more objective. A chaotic-theory-based time series prediction process gener-
ally consists of three steps: identifying whether a time series is chaotic, determining the
appropriate embedding dimension and delay time to reconstruct the time series in the
phase space, and forecasting. Identifying the chaotic characteristics in a time series is the
first step, and it is also a crucial part of the whole study. To improve modeling accuracy
and reliability, nonlinear dynamics theory can be used to model and analyze the EDH. As
such, analyzing the chaotic characteristics of EDH time series at different timescales is both
theoretically and practically beneficial. During this study, we expected to obtain the chaotic
dynamic behavior and other characteristics of the EDH time series at different timescales.
At present, there are few detailed studies about whether the EDH characteristics are the
same at different timescales. What is the relationship between the chaotic characteristics
and the timescale? Do the chaotic characteristics change if the timescale decreases? Is the
chaotic time series predictable? These problems are worth discussing.

The remainder of this paper is structured as follows. Section 2 introduces the statistical
tests, the fractal analysis method, and the chaos analysis methods used in this study.
The case studies and corresponding results are presented in Section 3. The results are
further discussed in Section 4. A conclusion is drawn in the last section, along with some
suggestions for further research.

2. Methods
2.1. Statistical Tests

Statistical tests, including the augmented Dickey–Fuller (ADF) test and the Ljung–Box
(LB) test, were applied to reveal the hidden characteristics in EDH time series. The ADF
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test is a unit root test that is widely used to determine whether time series are stationary
or not [52,53]. An unit root is adopted to indicate the stochastic trend in a time series. In
the test, a null hypothesis is that the time series contains a unit root, and the time series
is then considered as non-stationary. If the p-value is less than 0.05, the null hypothesis
is rejected. This means no unit root is contained in the time series and the time series is
stationary. A white noise judgment is also necessary if the EDH time series is stationary.
If the EDH time series is a white noise series (the variables share the same variance, and
each value has no correlation with all the other values in the series), the EDH time series
is unpredictable. The Ljung–Box test is a type of statistical method to detect the presence
of white noise in the time series at 5% significance [54]. A null hypothesis is that the
distribution of chronologically ordered data is independent and no statistically significant
autocorrelations are detected in the time series.

2.2. Rescaled Range Analysis

Based on fractal theory, rescaled range (R/S) analysis explores the correlation quantifi-
cation in time series [55,56]. The R/S method follows the power law relationship as follows:

R(n)
S(n)

= AnH (1)

where n is the sampling number of the EDH time series. R is the rescaled range, defined
as R = max(Xt,n −min Xt,n), t = 1, 2, . . . , n, where X presents the time series. S is the
standard deviation. A is a constant. H is the Hurst exponent. The least-squares method is
applied to fit the scatter plot of ln(R(n)/S(n)) corresponding to ln(n), and the slope of the
fit line is the Hurst exponent.

Various H values correspond to different time series characteristics. If H = 0.5, then
the times series is considered as a random walk and the data are uncorrelated. This means
the future data in the time series are not determined by the current data. If H ∈ [0, 0.5), there
is more variability and burstinessin the time series, and the trend of the former moment
contrasts with that of the latter. In the case of H ∈ [0.5, 1), the time series is self-similar,
which means the future trends are consistent with those of the past. The time series are
more closely related to the past time if H is close to 1. Especially, if H 6= 0.5, the time series
are fractal, and the fractal dimension of the time series is denoted as α = 2− H.

2.3. Phase Space Reconstruction

As the first step to detect the chaotic characteristics, the single-dimensional EDH time
series should be reconstructed in a multi-dimensional phase space. Considering EDH time
series {x(t), t = 1, 2, · · · , l}, l is the length, and if the delay time τ is given, the correlation
dimension d of the time series can be obtained using the Grassberger–Procaccia (G-P)
algorithm [57]. The G-P algorithm introduced by Grassberger and Procaccia is one of the
most widely used algorithms to estimate the correlation dimension. Delay time τ is the
time lag between the current states with the past and is applied to transform the original
time series into a set of time series with successive lagged values. Then, according to the
Takens theory [58], the optimal embedding dimension m is determined as m ≥ 2d+ 1. If the
delay time τ and embedding dimension m are known, the phase space is reconstructed as

X =


X1
X2
...

XN

 =


x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
x(2) x(2 + τ) · · · x(2 + (m− 1)τ)
· · · · · · · · · · · ·

x(l − (m− 1)τ) x(l − (m− 2)τ) · · · x(l)

 (2)

where N = l − (m− 1)τ.
Determining delay time τ and embedding dimension m is essential for reconstructed

phase spaces. This study used the mutual information method to determine the delay time
τ and the G-P algorithm to determine the embedding dimension m.
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2.3.1. Delay Time τ

A small delay time τ will result in little new information contained in each of the
subsequent data, which leads to an underestimation of the correlation dimension [59]. In
contrast, if τ is too large, all information for phase space reconstruction is lost because
neighboring trajectories diverge and averaging is no longer useful. This may lead to an
overestimation of the correlation [60]. In this study, the delay time τ was determined by the
mutual information method [61]. The mutual information method makes use of Shannon’s
comentropy theory to calculate the correlation between two variables and measure their
overall dependence at the same time. Considering time series {x(t), t = 1, 2, · · · , N} and
{x(t + τ), t = 1, 2, · · · , N}, the mutual information is

I(τ) = ∑
xt ,xt+τ

P(xt, xt+τ) ln
[

P(xt, xt+τ)

P(xt)P(xt+τ)

]
(3)

where P(xt) and P(xt+τ) represent the probability density of xt and xt+τ , respectively, and
P(xt, xt+τ) is the joint probability density function. The first minimum value of I(τ) was
chosen as the proper delay time.

2.3.2. Embedding Dimension m

In the G-P algorithm, m is calculated according to the principle that the attractor
correlation index D gradually reaches saturation with an increase in m. The calculation
process of the G-P algorithm is as follows. First, the correlation integral is defined as

C(r) = lim
N→∞

2
N(N − 1)

N

∑
i,j=1

H
(
r−

∣∣Yi − Yj
∣∣) (4)

where N is the total number of points that reconstruct the attractor. Yi (or Yj) is the data
vector in the reconstructed phase space, and i (or j) represents the ith (or jth) data vector.
The radius of a sphere centered on the vector Yi or Yj is denoted as r. Let u =

∣∣Yi − Yj
∣∣;

this is the distance between Yi and Yi in the Euclidean space.

C(r) ∼ βrD2 (5)

where β is constant; D2 is the correlation dimension, and its expression is the following formula.

D2 = lim
r→0

ln C(r)
ln r

(6)

Stochastic processes exhibit a linear increase in D2 with increasing dimension m and
do not reach saturation. Conversely, deterministic processes tend to have constant D2 as the
dimension m increases and reach saturation. When D2 tends to be stable, the corresponding
dimension is the embedding dimension m.

2.4. Lyapunov Exponent

In this study, a phase space diagram is depicted to analyze the chaos of an EDH
time series from a qualitative perspective, and the Lyapunov exponent was calculated
to analyze the chaos from a quantitative perspective. In chaotic dynamical systems, the
Lyapunov exponent λ reflects the changing of variables over time and the sensitivity
of the initial conditions in terms of the speed of the track separation [59]. If the track
shrinks in the direction λ < 0 and moves steadily, a system is not sensitive to the initial
conditions. If the track separates rapidly in the direction λ > 0, a system is sensitive to the
initial conditions, We only calculate the maximum Lyapunov exponent λmax for discrete
systems and nonlinear time series, which is an important indicator of chaos and chaotic
characteristics. If λmax > 0, the system is chaotic. A big λmax indicates strong chaos in the
time series. There are several approaches to calculate λ, such as the p-norm method [62],
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the Wolf method [63], and the small datasets method [64]. Due to the high computational
efficiency and accuracy of the small datasets method, this study used it to calculate λmax.
The steps of the small datasets method are as follows [65]:

(1) Reconstruct the phase space as given by Equation (2) using the appropriate τ and m.
(2) Choose the nearest adjacent point to every point Yj on the given orbit in phase

space dj(0) = minj

∥∥∥Yj −Yĵ

∥∥∥, |j− ĵ| > p, where p is the average period.
(3) For every point Yj, calculate the distances dj(i) of its neighborhood points after

discrete steps i: dj(i) =
∥∥∥Yj+i −Yĵ+i

∥∥∥, i = 1, 2, . . . , min(M− j, M− ĵ), M = N − (m− 1)τ.

(4) For every i, calculate the average y(i): y(i) = 1
q∆t ∑

q
j=1 ln dj(i), where q is the

number of dj(i) 6= 0.
(5) Obtain the regression line L of y using the least-squares algorithm, and the largest

Lyapunov exponent λ is the slope of line L.

3. Case Study
3.1. EDH Time Series at Three Time Scales

To obtain the EDH datasets, the hourly EDH data were calculated using the Navy At-
mospheric Vertical Surface Layer Model (NAVSLaM) based on the atmospheric parameters
from the National Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) dataset [66]. NAVSLaM is a kind of LKB model [67,68]. As described in
the Introduction, the LKB model calculates the modified refractivity M profiles from the
air temperature T (K), total atmospheric pressure P (hPa), partial pressure of water vapor
e (hPa), and the height above sea surface z (m) as follows [69]:

M =
77.6P

T
− 5.6

e
T
+ 3.75× 105 e

T2 + 0.157z (7)

The profiles of the temperature and pressure required by Equation (7) are then cal-
culated from the NCEP CFSR variables (air temperature (2 m), sea surface temperature,
specific humidity (2 m), U and V wind components (10 m), and sea level pressure) based
on the Monin–Obukhov similarity and Liu–Katsaros–Businger theories as follows:

T(z) = T(z0θ) +
θ∗
κ

[
ln
(

z
z0θ

)
− ψh

( z
L

)]
− Γdz (8)

q(z) = q(z0q) +
q∗
κ

[
ln
(

z
z0q

)
− ψh

( z
L

)]
(9)

p(z2) = p(z1) exp
(

g(z1 − z2)

RTv

)
(10)

e =
qp

ε + (1− ε)q
(11)

Considering that the South China Sea is a hot spot for research on the evaporation
duct [37,42,70–72], we sampled the EDH data near Yongshu Reef located in the center of
the SCS to construct the EDH datasets, as shown in Figure 1. The NCEP CFSR dataset
covers a 32 years period (1979–2010), and the EDH dataset constructed in our study was
also limited to this period. The daily and monthly EDH time series were averaged from
hourly data.
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Figure 1. Three datasets of the EDH time series with different timescale:s (a) hourly, (b) daily, and
(c) monthly.

3.2. Statistical Characteristics

Table 1 shows the ADF t-statistic and LB p-values of the EDH time series with different
timescales. It can be seen from the results in Table 1 that the t-statistic values of the EDH
time series are less than the critical value under the significance level of 0.01. Therefore,
it can be known that the EDH time series under different timescales are stationary. The
p-values of the EDH time series calculated by the LB statistics method are 0, which is far
less than the significance level of 0.05. Therefore, it can be considered that the EDH time
series at different scales do not have white noise characteristics, are not random time series,
and contain extractable information.

Table 1. ADF test and Ljung–Box test of the EDH time series at different timescales. The t-statistic
values are −3.45, −2.87 and −2.57 for 1%, 5%, and 10% significance level, respectively.

Time Scale t-Values of ADF p-Values of Ljung–Box

Hourly −32.67 0
Daily −24.84 0

Monthly −4.71 0

3.3. Fractal Characteristics

Under three different timescales, the Hurst exponent of the EDH time series was
calculated, as shown in Table 2. Table 2 shows clearly that the EDH time series have fractal
characteristics at different timescales, and the Hurst exponent values of all three time series
are greater than 0.5. This shows that the EDH time series at different timescales obey fractal
Brownian motion. This shows that the EDH time series are not purely random and have
a positive correlation. That is to say, the observation value of each sampling time keeps
the memory of all previous states, and the future state also has a great correlation with the
present state, which shows that the EDH time series have a long-term correlation. There-
fore, the trend of the EDH time series is sustainable. This means that the EDH time series
at different timescales have long-term positive correlation characteristics and short-term
predictability. The calculation results in Table 2 also show that, with the increase of the
timescale, the Hurst exponent of the EDH time series increases. This implies that the EDH
at a small timescale is more uncertain and more vulnerable to external interference, leading
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to lower predictability. With the increase of the timescale, the predictability of the EDH
time series increases. Similarly, the results of the fractal dimension also show the same
conclusion, that is the smaller the timescale of the EDH time series is, the larger the fractal
dimension is, and the corresponding EDH time series are more complex and difficult to pre-
dict. These features are relevant to the basic atmospheric dynamics, and the roles of marine
environments across different timescales in the development of the evaporation duct are
responsible for the different characteristics in the three timescales. For example, according
to our previous study, the main environmental variables influencing the EDH include
the wind speed, SST, temperature, and specific humidity of the atmosphere [2,34,69,70].
When considering hour-to-hour variability, the fluctuations of the wind speed are more
severe than the SST. This is supported by our evaporation duct communication experiments
conducted in the South China Sea [73]. By contrast, for the timescales of days to months, it
seems the SST has more impact than the surface winds [70]. The predictability of the EDH
time series provides the basis for the research of the prediction of the EDH.

Table 2. Hurst index and fractal dimension of the EDH time series at different timescales.

Time Scale Hurst Index Fractal Dimension

Hourly 0.851 1.149
Daily 0.944 1.056

Monthly 0.961 1.039

3.4. Phase Space Reconstruction

Figure 2a shows that, when delay time τ = 15, the mutual information I(τ) reaches the
local minimum value for the first time. Therefore, the delay time τ is 15 for the hourly EDH
time series. Similarly, the delay time τ for the daily and monthly timescales is 11 and 4,
respectively. Based on the given τ values of three timescales, the optimal embedding
dimension of phase space reconstruction was computed using the G-P algorithm. Ac-
cording to the G-P algorithm, the curves of ln Cn(r) and ln r as m increases are shown in
Figure 3. Figure 4 shows the correlation dimension D curve of the three timescales. From
Figures 3 and 4, it can be seen that, when the embedding dimension m increases, ln Cn(r)
also increases. However, after reaching a certain value, it will be in a state of saturation. The
increasing of the embedding dimension has no effect on the value of the relevant integral.
As can be seen from Figure 4a, the convergence value of the correlation dimension D is
less than three. According to the m ≥ 2D + 1 principle, the embedding dimension m of the
EDH time series with the hourly timescale was determined to be seven. By analogy, the
embedding dimension m of the other EDH time series can also be obtained, which is also
listed in Table 3. Figure 5 shows three-dimensional diagrams to show the reconstructed
phase space where τ = 15, 11, and 4. The phase space diagram exhibits strange attractors
in a well-defined region, suggesting that the EDH time series’ evolution can possibly be
explained by deterministic chaos.

Table 3. The delay time τ and embedding dimension m of the EDH time series at different timescales.

Time Scale Delay Time τ Embedding Dimension m

Hourly 15 7
Daily 11 15

Monthly 4 11



Atmosphere 2022, 13, 2072 9 of 15

Figure 2. The mutual information of the EDH time series, where (a–c) are the hourly, daily, and
monthly EDH time series, respectively.

Figure 3. The curves of lnCn(r) and lnr as m increases for the EDH time series at three different
timescales: (a) hourly, (b) daily, and (c) monthly.
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Figure 4. The curves of m and correlation dimension D for the EDH time series at three different
timescales: (a) hourly, (b) daily, and (c) monthly.

Figure 5. The three-dimensional phase space of the reconstructed EDH time series at three different
timescales: (a) hourly, (b) daily, and (c) monthly.

3.5. Largest Lyapunov Exponent

Using the delay time and embedding dimension obtained above, the largest Lyapunov
exponent of the EDH time series with different timescales was calculated by using the small
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datasets method. Table 4 lists the estimations of the largest Lyapunov exponent and the
maximum predictable time. We can see that the largest Lyapunov exponents of the EDH
time series at different timescales are all greater than 0, i.e., the EDH time series show weak
chaotic characteristics. Therefore, the EDH time series can be predicted in a certain period
of time. At the same time, the results also show that, with the increase of the timescale, the
largest Lyapunov exponent of the EDH time series also increases, and the predictability
becomes weaker. On the other hand, the larger the timescale, the stronger the randomness
and the weaker the predictability of the EDH time series are.

Table 4. The maximum Lyapunov exponent of the EDH time series at the different timescales.

Time Scale Maximum Lyapunov Exponent

Hourly 0.0393
Daily 0.1876

Monthly 0.2872

4. Discussions

Based on the extensive analysis of the EDH time series at the different timescales, the
following conclusions can be drawn.

The t-statistic of the EDH time series is less than the critical value under a significance
level of 0.01. Therefore, it can be known that the EDH time series at different timescales are
stationary. This is also consistent with our previous study [42]. The LB statistical test also
demonstrated that the EDH time series have non-white noise characteristics.

The EDH time series have fractal characteristics at different timescales, and the Hurst
index is more than 0.5. The experimental results indicated that the EDH time series obey
fractal Brownian motion at different timescales, which is irregular. Therefore, the time
series of the EDH has a long-term positive correlation. This also shows that the EDH has
short-term predictability. Other scholars have shown that the Hurst index of time series
increases with the increase of the timescales, namely the randomness decreases and the
long-term correlation increases [74–76]. Our analysis found that this also exists in the EDH
time series.

The phase space of the EDH time series at the different timescales was reconstructed.
The results of the phase space reconstruction of the EDH time series showed that the delay
time and embedding dimension of the EDH time series has little relation with the timescales.
The phase space reconstruction using the determined optimal embedding dimension and
the optimal delay time showed obvious attractors. The chaotic characteristic results showed
that the EDH time series at the different timescales are predictable. However, only a short-
term prediction can be made, and the accuracy of a long-term prediction is difficult to
guarantee. In the evaporation duct’s diagnosis, the phase space parameters’ reconstruction
is of great significance for the prediction and characteristic analysis of the EDH. Therefore,
how to determine the appropriate calculation algorithm is worth studying. Therefore, in
the prediction of the EDH, phase space reconstruction technology should be introduced.
This will also be the focus of our future research.

The largest Lyapunov exponent was used to analyze the convergence of the EDH time
series with the different timescales. All the largest Lyapunov exponents of time series were
greater than zero, and the chaotic degree reflected by the EDH time series increased with a
larger timescale. With the increase of the timescale, the chaotic characteristics of the EDH
time series became stronger.

It should be pointed out that our chaotic characteristic analyses were based on the
EDH data derived from the evaporation duct model NAVSLaM, which is based on the
Monin–Obukhov similarity theory (MOST). Some researchers have suggested that, for
the moderate-to-strongly stable environments, the MOST may break down [77–81]. Con-
sidering this, in the NAVSLaM applied in our study, the latest stability functions were
adopted to improve the model performances under stable conditions [2]. In addition, we
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also identified the frequency of the stable cases in the study area using the index of the
air–sea temperature difference (ASTD). The results showed that the probability of a strongly
stable condition (ASTD > 1 ◦C), a weakly stable condition (0 ◦C < ASTD ≤ 1 ◦C), and an
unstable condition (ASTD < 0 ◦C) were 0.0018%, 17.4759%, and 82.5223%, respectively.
Therefore, the conclusions of this study are reliable and can provide a certain reference for
researchers that are interested in the characteristics of the evaporation duct over the South
China Sea.

5. Conclusions

Analyzing the chaotic features of EDH time series will be significant as it is a complex
stochastic natural phenomenon. EDH time series at different timescales were discussed
and analyzed in order to objectively understand the EDH’s fluctuation characteristics.
This study focused on three timescales of the EDH time series, namely hourly, daily, and
monthly. To analyze the chaotic dynamic characteristics and other characteristics of the
EDH at different timescales, the judgment of the non-stationary and non-white noise
characteristics was introduced, as well as the Hurst index, chaos test, and maximum
Lyapunov exponent. There were some conclusions drawn between the EDH time series
and timescales. Chaos analysis provides a new perspective to evaluate the variations of the
EDH. Traditional approaches to identifying the chaotic characteristics of time series, such
as the maximum Lyapunov exponent, correlation dimension, etc., are highly dependent on
the phase space reconstruction parameters. Thus, developing more accurate, convenient,
and effective methods to construct the phase plane parameters is essential in the future.
In addition, data with the timescale in minutes were not studied due to the limited time
resolution of the sample data. As a consequence, further investigation of the properties of
the EDH at this timescale will be needed in the future. As a result of the research presented
in this paper, we can improve our understanding of the fluctuations of EDH and improve
the accuracy of our predictions.
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