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Abstract: Uniform grid data are widely used in climate science and related interdisciplinary fields.
Such data usually describe the hydrometeorological states averaged over uniform latitude–longitude
grids. While these data have larger grid areas in the tropics than other high-latitude regions, less
attention has been paid to the areal weights of these grid data. Here, we revisited two methods
available for processing these uniform grid data, including weighted sample statistics and grid
interpolation. The former directly considers the grid area differences using geodetic weights; the latter
converts the uniform grids to equal-area grids for conventional data analysis. When applied to global
temperature and precipitation data, we found larger differences between weighted and unweighted
samples and smaller differences between weighted and interpolated samples, highlighting the
importance of areal weights in grid data analysis. Given the different results from various methods,
we call for explicit clarification of the grid data processing methods to improve reproducibility in
climate research.

Keywords: gridded datasets; weighted sample; weighted histogram; weighted sample distribution;
climate data

1. Introduction

In climate science, a growing amount of data is available in grid format for assessing cli-
mate change impacts. For example, climate model outputs (e.g., Coupled Model Intercom-
parison Project Phase 6, CMIP6, [1]), reanalysis products (e.g., European Centre for Medium-
Range Weather Forecasts, ECMWF, [2,3]), remote sensing data (e.g., Moderate-resolution
Imaging Spectroradiometer, MOIDS, [4]), and interpolated observations (e.g., [5,6]) usually
provide hydrometeorological variables in a uniform latitude–longitude grid (hereafter
referred to as uniform grid, [7]), which has the same interval in both longitude and latitude.
It is clear that the area of the grid box is latitude-dependent, which can be much larger
near the tropics than near the poles. Although it is usually not explicitly addressed in the
literature, when identifying areal features or comparing spatial distributions from different
data sources of varying resolutions, one needs to account for the areal weight in each
grid point [8]. For example, a recent article published in Nature (593, 543–547, 2021) was
retracted due to an error in accounting for the areal weights in grid data. Such mistakes
could influence the reproducibility and repeatability of climate studies and need to be
carefully investigated.

One of the approaches to account for areal weights is to treat these uniform grid data as
weighted samples. For example, geodetic weights have been accounted for when calculat-
ing Earth’s long-term energy balance from Clouds and the Earth’s Radiant Energy System
(CERES) (e.g., [9]). The weighted statistics have been used for Reynolds decomposition [10]
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and for analyzing the spatial patterns of the ecosystem [11]. Geographically weighted spa-
tial correlation coefficients, auto-correlation, and principal components analysis have been
used to quantify spatial characteristics of geochemical patterns [12]. Weighted percentiles
have also been provided in statistical computer packages [13]. While these statistics are
useful, the full weighted density distribution has seldom been investigated, in spite of it
offering detailed features across the whole spectrum of the observations.

Another approach is to interpolate these uniform grids into equal-area grids, allowing
the application of any traditional statistics. Indeed, many geographical maps are projected
as equal-area grids (e.g., Goode homolosine, Behrmann, Hobo–Dyer, and Lambert [14]).
While useful in various applications, these projections are seldom available in the original
data products and spatial interpolation may be required (e.g., [15–17]), causing biases or
errors in the subsequent analysis. In particular, equal-area isolatitudinal maps provide
uniform width in latitude but varying intervals in the longitude to achieve equal-area
grids [18]. Given that these grids are still uniform in latitude, converting uniform grids to
these equal-area isolatitudinal grids may be more efficient as discussed later in this study.

Since both weighted samples and interpolation can be used to process the uniform
grid data, it is necessary to estimate their potential differences. Towards this goal, we have
compared the basic statistics (averages, quartiles, distributions) of weighted, unweighted,
and interpolated samples in different regions around the world using some typical climate
datasets. We started by revisiting the weighted statistics and interpolation technique. When
applying these to the uniform grid data of global temperature, we found clear differences
between the unweighted and weighted statistics, but smaller differences between weighted
and interpolated data, highlighting the importance of accounting for the areal weights in
these uniform grid data. The rest of the article is organized as follows. In Section 2, we
introduce the statistics of the weighted samples along with the equal-area interpolation
techniques. We then use the gridded global temperature and precipitation data to compare
the statistics of weighted, unweighted, and interpolated samples in Section 3. The conclu-
sions are summarized in Section 4. Code for computing weighted sample distribution and
interpolation of equal-area grids is available at https://github.com/weirrui/wDistribution
and https://github.com/weirrui/eainterp (accessed on 13 July 2022).

2. Theory

In this section, we explain the weights of the uniform grid data in an idealized case
study with latitude-dependent variable. We then briefly introduce two approaches for
analyzing uniform grid data: weighted statistics and equal-area grid interpolation.

2.1. Idealized Case Study of the Weighted and Unweighted Global Averages

Before introducing two approaches for analyzing uniform grid data, we consider an
idealized case of global variable x, which is only dependent on its latitude φ, i.e., x(φ).
The geodetic weights of this variable is also a function of latitude w(φ) = cos(φ), whose
normalized form is

w(φ) =
1∫ π/2

−π/2 cos(φ)dφ
cos(φ) =

1
2

cos(φ). (1)

The global average with consideration of geodetic weights is

µw =
∫ π/2

−π/2
x(φ)w(φ)dφ =

1
2

∫ π/2

−π/2
x(φ) cos(φ)dφ, (2)

while the unweighted average is

µu =
1
π

∫ π/2

−π/2
x(φ)dφ. (3)

https://github.com/weirrui/wDistribution
https://github.com/weirrui/eainterp
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If x(φ) = x0 is constant, both averages are 0 as well. It is evident from this idealized
case study that the differences between weighted and unweighted averages directly come
from the latitude-dependent feature of the variable under consideration, which is very
common in climate studies. For example, if the variable follow the latitude-dependent
function of x(φ) = cos(φ), i.e., being maximum of 1 in the equator, and minimal of 0 in
north and south poles, the weighted and unweighted average are π/4 and 2/π, respectively,
highlighting impacts of the weights. To explore statistics besides averages, we may consider
the uniform grid data as weighted samples or interpolate the data into equal-area grids as
discussed below.

2.2. Statistics of Weighted Samples

We consider a sample from a continuous random variable, si, i = 1, 2, ..., n with the
sample size of n and non-negative weights of wi, which may be treated as the frequency or
number of occurrences. Regarding the uniform latitude–longitude grid data, wi refers to
the geodetic weights or the relative size of each grid box (e.g., cosine of the grid latitude).
The mean of the weighted samples is given as (e.g., [19,20])

µw =
1

∑n
i=1 wi

n

∑
i=1

wisi, (4)

and the weighted variance is

σ2
w =

∑n
i=1 wi(xi − µw)

2

∑n
i=1 wi

, (5)

This variance can be adjusted by Bessel’s correction to provide unbiased estimation
(e.g., [21]), although these biases may be negligible in climate studies where the high-
resolution modeling outputs usually have large sample sizes. To find the distribution of
the weighted sample, we can divide the sample into k classes, which are centered at xj
with interval ∆xj. Instead of counting the number of samples in each class, we sum the
corresponding weights, i.e.,

Cw(xj) =
n

∑
i=1

[
xj −

1
2

∆xj ≤ si < xj +
1
2

∆xj

]
wi. (6)

where [·] is Iverson bracket [22]. [P] is 1 if P is true, and 0 if P is false. The relative frequency
density is the sum of the weights in each class divided by the total weights and the interval
of the class, i.e.,

gw(xj) =
Cw(xj)

∆xj ∑n
i=1 wi

. (7)

This function also refers to the weighted histogram and has been programmed in some
statistics software (e.g., SAS [23]). It tends to be the probability density function (PDF),
p(x), for large sample sizes and class numbers

pw(x) = lim
∆x→0
n→∞

gw(xi), (8)

where ∆x is the largest size of the class interval, max ∆xj. Note that this weighted sample
distribution should be distinguished from the weighted distribution proposed by Rao [24].
Weighted distribution is associated with non-random sampling methods and the corre-
sponding weights are expressed as the function of observations (e.g., wi = f (si)), whereas
the distribution of the weighted sample discussed here can have different weights for
observations of the same value.
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With estimated pw(x), we obtain the cumulative distribution function (CDF), Pw(x)

Pw(x) =
x

∑
−∞

pw(x′)dx′. (9)

Its inverse function can be used for evaluating the weighted percentiles, x = P−1
w (k).

Specifically, when xj is chosen to be the unique values in the sample si, the corresponding
algorithm for P−1

w (k) has been programmed in some software to calculate the percentiles of
the weighted sample (e.g., [13]).

2.3. Interpolation for Equal-Area Grids

While weighted statistics should be the first choice for processing grid data since it
is the accurate way to consider the weights, we may need to convert uniform grids to
equal-area grids if more complicated statistics are required. To minimize biases introduced
by interpolation, it is reasonable to set the new grids close to the original ones. In this
regard, we may simply keep the meridional component but change the zonal interval to
have equal-area grids, which is referred to as the equal-area isolatitudinal grid [18] and
has been used in many data sets, such as the International Satellite Cloud Climatology
Project [25]. An illustrative example for such a grid conversion is provided in Figure 1. We
keep the old grid structure in the middle of the study domain (i.e., no interpolation) and
use the same latitude interval for the new grid. To keep the same grid area, the number of
the new grid in each latitude interval Nn,i should be inversely proportional to the total area
in the corresponding latitude φi,

Nn,i

cos φi
=

No

cos φc
(10)

where No is the grid number in each interval of latitude of the old grid, and φc is the
latitude at the center of the study domain. Since the number of grids needs to be an integer,
Equation (10) can be approximated as

Nn,i ≈ b
No cos φi

cos φc
e. (11)

where be refers to the function of the nearest integer. For global study, the center of the
domain is the equator and Equation (11) reduces to Nn,i ≈ bNo cos φie.

(a)  uniform grids

(b)  equal-area grids

centered at ϕc

N0 grids in each
latitude interval

Nn,i grids in each
ϕi interval

centered at ϕc

Figure 1. An illustrative example of converting (a) uniform latitude–longitude grids to (b) equal-area
isolatitudinal grids. There are constant N0 grids in each latitude interval in (a) but varying Nn,i grids
in (b).
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3. Applications

In this section, using the methods discussed above, we compare weighted and un-
weighted statistics (means, quartiles, distributions) in different regions of the world using
some typical global datasets. We also compare the distributions of weighted and interpo-
lated samples.

3.1. Statistics from Weighted and Unweighted Samples

Since not all climate studies have explicitly clarified how to process the uniform
latitude-longitude grids, it is possible that these datasets have been accidentally treated as
regular samples and induced certain biases in the corresponding statistical analysis (e.g.,
Nature vol. 593, 543–547, 2021). To estimate these biases, we first compare the basic statistics
of weighted and unweighted (i.e., regular) samples using the uniform grid temperature
data from Climatic Research Unit (CRU TS v. 4.06, crudata.uea.ac.uk/cru/data/hrg/, [26]
(accessed on 13 July 2022)) with grid resolution of 0.5× 0.5◦. We perform statistical analysis
not only for the whole land area (excluding Antarctica) but also in three large countries
(China, United States, and Canada) and three different zonal regions (0–10, 0–20, 0–40,
0–60 ◦N), covering the low-, mid-, and high-latitudes and with different latitudinal widths.
We compared the temperature time series averaged over the study domain with and
without consideration of the areal differences of the grid boxes; we also compared the
corresponding quartiles and the spatial distributions of temperature in the year 2021.

We calculated the time series of arithmetic averages (i.e., unweighted, µu) and aver-
ages with geodetic weights (i.e., weighted, µw with wi = cos(φi)) of the near-surface air
temperature over the four study domains (see Figure 2). We found that the gaps between
µw and µu can be as high as 5 K across the globe. At region scales, µw and µu are very
close in China but clearly different in the US and Canada with higher µw than µu. The
differences in the United States are mainly due to the presence of high-latitude Alaska. If
the study domain is reduced to the continental United States, the differences between µw
and µu are similar to those in China. Canada has wider latitude range than China and the
United States, and the corresponding differences between µw and µu are even greater. This
is corroborated by the comparisons among various zonal regions, where the largest latitude
range (0–60 ◦N) has the biggest differences between µw and µu. Table 1 reported the mean
absolute errors (MAE) and root mean square errors (RMSE) of these differences. Similar
patterns can be found for the time series of precipitation (see Figure 3).

Figure 2. Comparison of weighted and unweighted averages (µw and µu) of temperature time series
(a) around the globe, across (b) China, (c) the United States, (d) Canada (e) 0–10 ◦N, (f) 0–20 ◦N,
(g) 0–40 ◦N, and (h) 0–60 ◦N using CRU data.

crudata.uea.ac.uk/cru/data/hrg/
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Table 1. MAE and RMSE among the weighted and unweighted temperature time series in 1901–2021
using CRU data.

Region Global China United
States Canada 0–10 ◦N 0–20 ◦N 0–40 ◦N 0–60 ◦N

MAE 5.0202 0.3491 1.8592 2.1612 0.0013 0.0096 0.4656 1.9577
RMSE 5.0207 0.3498 1.8621 2.1623 0.0013 0.0096 0.4657 1.9582

Figure 3. As in Figure 2 but for the precipition.

While the temperature time series seem in parallel for both µu and µw from Figure 2,
certain differences can still be identified. As shown in Figure 4, the difference is about
−5.2 K in 1900 but decreases to −4.9 K in 2020, consistent with global warming trends. The
faster warming rate from unweighted averages is due to the over-representation of the
arctic regions, which tend to have faster warming rates [27,28].

Figure 4. Differences of weighted and unweighted averages of global temperature (µu − µw). Time
series of global mean temperature µw is also shown for reference.

The weighted and unweighted first quartile, denoted respectively as Q1,w and Q1,u,
are reported in Figure 5. Similar to µw and µu, the differences between Q1,w and Q1,u can be
as high as 7 K at the global scale, whereas at regional scales the differences are very close in
China but greater in the United States and Canada. Overall, Q1,w and Q1,u differences are
greater than those between µw and µ, illustrating that the weighting impacts can be greater
for extreme values. Similar patterns can be found for the inter-quartile range (IQR) defined
as the differences between the first and third quartiles (see Figure 6). These extremes were
further explored by comparing the weighted and unweighted histograms below.
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Figure 5. As in Figure 2 but for the first quartile with and without consideration of geodetic weights
(Q1,w and Q1,u).

Figure 6. As in Figure 2 but for the interquartile range (IQR) with and without consideration of
geodetic weights (IQRw and IQRu).

The probability density functions in the year of 2021 from grid data with and without
consideration of geodetic weights (i.e., pw(T) and pu(T)) are presented in Figure 7. At the
global scale, the differences are large in the left tails (low-temperature regime), whereas
they are smaller in the right tails (high-temperature regime). At a regional scale, pw(T)
and pu(T) are almost identical in China but greater in the US and Canada. In general,
the differences are greater for wider latitude ranges (see Figure 7e–h). These distributions
explain that the differences between averages and quartiles in Figures 2 and 5 come from
the over-representation of low temperature in the unweighted samples. With denser grids
in high-latitude regions in the uniform grid data, unweighted averages and quartiles are
certainly lower and cannot represent the real observations.
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Figure 7. As in Figure 2 but for temperature distributions with and without consideration of geodetic
weights (pw(T) and pu(T)).

3.2. Distributions from Weighted and Interpolated Samples

To quantify the biases induced by the interpolation, we compared the distributions
from weighted and interpolated samples. We applied the grid conversion in Section 2.3
to the CRU data by setting the center of the domain as the equator and using bilinear
interpolation. It should be noted that, aside from this bilinear interpolation, equal-area
grids provided in this study can be directly applied with any interpolation technique,
which may be more suitable for capturing the specific spatial heterogeneity (e.g., elevation-
dependent spatial information).

As reported in Figure 8, these two temperature distributions, pw(T) and pi(T), show
smaller differences at the global scale but slightly larger differences at regional scales,
suggesting our equal-area isolatitudinal grid interpolation could be a valid method for
processing climate data.

The biases induced by interpolation may also depend on the spatial variations of
the variable. To address this point, we also investigate the distributions of precipitation,
another typical hydrometeorological variable. As reported in Fig. 6, the global distributions
of weighted and interpolated precipitation, pw(R) and pi(R), are almost identical for
R ≤ 200 mm/month but slightly different for R > 200 mm/month. It should be noted
that the distributions are on a logarithmic scale. Similar patterns were also observed at
regional scales with greater differences in precipitation distributions for the extreme values,
suggesting greater interpolation biases over the wetter regions.

The resolutions of the data determine the amount of information available for inter-
polation and thus influence the accuracy of the derived data. For this reason, we also
investigated the temperature data from HadCRUT, which has a much coarser resolution of
5× 5◦ in both latitude and longitude (crudata.uea.ac.uk/cru/data/temperature, [29,30]
(accessed on July 2022)). As discussed later, pw(T) and pi(T) have smaller differences at
global scale. When compared with the CRU data (i.e., Figures 9 and 10), the differences
between pw(T) and pi(T) are more evident for data with coarse resolutions, which provide
less accurate information for spatial interpolation and consequently result in greater biases.

crudata.uea.ac.uk/cru/data/temperature
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Figure 8. Comparison of the temperature distributions from weighted and interpolated samples
in 2021 (a) over the globe, across (b) China, (c) the United States, and (d) Canada (e) 0–10 ◦N,
(f) 0–20 ◦N, (g) 0–40 ◦N, (h) 0–60 ◦N using CRU data.

Figure 9. As in Figure 8 but for precipitation distributions.
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Figure 10. As in Figure 8 but for HadTEMSST data.

4. Conclusions

In this study, we revisited the methods available for processing uniform latitude–
longitude grid data, which have uneven grid areas across different regions of the world. We
explained weighted sample statistics and provided mathematical expressions for calculating
the weighted sample distribution. We also introduced the interpolation approach to
converting uniform grids to equal-area grids by setting the new grids close to the old ones.
These two methods were then applied to global temperature and precipitation data to
compare statistics from both weighted and interpolated samples. The results not only show
larger differences between weighted and unweighted samples and smaller ones between
weighted and interpolated samples, but also demonstrate that these differences depend on
the locations, variables, and resolutions of the data.

These findings have significant implications for the future applications of grid data ex-
tensively used in climate studies. The large differences between weighted and unweighted
samples suggest that we should consider the areal weights when processing the uniform
grid data. Biases or errors can be large in study domains with large latitude ranges and/or
in high-latitude regions. When conventional statistics are not available for weighted sam-
ples, converting to equal-area grids is a promising method, which can be accurate as long
as the data are relatively smooth and in high spatial resolutions. Given the clear differ-
ences amoung various approaches, we call for explicit clarification of the data processing
methods, thus improving the reproducibility and replicability of future climate studies.
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