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Abstract: In the rapid urbanization process, climate change has a huge impact on the urban thermal
environment, and the urban heat island has attracted widespread attention from society. How to
better detect, analyze, and evaluate the urban heat island effect has become a hot issue in current
urban environmental research. However, the correlation analysis of heat island factors mostly adopts
the conventional least square method, without considering the correlation of and the interaction
between spatial elements. At the same time, the single analysis method makes it difficult to analyze
environmental problems scientifically, which leads to great bias. Therefore, in this paper, the spatial
autoregressive confusion model was used to analyze the satellite data of Beijing, and a preliminary
temperature model of Beijing for all seasons was established. The regression results show that the
surface temperature of Beijing has a strong spatial autocorrelation, and that the modified normalized
difference water index and the normalized differential vegetation index have a strong negative effect
on the land surface temperature. The prediction models established in this study can provide accurate
and sustainable data support in the urbanization process and aid in the creation of a sustainable and
effective urban environment.

Keywords: spatial autoregressive model; spatial analysis; urban heat island effect (UHI); urban land
surface characteristics; land surface temperature (LST)

1. Introduction

The development of cities is accompanied by the progress of human civilization, which
is a very complex collection of human activities. According to the World Urbanization
Prospects 2018, 55% of the world’s population was projected to live in cities by 2021. By
2050, 68% of the population will live in cities, and the global urban population will increase
by 2.5 billion [1]. Nearly 90% of this growth has occurred in Asia and Africa. The density
of buildings in cities is a key element in the process of the high-speed urbanization process.
Green spaces are constantly changing into impermeable surfaces [2–4]. This will lead
to the urban heat island (UHI) effect [5]. The worsening environmental effect leads to
increased urban building energy consumption, decreased air quality [6], and damaged
human health [7]. The construction of sustainable development is of great importance, so
increasing attention is currently being paid to it, as can be seen by the establishment of
the UNFCCC [8] and UN Climate Action Summit [9]. These conferences have provided a
comprehensive discussion of temperature and sustainability and have contributed greatly
to environmental sustainability efforts around the world.

UHI caused by urbanization not only increases the energy consumption of buildings in
cities, but also brings largely hidden dangers to the health of urban residents [10]. Sachiko
Kodera [11] conducted a computational study of three cities (Tokyo, Osaka, and Aichi) in
Japan from 2013 to 2018, and the results of the study show that the incidence of disease
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in residents significantly increases after two or three consecutive hot weather events. Kai
Chen’s [12] research found that a high temperature over four consecutive days will increase
total mortality by 24.6%, cardiovascular mortality by 46.9%, respiratory mortality by 32.0%
and stroke mortality by 51.3%. With the increase in urban temperature, morbidity and
mortality related to heat waves are on the rise [13]. Therefore, it is very important to solve
the problems of urbanization and the hidden dangers of high temperatures.

According to Tobler’s First Law of Geography, geographic phenomena exhibit strong
spatial autocorrelations, and the heat island effect is no exception [14]. Therefore, some
previous studies have elucidated the influence of each relevant index on heat islands, to
some extent [15], but the spatial autocorrelation was not considered, which led to a low
accuracy of the model. The emergence of various analytical tools, such as the spatial
regression model, has led to a new perspective on spatial issues and is an important tool for
studying urban phenomena. Therefore, in the method, we use a spatial regression model to
solve these problems.

2. Study Area and Data
2.1. Study Scale
2.1.1. Spatial Scale

Beijing (east longitude 116◦20′, north latitude 39◦56′) is the capital of China. The cli-
mate of Beijing is a typical semi-humid continental monsoon climate in the north temperate
zone. The total land area is 16,411 km2, of which the plain area is 6338 km2, accounting
for 38.6%; and the mountainous area is 10,072 km2, accounting for 61.4%. Beijing includes
many urban elements, such as residences, commerce, offices, parks, rivers, etc. Thus, the
study results based on Beijing are universally applicable.

2.1.2. Spatial Scale

In this paper, we use remote sensing data from the NASA Landsat-8 satellite. The
global cycle of the satellite is 16 days. The Landsat-8 satellite has two major sensors:
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The spatial
resolution of nine multispectral bands of OLI is 30 m, and the spatial resolution of the two
multispectral bands of TIRS is 120 m.

We should consider the influence of cloud amounts on land surface data through
remote sensing image data inversion. Images with less than a 5% cloud amount should be
selected. Because of the climate factors in Beijing, few satellite images meet the requirement
for an accurate cloud amount inversion.

Thus, it is unrealistic to use bimonthly interval data [16]. To obtain more accurate
results, we do not choose satellite data with the same quarterly time interval. The remote
sensing image from midmonth is selected, according to the time characteristics of the four
seasons in Beijing (01/2017, 05/2017, 07/2017, 09/2017) [16].

2.2. Urban Land Surface Characteristics
2.2.1. Land Surface Temperature (LST)

OLI bands from the NASA Landsat-8 satellite, with a spatial resolution of 30 m by
30 m, are used, but the spatial resolution of the TIRS bands is 120 m by 120 m. Therefore,
the TIRS bands should be resampled to a resolution of 30 m by 30 m (a 120 m × 120 m
unit will be divided into an average of 1630 m × 30 m units) for various unified spatial
resolutions of the data (See Figure 1).

The spatial scale of the daily temperature (DT) of sparse weather stations in Beijing
is not uniform, and the spatial resolution is too small, so it is not suitable to assess the
spatial autocorrelation effect of air temperature [15]. The inversion of LST data by the
atmospheric correction method has developed over many years [12], so obtaining the LST
by this method is very accurate, and the LST has a higher spatial resolution. Thus, based
on this method, we can study the effects between different city characteristics and LSTs
across the whole city.
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2.2.2. Normalized Differential Vegetation Index (NDVI)

Because the microclimate of the city can be improved by the cooling effect of vegetation
transpiration and the canopy shading of hot sunlight radiation [17], the vegetation index
has been used in many statistical studies. This index can be used to simply measure the
coverage of plants. There are many different computing methods and different application
scopes that can be used. The vegetation in Beijing is not dense, and the NDVI is suitable for
use in areas with low vegetation density, so we chose to use the NDVI. The calculation is as
follows:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρRED is the red band form Landsat-8; ρNIR is the shortwave infrared band form
Landsat-8. The NDVI ranged from −1.0 to 1.0. A value close to +1 indicates high-density
vegetation, and a negative value indicates clouds, water, and snow (See Figure 2).
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Figure 2. The NDVIs of Beijing: 31 January 2017, 7 May 2017, 10 July 2017, and 28 September 2017.

Due to the growth of vegetation, the NDVI will have a different performance over
the course of one year. Therefore, the NDVI of the fourth phase of the year is computed
through the ENVI (The Environment for Visualizing Images) platform.

2.2.3. Vegetation Classification (VC)

The vegetation classification (VC), based on vegetation coverage (VFC), can be roughly
divided into 2 categories: remote sensing calculation methods and field survey methods.
The field survey method is more accurate, but it is difficult to measure over a large area [18].
The remote sensing method is widely used to obtain the VFC within cities and is based on
the NDVI. The calculation is as follows:

VFC =
NDVIi −NDVImin

NDVImax −NDVImin
(2)

where NDVIi is the NDVI value of point i; and NDVImin is the NDVI value of the bare
soil, which should be close to 0 in theory, and NDVImax is the NDVI value of the densest
vegetation in the dataset, which should be close to 1 in theory. According to the obtained
VFC, vegetation is divided into four types, among which 0–0.3 represents no vegetation,
0.3–0.5 represents grassland, 0.5–0.7 represents shrubs, and 0.7–1.0 represents trees (see
Figure 3).
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2.2.4. Modified Normalized Difference Water Index (MNDWI)

Mcfeeters proposed the normalized difference water index (NDWI), but the water
information based on NDWI is always intermingled with nonwater information, such
as building information or vegetation information. Thus, the NDWI is not suitable to
extract water data within the city. Xu proposed the modified normalized difference water
index (MNDWI), which can be used to accurately extract water information data within
vegetation areas and large cities [19]. The calculation is as follows:

MNDWI =
ρGREEN − ρMIR
ρGREEN + ρMIR

(3)

MWI = WMNDVI =

{
0, MNDWI < 0
1, MNDWI ≥ 0

(4)

where ρGREEN is the green band form Landsat-8; ρMIR is the middle infrared band form
Landsat-8. When the MNDWI value is less than 0, the extracted water index (MWI) will be
0; if not, the MWI will be 1.

2.2.5. Impervious Surfaces Index (ISI)

The impervious surfaces of cities refer to surfaces covered by various building ma-
terials in urban areas. Xu proposed the normalized difference impervious surfaces index
(NDISI) in 2008 [20]. It is an extracted impervious surface information method that excludes
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other surface elements in the city, such as soil, vegetation, and water. The calculation is as
follows:

NDISI =
ρTIR − [(MNDWI + ρNIR + ρMIR)/3]
ρTIR + [(MNDWI + ρNIR + ρMIR)/3]

(5)

ISI = WNDISI


0, NDISI < 0.1028
1, 0.1028 ≤ NDISI ≤ 0.520
0, 0.520 < NDISI

(6)

where ρTIR is the thermal infrared band. When the NDISI value is less than 0.520 and
greater than 0.1028, the ISI will output 1; if not, the ISI will output 0 (see Figure 4).
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2.2.6. Building Silhouette Index (BS)

The normalized difference building index (NDBI), which is like the other various land
surface indexes discussed in this article, is used by many researchers to obtain building
information data in the study area [20,21]. This study focuses on the building greening
social trend, which is advancing at a high speed, especially in the study area of Beijing,
which has a positive greening policy. However, NDBI cannot distinguish high-vegetation
buildings, and we did not choose this index to obtain building information data. We
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used the combination of BS and NDVI; buildings with high NDVI values are defined as
“high-vegetation buildings;” thus, this method compensates for the drawback that high-
vegetation buildings cannot be extracted correctly by remote sensing data. As mentioned
above, we extract the building silhouette index (BS) from the accurate mapping data of the
authoritative map provider GaoDe using ArcGIS software.

2.3. Social Economic Index
2.3.1. Population Density Index (PD)

We obtained PD data for every area in Beijing from the authoritative data provider
Baidu. Based on the population data, we used inverse distance weighting (IDW) through
ArcGIS software to obtain a population density index (PD) with a spatial resolution of 30
m [22,23].

2.3.2. NPP-VIIRS (NPP)g Silhouette Index (BS)

NPP-VIIRS (NPP) is the night light index from the Visible Infrared Imaging Radiometer
Suite (VIIRS) of the NOAA National Center for Environment Information. The monthly
average data used excluded lightning, moonlight, cloud cover, and other effects [24].

2.4. Data Extraction

We matched the various rasterization urban land characteristic data obtained through
remote sensing image data to the geographical coordinates of Beijing and built the netting
twine, with an interval of 30 m. This formed 16,354 sample points that were evenly spatially
distributed; among them, 37 points were excluded because of the effect of cloud cover.
Finally, we obtained 16,312 sample points. There are characteristic data of eight types and
four periods, used as the regression data, including LST, NDVI, VC, MWI, ISI, BS, PD, and
NPP (see Table 1).

Table 1. Variables in the study.

Variable Definition Sample Size Reference

Dependent
variable LST LST is the specific value of remote sensing inversion land

surface temperature. 16,312 × 4 Meiyan Zhao [24]

Independent
variables NDVI NDVI is the specific value of the vegetation index. 16,312 × 4 Bumseok Chun [14]

Independent
variables VC

VC distinguishes the vegetation classification based on
VFC. It is divided into 4 types: no vegetation, grassland,
shrubs, and trees, which are represented by 1, 2, 3, and 4,

respectively.

16,312 × 4 Wenbo Zhang [16]

Independent
variables MWI

MWI distinguishes the water classification based on
MNDWI. It is divided into 2 types: no vegetation, and
water, which are represented by 0 and 1, respectively.

16,312 × 4 Hanqiu Xu [25]

Independent
variables ISI

ISI distinguishes the impervious surfaces classification
based on NDISI. It is divided into 2 types: no impervious
surfaces, and impervious surfaces, which are represented

by 0 and 1, respectively.

16,312 × 4 Hanqiu Xu [25]

Independent
variables BS

BS is based on the building data of the map provider. It
is divided into 2 types: no building, and building, which

are represented by 0 and 1, respectively.
16,312 × 4

Independent
variables PD PD is based on the geospatial data of the map provider.

The data type is a specific value. 16,312 × 4

Independent
variables NPP NPP is the night light index from NOAA. The data type

is a specific value. 16,312 × 4 Nannan Gao [24]
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3. Methods

The 4-period LST image of Figure 1 shows that the LST has an apparent spatial
clustering characteristic. This is because the mobility of air provides the possibility for
changes in LST according to the surroundings.

In this study, urban land surface characteristics data and social-economic data are
used to establish the prediction model of the urban heat island effect using a spatial
autoregressive model, and the specific research steps are as follows (see Figure 5).
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4. Experiment and Results
4.1. Global Spatial Autocorrelation Test

According to Tobler’s First Law of Geography, ‘Everything is related to everything
else, but near things are more related to each other, the spatial autocorrelation test is the
precondition in the spatial analysis. It is the correlation between measurement variables
and the relationship between distant locations in geographical space. Global Moran’s I is
an effective method for determining the spatial convergence of the described variables. The
calculation is as follows:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xi − X

)2 (7)
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where n is the number of sample data, Xi and Xj are the observation values of spatial points
i and j, and Wij is the spatial weight of spatial points i and j. The value range of Global
Moran’s I is [−1, 1]. Value (0, 1] represents spatial clustering, value [−1, 0) represents
spatial anomalies, and 0 means the data do not have a spatial autocorrelation.

The Moran’s values of the 4-period LST are all positive values, and the p-values are all
less than 0.01 (see Figure 6). Thus, the results of the Global Moran’s tests have statistical
significance. The spatial autocorrelation of the 10 July 2017 LST and 28 September 2017
LST is the most obvious, which is consistent with the LST prediction in the previous model
estimation. In summary, the test results show that the 4 LST periods all have obvious global
spatial autocorrelations. Therefore, the analysis of this dataset by the spatial regression
model is reasonable.
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4.2. Local Spatial Correlation Test

The saliency of Beijing shows interesting changes with seasonal replacements (see
Figure 7). Among them, in spring, summer, and autumn (7 May 2017, 10 July 2017, and 28
September 2017, respectively), the saliency of the urban area and mountain area is higher
than that of the transition area. However, in winter (31 January 2017), the opposite is
true. The saliency of its transition area is significantly higher than that of its urban and
mountainous areas.
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and 28 September 2017.

The LISA clustering map is composed of grey, red, blue, light blue, and light red colors,
and these colors correspond to five different types of spatial correlations: nonsignificant,
H-H, L-L, L-H, and H-l, respectively. In the map of the 4 LST periods, H-H and L-L
account for a higher proportion (39.7%, 42.3%, 49.2%, and 53.5%), which shows that the
spatial clustering of LST has a dominant position. Except for during winter, H-H is mainly
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distributed in urban areas, L-L is mainly distributed in mountainous areas, and L-H and
H-L account for a small proportion (4%, 1.3%, 1%, and 0.8%). This result shows that the
spatial anomalies of the data are low.

As mentioned above, the global and local spatial autocorrelations of all LST data have
statistical significance. Thus, we should apply a spatial regression model to decrease the
estimation bias caused by the OLS model, neglecting spatial correlation [25].

4.3. Classical Spatial Regression Model

The spatial regression model includes 2 kinds of classical regression models: the
spatial lag model (SLM) and the spatial error model (SEM). SLM mainly considers the
dependent variables of spatial autocorrelation, and SEM considers the errors of spatial
autocorrelation [26]. The two models are as follows:

Spatial lag model (SLM)

LST = a0 + ρWLST + a1NDVI + a2VC + a3MWI + a4ISI + a5BS + a6PD + a7NPP + ε (8)

In (8), ρ is the coefficient of spatial autocorrelation, a0 is the model intercept, a1, a2, . . . ,
a7 are the deviation rate coefficients, ε is a random disturbance, and W is the spatial weight
matrix, which represents the weight of the adjacent observations. The spatial weight matrix
of this paper is constructed using the Queen connection, which means that if the sampling
points i and j have the same edge or vertex, the element Wij is 1; otherwise, it is 0. SLM
mainly considers the spatial correlation between the LST observed at sampling point i and
the LST observed at neighboring sampling point j.

Spatial error model (SEM)

LST = a0 + a1NDVI + a2VC + a3MWI + a4ISI + a5BS + a6PD + a7NPP + ε
ε = λWε+ µ

(9)

In (9), λ is the error coefficient of spatial autocorrelation; µ is the error term. SEM
mainly considers the spatial autocorrelation of error.

4.4. Spatial Regression Model Selection

To select from two kinds of classical spatial regression models, SLM and SEM were
used for the calculation. We need to use the Lagrange Multiplier (LM) Test for the data,
which contains two kinds of statistics: Lagrange Multiplier (lag) and Lagrange Multiplier
(error). If the statistics of the LM (lag) are significant, SLM will be selected; otherwise, SEM
will be selected. When the two kinds of statistics are both significant, we will use the robust
LM test. This test also includes 2 kinds of statistics: robust LM (lag) and robust LM (error).
If the statistics of robust LM (lag) are significant, SLM will be selected; otherwise, SEM will
be selected [18].

Table 2 shows the results of LM and robust LM. We find that the probability of
robust LM (error) value for the 31 January 2017 data is 0.00005, and although it is slightly
higher than the robust LM (error) for the 31 January 2017 data, it still has high statistical
significance. The other 14 kinds of statistics are all very significant. If we only choose SLM
or SEM, a new estimation bias will result. Thus, we add the spatial autoregressive confused
model (SAC). SAC considers the spatial autocorrelation of the dependent variable and error,
and this is the combination between SLM and SEM. The SAC calculation is as follows:

LST = a0 + ρWLST + a1NDVI + a2VC + a3MWI + a4ISI + a5BS + a6PD + a7NPP + ε
ε = λWε+ µ

(10)

To judge whether SAC is better than SLM, SEM, and OLS, we comparatively analyzed
the R-squared value, as well as the log likelihood (LL), Akaike info criterion (AIC), and
Schwarz criterion (SC). The larger the LL is, the smaller the AIC and SC will be, and the
better the fitting effect of the model.
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Table 3 shows the four kinds of statistics of OLS, SLM, SEM, and SAC. According to
the value of R-squared, LL, AIC, and SC, we find that the evaluation of OLS is the lowest in
the four regression models, and it has a large disparity with the others in various aspects.
The result shows that the OLS has a significant estimation bias.

Table 2. LM tests and robust LMs: 31 January 2017, 7 May 2017, 10 July 2017, and 28 September 2017.

Test DF Value Prob

31 January 2017

LM (lag) 1 12,702.248 0.00000
LM (error) 1 12,226.630 0.00000

Robust LM (lag) 1 491.976 0.00000
Robust LM (error) 1 16.358 0.00000

7 May 2017

LM (lag) 1 12,031.816 0.00005
LM (error) 1 8981.336 0.00000

Robust LM (lag) 1 3729.714 0.00000
Robust LM (error) 1 679.234 0.00000

10 July 2017

LM (lag) 1 13,404.085 0.00000
LM (error) 1 12,304.683 0.00000

Robust LM (lag) 1 3321.107 0.00000
Robust LM (error) 1 2221.705 0.00000

28 September 2017

LM (lag) 1 17,828.008 0.00000
LM (error) 1 13,760.561 0.00000

Robust LM (lag) 1 4624.560 0.00000
Robust LM (error) 1 557.113 0.00000

Table 3. OLS, SLM, SEM, and SAC: 31 January 2017, 7 May 2017, 10 July 2017, and 28 September
2017.

Test OLS SLM SEM SAC

31 January 2017

R-squared 0.074 0.540 0.591 0.691
Log likelihood (LL) −42,237.900 −37,706.600 −36,905.640 −34,491.360

Akaike info criterion (AIC) 84,491.800 75,431.200 73,827.300 69,000.700
Schwarz criterion (SC) 84,553.400 75,500.500 73,888.900 69,070.000

7 May 2017

R-squared 0.593 0.803 0.800 0.819
Log likelihood (LL) −35,328.600 −30,127.500 −30,840.120 −28,988.690

Akaike info criterion (AIC) 70,673.100 60,273.000 61,696.200 57,995.400
Schwarz criterion (SC) 70,734.700 60,342.300 61,757.800 58,064.700

10 July 2017

R-squared 0.702 0.868 0.876 0.872
Log likelihood (LL) −37,754.300 −31,801.300 −32,113.650 −30,942.850

Akaike info criterion (AIC) 75,524.500 63,620.600 64,243.300 61,903.700
Schwarz criterion (SC) 75,586.100 63,689.900 64,304.900 61,973.000

28 September 2017

R-squared 0.509 0.830 0.828 0.860
Log likelihood (LL) −38,889.600 −31,306.300 −31,929.120 −29,282.220

Akaike info criterion (AIC) 77,795.200 62,630.500 63,874.200 58,582.400
Schwarz criterion (SC) 77,856.800 62,699.800 63,935.800 58,651.700

The statistics of SLM and SEM have their own advantages and disadvantages, but
they are nearly the same. The result is the same as the significance comparison result of LM
and Robust LM in the preceding paper, which shows that the OLS has obvious advantages
because of SLM and SEM. Although they consider two types of aspects, dependent variable
and error, these statistics have the same important meanings.

The evaluation of SAC is the best of the four regression models and has an obvious
disparity with the other models. Although the R-squared of SAC is slightly smaller than
that of the SEM in the 10 July 2017 data, the results of LL, AIC, and SC of SAC are better than
those of SEM. The value range of R-squared is [0, 1], and it can only judge the fitting degree
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of the model and cannot judge whether the model has an overfitting problem. Therefore,
we need to increase the consideration of LL, AIC, and SC to prevent the overfitting caused
by the high accuracy of the model. In summary, the SAC model is selected for the spatial
regression analysis.

4.5. SAC Analysis and Results

We use SAC to fit the regression curves between the eight independent variables and
the dependent variable LST, and the fitting results of the four periods of data are shown in
Table 4.

Table 4. SAC coefficients: 31 January 2017, 7 May 2017, 10 July 2017, and 28 September 2017.

SAC Coefficient St. Error Standard
Coefficient z-Value Probability

31 January
2017

CONSTANT −1.4689 0.0378 −0.0299 −38.8248 0.0000
WLST 1.1011 0.0036 0.0021 306.6590 0.0000
NDVI 1.7996 0.2628 0.2541 6.8479 0.0000

VC 0.3370 0.0249 0.0045 13.5376 0.0000
MWI 0.3664 0.0934 0.0184 3.9240 0.0001

ISI 0.2702 0.0406 0.0059 6.6529 0.0000
BS −0.2932 0.0576 −0.0091 −5.0924 0.0000
PD 0.0469 0.0106 0.0003 4.3917 0.0000

NPP 0.0052 0.0014 0.0000 3.7856 0.0002
Wε −0.9768 0.0135 −0.0071 −72.6171 0.0000

7 May 2017

CONSTANT 7.4132 0.1462 0.7701 50.6929 0.0000
WLST 0.8188 0.0043 0.0025 190.0250 0.0000
NDVI −4.3804 0.1617 −0.5030 −27.0980 0.0000

VC 0.1058 0.0309 0.0023 3.4282 0.0006
MWI −8.6979 0.1301 −0.8036 −66.8722 0.0000

ISI −0.3029 0.0397 −0.0086 −7.6224 0.0000
BS −0.2602 0.0463 −0.0086 −5.6211 0.0000
PD 0.0085 0.0097 0.0001 0.8745 0.3818

NPP −0.0161 0.0015 0.0000 −10.4426 0.0000
Wε −0.4481 0.0146 −0.0046 −30.7198 0.0000

10 July
2017

CONSTANT 10.7143 0.1764 1.1792 60.7504 0.0000
WLST 0.7546 0.0042 0.0020 181.7900 0.0000
NDVI −5.1329 0.1918 −0.6143 −26.7624 0.0000

VC 0.2188 0.0436 0.0060 5.0216 0.0000
MWI −5.4404 0.1503 −0.5103 −36.1968 0.0000

ISI 1.0346 0.0600 0.0387 17.2477 0.0000
BS 1.1800 0.0548 0.0404 21.5207 0.0000
PD 0.0325 0.0121 0.0002 2.6937 0.0071

NPP −0.0053 0.0017 0.0000 −3.0318 0.0024
Wε −0.2715 0.0144 −0.0024 −18.8543 0.0000

28
September

2017

CONSTANT 3.3573 0.1081 0.2591 31.0541 0.0000
WLST 0.9214 0.0031 0.0020 301.9430 0.0000
NDVI −4.1958 0.1309 −0.3920 −32.0533 0.0000

VC 0.2421 0.0301 0.0052 8.0367 0.0000
MWI −2.2338 0.0952 −0.1518 −23.4673 0.0000

ISI −0.3029 0.0500 −0.0108 −6.0557 0.0000
BS 0.0410 0.0460 0.0013 0.8903 0.3733
PD 0.0094 0.0088 0.0001 0.0107 0.9914

NPP −0.0119 0.0011 0.0000 −10.5865 0.0000
Wε −0.7061 0.0143 −0.0072 −49.2079 0.0000

a. dependent variable: LST

b. independent variables: WLST, NDVI, VC, MWI, ISI, BS, PD, NPP
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From the overall view of Table 4, the effects of NDVI and MWI on LST were very
significant, and both were statistically significant. Among them, the standard coefficients
of NDVI and MWI were negative in spring, summer, and autumn (−0.5030, −0.6143, and
−0.3920 for NDVI; −0.8036, −0.5203, and −0.3920 for MWI), indicating that NDVI and
MWI have a strong cooling effect on the temperature of the city. Therefore, increasing the
two variables, NDVI and MWI, can effectively mitigate the UHI.

Specifically, among all variables, the highest standard coefficient is MWI in the spring
model, which indicates that the influence of water bodies shows a large variation, with a
standard coefficient of −0.8036, thus showing that MWI can significantly decrease the LST
in spring, and when other conditions are constant, an increase of 0.1 in MWI will reduce
the LST by 0.8697 ◦C. This is because the effect of water bodies on urban temperature lies in
their conversion of sensible and latent heat fluxes. On the one hand, the high heat capacity
creates a “thermostat effect” on the water body, compared to the surrounding building
materials [27]. On the other hand, evaporation from water bodies leads to a significant
“oasis effect,” a phenomenon that plays an important role in reducing the surrounding
surface temperature [28]. Water bodies act as cooling islands (UCI) in urban areas due to
the temperature difference in the nearby environment [29]. Therefore, the urban water
space is a key point to mitigate the heat island effect.

Secondly, the effect of NDVI showed a large variation among all variables, which
indicates that NDVI can significantly improve LST. In spring, when NDVI increases by
0.1, LST will decrease by 0.4380 ◦C; in summer, when NDVI increases by 0.1, LST will
decrease by 0.5133 ◦C; in autumn, when NDVI increases by 0.1, LST will decrease by 0.4196
◦C; interestingly, in the winter model, the coefficient of NDVI was positive, indicating a
negative correlation between LST and NDVI in winter, which was not the same as initially
expected. This is because the leaves of vegetation may have the function of blocking the
wind, thus reducing the influence of cold winter air. NDVI not only reduces LST, but also
improves winter temperatures. In general, the greater the NDVI, the lower the surface
temperature, which indicates that increasing the urban greening rate has a mitigating
effect on the urban heat island and can have a cooling effect. Greening can reduce the
outdoor temperature of buildings through the evaporative effect of plants and the blockage
of sunlight by vegetation [30]. The convergence of urban green spaces, such as urban
parks and public facilities, can change the urban microenvironment by affecting the local
temperature, humidity, and air composition to obtain a relatively cooler area.

Finally, the standard coefficients of ISI and BS are significantly different from NDVI
and MWI, and the coefficients of BS in spring and winter and ISI in spring and autumn are
both negative. Thus, buildings in the city are not a significant cause of UHI, but buildings
encroach on vegetation space, leading to higher temperatures.

5. Conclusions

Previous studies have mostly focused on a single spatial scale and used classical
statistical analysis as the calculation method, which cannot realize the consideration of
spatial effects. Moreover, it is difficult to consider the influence of the plastic area unit
problem on the analysis results, and the results often have large errors. The above problems
motivated this study to investigate the spatial relationship between heat island intensity
and surface environment using a spatial regression confusion model.

Firstly, eight surface environmental and socioeconomic data, including LST, NDVI,
VC, MWI, ISI, BS, PD, and NPP, were obtained using the NASALandsat-8 satellite and
authoritative data from the Beijing Meteorological Station. To evaluate the heat island
effect in different periods throughout the year, we obtained four datasets for different time
periods.

Then, we checked the spatial correlation of the datasets and evaluated the data of seven
independent variables for each dataset using the SAC model to establish the relationship
between the above data and surface temperature. The regression results show that the
surface temperature in Beijing has a strong spatial autocorrelation, in which NDVI and
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MWI have a strong influence on the outdoor temperature of buildings at different times of
the year, indicating that water bodies and greenery are the main factors determining the
surface temperature in the city.

Therefore, in the urbanization process of addressing climate change, it is necessary
to increase urban greening and protect water bodies to mitigate the urban heat island
effect and promote ecological city construction. Specifically, over the course of a year,
when the NDVI increases by 0.1, the LST will decrease by a maximum of 0.803 ◦C. When
the MWI increases by 0.1, the LST decreases by 0.392 ◦C to 0.503 ◦C. This conclusion
provides policymakers with a valid judgment criterion that can be used for targeted policy
formulation and sustainable urban planning.
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