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Abstract: The PM10 concentration is subject to significant changes brought on by both gaseous and
meteorological variables. The aim of this research was to explore the performance of a hybrid model
combining the support vector machine (SVM) and the boosted regression trees (BRT) technique in
predicting the PM10 concentration for 3 consecutive days. The BRT model was trained by utilizing
maximum daily data in the cities of Alor Setar, Klang, and Kuching from the years 2002 to 2017. The
SVM–BRT model can optimize the number of predictors and predict PM10 concentration; it was shown
to be capable of predicting air pollution based on the models’ performance with NAE (0.15–0.33),
RMSE (10.46–32.60), R2 (0.33–0.70), IA (0.59–0.91), and PA (0.50–0.84). This was accomplished while
saving training time by reducing the feature size given in the data representation and preventing
learning from noise (overfitting) to improve accuracy. This knowledge establishes the foundation for
the development of efficient methods to prevent and/or minimize the health effects of PM10 exposure
on one’s health.

Keywords: prediction; particulate matter (PM10); support vector machine; boosted regression trees

1. Introduction

The Malaysian Department of Environment (DoE) maintains a continuous monitoring
system for the country’s ambient air quality, which is currently set at 68. The calculation of
the Air Pollution Index (API) uses the concentration of six major pollutants: particulate
matter 10 µm or less (PM10), particulate matter 2.5 µm or less (PM2.5), ground-level ozone
(O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Up until
2017, PM10 was the primary contributor to Malaysia’s API; however, from the middle of
2017, PM2.5 had a considerable influence on the API [1]. Furthermore, according to one
study [2], particulate matter (PM10 and PM2.5) is one of the most significant pollutants with
the potential to impact human health. Therefore, the primary emphasis of this study will
be on predicting the PM10 concentration, given that PM2.5 was not completely tracked until
2018.

In recent years, there has been a growing interest in a variety of models to predict
levels of air pollution. Artificial neural networks (ANNs) are the technique most frequently
employed to generate forecasts of the PM10 concentration [3–5]. However, according to one
study [6], a validation of the ANN model’s predictive component deemed it insufficient to
determine whether it is capable of accurately capturing the underlying dynamics between
independent and dependent variables. Furthermore, the random forest (RF) method
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showed subpar model accuracy in machine learning decision trees during the Southern
Italian summer [7].

The BRT was used to estimate NOx concentrations at roadside locations and discover
correlations between background levels, traffic density, and meteorological conditions [8].
On the other hand, BRT has also been employed to estimate particle number count concen-
trations (PNC) and coarse particles in a coastal region of Malaysia [9]. The results revealed
that the BRT model provided the best fit for a diverse blend of data types. Furthermore,
simulation data that was used in the development of the algorithm model for BRT [10] is
the best guideline, particularly in the field of air pollution. A previous study developed a
valid dataset to investigate the effects of air pollution on human health and demonstrated
that the BRT technique can increase the accuracy of satellite PM2.5 predictions [11]. These
studies only used 5- and 10-fold cross validation (CV) to optimize the number of trees
in the BRT, which is one of three strategies was used to optimize the number of trees in
BRT, namely, an independent test set (TEST), out-of-bag estimation (OOB), and v-fold cross
validation (CV). Therefore, to determine which of the three approaches (CV, OOB, and
TEST) is better, this study will compare them and utilize the best approach for optimizing
the number of trees in the BRT technique.

The BRT algorithms are sensitive to parameter settings, which means that adjusting the
parameters takes a significant amount of time. The large number of additional predictors
offered by the algorithms makes the models more complicated, hence they are challenging
to interpret and construct [12]. As a result, the feature selection method, which is one of
the most crucial components in machine learning [13], is employed to shorten training
and usage times. Besides, it helps improve accuracy in a variety of machine learning
problems [14]. As stated previously [15], feature selection not only saves training time by
reducing the feature size specified in the data representation, it also prevents learning from
noise (over fitting) to enhance accuracy. There are three feature selection methods: wrapper,
filter, and embedding methods [16]. The filter methods are faster than the wrapper methods
and provide higher generalization since they operate independently of the induction
procedure [17]. In contrast, embedding methods have a smaller computational overhead
than wrapper methods [18]. Hence, this study employed the Support Vector Machine
(SVM) weight as a filter approach for feature selection.

Since single BRT models have limited performance, there is potential for hybrid
models that integrate BRT with other methods to be more efficient in predicting air pollution.
Hybrid prediction models are being created and used more frequently these days, especially
for the purpose of forecasting air pollutants. For instance, it was discovered that combining
principal components analysis (PCA) with multiple linear regression (MLR) along with
feed forward back propagation (FFBP) improved MLR and FFBP models [19]. In another
study [20], artificial neural networks (ANN) were combined with principal components
analysis (PCA), ANN with Lasso regression, and ANN with elastic-net regression; the
hybrid models improved the performance of the MLR and FFBP models. In addition, a
novel hybrid model that combines BRT with regularized regression (RR) has also been
developed [12]; the findings show that hybrid models perform better than BRT models
alone. In conclusion, previous research has shown that hybrid models perform better than
single models, demonstrating that hybrid models are able to make better predictions than
single models.

The aim of this study was to develop an air pollution model using SVM weight as a
feature selection combined with the BRT technique. According to the available research, a
study that makes use of such a strategy to forecast the PM10 concentration has never been
carried out. The results of the suggested methodology are compared to the predictions
made by previous studies.
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2. Materials and Methods
2.1. Data Acquisition

Within the scope of this research, secondary monitoring data was analyzed to ascertain
and validate the predictive ability for the PM10 concentration. The data were recorded
hourly, and their dependability was ensured by the DoE Malaysia’s quality assurance and
quality control processes. Table 1 show the map where the three monitoring stations are
located. These stations can be classified as either urban (such as Klang and Alor Setar) or
industrial (Kuching). While Klang is located in the west coast region of Peninsular Malaysia,
Alor Setar is located in the northern region of Peninsular Malaysia, and Kuching is located
in Sarawak, which is in the northwest corner of Borneo Island. The period covered by the
data for the three monitoring sites was from 2002 to 2017, and the monitoring records were
also converted into maximum daily data.

Table 1. Selected air monitoring stations.

Location Latitude Longitude Station ID

Islamic Religious Secondary School,
Mergong, Alor Setar, Kedah 06◦08.218′ N 100◦20.880′ E CA0040

Raja Zarina Secondary School, Klang,
Selangor 03◦00.620′ N 101◦24.484′ E CA0011

Medical Store, Kuching, Sarawak 01◦33.734′ N 110◦23.329′ E CA0004

2.2. Feature Description

Gases such as nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2),
particulate matter with an aerodynamic diameter of less than or equal to 10 µm (PM10), and
ground-level ozone (O3); and meteorological parameters such as ambient temperature (T),
relative humidity (RH), and wind speed (WS) were the features used in this study. These
features were the independent variables (IV) used to predict the PM10 concentration for the
next day (D+1), next 2 days (D+2), and the next 3 days (D+3). Table 2 describes the features’
role, unit, and their associated measurement level.

Table 2. The selected features for predicting PM10 concentration.

Feature Role Unit Measurements Level

NO2,D independent variable ppb Continuous
COD independent variable ppb Continuous
SO2,D independent variable ppb Continuous

PM10,D independent variable µg/m3 Continuous
O3,D independent variable ppb Continuous
TD independent variable ◦C Continuous

RHD independent variable % Continuous
WSD independent variable km/hour Continuous

PM10,D+1 dependent variable µg/m3 Continuous
PM10,D+2 dependent variable µg/m3 Continuous
PM10,D+3 dependent variable µg/m3 Continuous

2.3. Data Pre-Processing

The maximum daily data were converted from hourly data obtained from Malaysia’s
Department of Environment (DoE), Ministry of Environment and Water, between 1 January
2002 and 28 December 2017. The datasets used in this study are protected by confidentiality,
but they are accessible to researchers who have signed Data Use Agreements with the
Department of Environment (DoE) and Ministry of Environment and Water. A random
selection of 80% of the data was used to develop the model, and the remaining 20% was
used to validate the model. The analysis was carried out based on the availability of RH
monitoring data, as shown in Table 3.
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Table 3. The selected features for predicting PM10 concentration.

Stations RH Available Date Total Data Sets Stations

Alor Setar 22 October 2002–28 December 2017 5548 Alor Setar
Klang 1 October 2002–28 December 2017 5569 Klang

Kuching 3 December 2002–28 December 2017 5505 Kuching

The aim of this study was to predict the PM10 concentration 3 days ahead. Under
the National Haze Action Plan, in any area with continuous APIs of over 101 for more
than 3 days, the government has the authority to issue a warning status [21]. Hence, it is
important to be able to have an early warning for any hazardous environmental status.

Prediction systems that rely on continuous data for most of their components face a
significant challenge when there are discontinuities in the data. Insufficient information
leads to an incorrect appraisal or interpretation of the observation [22]. Researchers in the
field of environmental studies frequently run into the issue of missing data because of
unpredictable events such as the malfunctioning of instruments, the need for instrument
maintenance or repairs, and calibration [23]. Since statistical analyses rely on complete
datasets, missing data needs to be dealt with. In this study, the messy data were cleaned up
using a technique called linear interpolation. According to previous studies [24,25], this
linear interpolation method estimates the missing data better for the air pollution data. The
percentage of missing data was added: missing data in Alor Setar was 5.10%, missing data
in Klang was 4.74%, and in Kuching it was 5.83%.

2.4. Feature Selection Using SVM Weight

Classification refers to the development of predictive models for the response variable
based on a set of other variables. Feature selection, which utilizes a filter method strategy, is
necessary as a pre-processing step before classification. They produce a relevance measure
on the training set to exclude the features from the data set that are deemed to be of the
least significance. To train a support vector machine (SVM), a weight vector must first be
constructed using the training data. Using the weight vector as an indicator, the classifier
can decide which features to select.

The SVM classifier works by maximizing the margin to separate the hyperplane (wTx
+ b) between two different groups of data. The threshold that gives the largest margin
for making classifications is called the maximal margin classifier. The sample is given
by xi = (xi1,...,xmd) where m is the number of samples and d is the dimensional feature
vector of xi, which represents the number of distinct features in the model. A class label is
given by yi ∈ {+1, −1} where yi = 1 for the positive class and yi = −1 for the negative class.
The maximization of the margin corresponds to the following unconstrained optimization
problem [16]:

w∗, b∗, ξ∗ = argmin
w,b,ξ

1
2
‖w‖2 + C

m

∑
i=1

ξi (1)

subject to yi(w
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, . . . , m (2)

w = m− dimensional vector
b = Scalar
ξi = Penalty for misclassification or classification with the margin (loss function)
C = Penalty parameter on the training error

In general, the class predictor trained by SVM has the form:

prediction(x) = sgn
(

wTx + b
)
= sgn

(
∑

j
wjxj + b

)
for w = ∑i αixi (3)

where |wj| is used as the weight of a feature j; features with large |wj| values have a large
influence on the predictions than features with small |wj| values. Since w = ∑i αixi for
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the linear SVM model, one can regard ||w||2 as a function of the training vector xi, and
thus evaluate the influence of feature j on ||w||2 by looking at absolute values of partial
derivatives of ||w||2 with respect to xij. For the linear kernel:

∑
i

∣∣∣∣∣∂‖w‖2

∂xij

∣∣∣∣∣ = k
∣∣wj
∣∣ (4)

where the sum includes the support vectors and k is a constant independent of j. Thus,
the features with higher |wj| values are more influential in determining the width of the
margin. Figure 1 shows an illustration of the procedure to obtain the optimum feature
subsets.
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One predictor was added at a time into the BRT model, starting with the predictor
with the highest SVM absolute weight and ending with the predictor with the lowest SVM
absolute weight. The process repeats until there are no more predictors to choose from.
The overall goal, as proposed previously [26], was to maximize the accuracy of predictions
while minimizing the number of predictors.

2.5. BRT Model

Previous studies [27–29] provide a comprehensive description of the theoretical foun-
dations of the BRT technique. The BRT tuning parameters include the number of trees (nt)
required for optimal prediction; the learning rate (lr), which is the shrinkage parameter
used in each iteration to reduce the tree’s contribution; tree complexity (tc), also known
as the interaction depth, which is the maximum tree depth of variable interactions; and
bag-fraction (bf), which specifies the proportion of data randomly selected to fit each
consequent tree.

Therefore, in this study, BRT models with the following parameters were fitted: nt
(10,000), lr (0.01), tc (5), and bf (5). These values were suggested in previous studies [9,30]
for the purpose of conducting an analysis of the air pollution dataset. Using GBM (version
1.6–3.1) of R programming software (version 3.4.2), the BRT model was fitted from 80% of
the data collected to predict the maximum daily PM10 concentration. The general models
for this study are listed in Equations (5)–(7). The algorithm used to model BRT is called
gradient boosting (GBM) [27].

PM10,D+1 ~ gbm(PM10,D,COD,NO2,D,SO2,D,RHD,TD,WSD,O3,D (5)

PM10,D+2 ~ gbm(P10,D,COD,NO2,D,SO2,D,RHD,TD,WSD,O3,D) (6)

PM10,D+3 ~ gbm(PM10,D,COD,NO2,D,SO2,D,RHD,TD,WSD,O3,D) (7)

PM10,D+1 = Next day prediction of PM10 concentration
PM10,D+2 = Next 2 days prediction of PM10 concentration
PM10,D+3 = Next 3 days prediction of PM10 concentration
PM10,D = Particulate matter (µg/m3)
COD = Carbon monoxides (ppb)
NO2,D = Nitrogen dioxide (ppb)
SO2,D = Sulfur dioxide (ppb)
O3,D = Ozone (ppb)
RHD = Relative humidity (%)
TD = Temperature (◦C)
WSD = Wind speed (km/h).

2.6. Hybrid Model

The use of different modelling techniques to improve overall accuracy is referred
to as a hybrid model. There are three different types of hybrid models: (a) using one
model to generate new variables and then using these new variables in another model;
(b) residual fitting, which is a final model that is built repeatedly by transferring results
from one methodology to another; and (c) model averaging, which averages two or more
predictions [31]. In other words, a hybrid model is a combination of two or more models.

SVM–BRT is a type (a) hybrid model that reduces feature size in the data representation
and prevents learning from noise (over-fitting), thereby improving accuracy while cutting
down on the amount of time needed for training. A hybrid model that integrates BRT and
linear SVM was used to solve the major problem of the BRT technique, namely, the lengthy
time taken to adjust the parameters. Figure 2 depicts the procedures involved in obtaining
the best predicted model. A novel aspect of this study is the application of hybrid models
as a means of enhancing the methodologies that are currently in use.
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Figure 2. Flowchart of the SVM–BRT model.

2.7. Performance Indictor

The models were evaluated based on the model’s error and accuracy using several
performance indicators, namely the root mean square error (RMSE), normalized absolute
error (NAE), predictive accuracy (PA), agreement index (IA), and coefficient of determi-
nation (R2). The model with the best fit is chosen when it has high accuracy (i.e., PA, IA,
and R2), which is closer to 1, while the minimal error (i.e., RMSE and NAE) is closer to 0.
Equations (8)–(12) show the formulae for the performance indicators used in this study.

RMSE =
1

n− 1

n

∑
i=1

(Pi −Oi)
2 (8)
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NAE =

n
∑

i=1
Abs(Pi − Oi)

n
∑

i=1
Oi

(9)

IA = 1 −


n
∑

i = 1
(P − Oi)

2

n
∑

i = 1

(∣∣Pi − O
∣∣ + ∣∣Oi − O

∣∣)2

 (10)

PA =

n
∑

i = 1

(
Pi − O

)2

n
∑

i = 1

(
Oi − O

)2
(11)

R2 =


n
∑

i = 1

(
Pi − P

)(
Oi − O

)
n.Spred.Sobs


2

(12)

where, n = total number of data; Pi = predicted values; Oi = observed values; P = mean of
predicted values; O = mean of observed values.

3. Results and Discussion
3.1. Descriptive Statistics

Descriptive statistics for the maximum daily data (2002–2017) for Alor Setar, Klang,
and Kuching are presented in Table 4. The highest mean concentration of PM10 was
recorded as 41.99 µg/m3 (Alor Setar), 75.05 µg/m3 (Klang), and 65.38 µg/m3 (Kuching).
The established 24-h mean reading for national ambient air quality standards for PM10
concentration was 50 µg/m3 [31–33]. Hence, based on the result, Klang and Kuching
stations have a high concentration, which is consistent with the findings of previous
studies [28–30] that indicate a similar pattern of PM10. The reason was because Malaysia
experienced a slight haze episode associated with local and transboundary haze from
neighboring countries [1].
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Table 4. Summary of the descriptive statistics.

Stations Parameters (Unit)
Statistical Parameter

Mean Median Standard Deviation Skewness Kurtosis Maximum

Alor Setar PM10 (µg/m3) 41.99 38 20.84 4.03 40.05 385
O3 (ppb) 34.27 32 14.86 0.82 1.05 118
CO (ppb) 560.3 540 246.71 1.71 7.36 3060

NO2 (ppb) 15.2 14 5.85 1.1 2.97 58
SO2 (ppb) 1.05 1 0.93 0.99 2.32 8

RH (%) 89.35 91 8.07 −1.77 3.81 100
T (◦C) 32.42 32.7 2.77 −1.23 3.21 39.5

WS (Km/h) 10.53 10.7 3.74 0.3 1.78 33.5

Klang PM10 (µg/m3) 75.05 68 37.78 4.89 44.82 643
O3 (ppb) 44.74 42 19.33 0.66 0.48 127
CO (ppb) 1611.43 1440 774.87 2.65 16.04 10500

NO2 (ppb) 38.34 37 12.67 0.36 0.89 128
SO2 (ppb) 6.6 5 6.52 8.67 119.11 150

RH (%) 83.71 84 6.93 −0.71 1.37 100
T (◦C) 33.34 33.6 2.22 −0.74 0.74 38.5

WS (Km/h) 9.15 9.6 5.02 25.33 1326.95 271

Kuching PM10 (µg/m3) 65.38 57 39.51 2.99 15.72 526
O3 (ppb) 23.66 22 9.74 0.78 1.54 82
CO (ppb) 892.21 780 486.34 1.66 5.28 5080

NO2 (ppb) 12.64 12 5.85 2.94 40.09 123
SO2 (ppb) 3.66 3 4.13 7.42 121.54 100

RH (%) 94.6 95 3.29 −1.03 6.37 100
T (◦C) 33.24 33.21 2.47 −0.38 2.83 53

WS (Km/h) 11.29 11.3 3.56 5 110.71 99

Additionally, compared to O3, SO2, and NO2, the mean concentration of CO was
found to be the highest in all selected locations. According to previous studies [33–35],
this is due to their location as they are surrounded by numerous industrial, residential,
and commercial areas, in addition to the emissions from motor vehicles. High skewness
values in Alor Setar (4.03), Klang (4.89), and Kuching (2.99) showed that there were both
high particulate events and extreme events that caused PM10 concentrations to rise in all
three places.

The box plot in Figure 3 illustrates the PM10 concentrations for the maximum daily
readings over the last 16 years at Alor Setar, Klang, and Kuching. Alor Setar had the highest
PM10 concentration in 2016, as shown in Figure 3a. The land and forest fires in Central
Sumatra, Indonesia, which were brought about by the Southwest Monsoon winds, are said
to have had a negative impact on this situation [1]. On 11 August 2005, the air quality in
Klang reached an all-time high with a PM10 reading of 643 g/m3. According to a previous
study [36], the air quality during that time was hazardous/dangerous due to a dense haze
period. This dense haze period was deemed to be the primary factor for the next 10 years
of high PM10 values recorded. Lastly, from 2002 to 2017, the highest PM10 concentration in
Kuching was reported in October 2012, which was due to emissions from vehicles as well
as forest fires that were started for agricultural purposes in Central and Northern Sumatra,
Indonesia [35].
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and Kuching.

3.2. Optimizing the Number of Predictors (SVM Weight)

The SVM weights were ranked according to their absolute weights; the higher the
absolute weight, the more significant the variable was for the purpose of developing a new
set of training models. Figures 4–6 illustrate the results that occurred when the SVM weight
was used as the ranking model, and the red circle showed the best number of variables
were selected based on the best performance. Because of the transboundary haze pollution
from Sumatra and Kalimantan, Indonesia, the data shows that the PM10 concentration is at
the top of the list for all three regions [1].
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the best overall performance when six variables were included in the model: 0.1717 (NAE),
21.8568 (RMSE), 0.7829 (IA), 0.8567 (PA), and 0.6118 (R2). However, this performance then
rapidly declined (Figure 5); therefore, WS and SO2 were omitted. The greatest performance
(Figure 6) dropped after five variables are chosen for the Kuching station, thus, WS, T, and
SO2 were removed as predictors. Although the highest values of PA and R2 indicate that
eight variables should be selected, the difference in values (PA and R2) with five variables
was too close to be considered significant. As a result, only five variables were determined
to be the most accurate predictors of future PM10 concentrations on the following day, the
following 2 days, and the following 3 days.
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The findings demonstrated that both the type of predictor and the total number of
predictors vary depending on location. Table 5 displays the results that were obtained from
the BRT algorithm after using the SVM weight as a feature selection. These results were
used to predict the PM10 concentration in Alor Setar, Klang, and Kuching.
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Table 5. The selected features for predicting PM10 concentration.

Stations Selected Predictors

Alor Setar
PM10,D+1 ~ gbm(PM10, NO2, CO, SO2, RH, T, O3)
PM10,D+2 ~ gbm(PM10, NO2, CO, SO2, RH, T, O3)
PM10,D+3 ~ gbm(PM10, NO2, CO, SO2, RH, T, O3)

Klang
PM10,D+1 ~ gbm(PM10, CO, RH, O3, NO2, T)
PM10,D+2 ~ gbm(PM10, CO, RH, O3, NO2, T)
PM10,D+3 ~ gbm(PM10, CO, RH, O3, NO2, T)

Kuching
PM10,D+1 ~ gbm(PM10, CO, RH, O3, NO2)
PM10,D+2 ~ gbm(PM10, CO, RH, O3, NO2)
PM10,D+3 ~ gbm(PM10, CO, RH, O3, NO2)
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3.3. Hybrid Model

In this section, SVM and BRT were combined and the performance level of this
hybrid model was investigated. Table 6 displays the results of using the CV, OOB, and
TEST methods in the hybrid model to make predictions for the following day (D+1), the
following 2 days (D+2), and the following 3 days (D+3). The performance of the BRT model
was measured using performance indicators to determine which of the three methods (CV,
OOB, and TEST) was the most accurate at predicting the maximum daily concentration of
PM10 in Alor Setar, Klang, and Kuching.

Table 6. The performance indicators for the SVM–BRT model.

Days Station Method Best Iteration RMSE NAE PA R2 IA

Alor Setar CV 663 10.4559 0.1539 0.8380 0.701 0.9124
OOB 256 10.0815 0.1527 0.8366 0.6986 0.9113
TEST 243 10.0011 0.1528 0.8371 0.6994 0.9111

D Klang CV 1049 21.9435 0.1725 0.7809 0.6088 0.8644
+ OOB 252 22.3999 0.1754 0.8450 0.5979 0.8450
1 TEST 1094 21.9316 0.1725 0.7812 0.6092 0.8642

Kuching CV 931 29.3651 0.2719 0.7032 0.4936 0.8061
OOB 251 29.8344 0.2800 0.6973 0.4854 0.7725
TEST 335 29.5637 0.2757 0.7004 0.4897 0.7866

Alor Setar CV 347 13.2992 0.222 0.6521 0.4245 0.7909
OOB 236 13.17 0.2228 0.6491 0.4206 0.7813
TEST 238 13.169 0.2228 0.6494 0.421 0.7817

D Klang CV 245 27.2112 0.2318 0.6176 0.3807 0.7062
+ OOB 227 27.246 0.2321 0.6176 0.3808 0.7
2 TEST 478 27.2512 0.2313 0.6144 0.3768 0.7244

Kuching CV 357 34.5616 0.3199 0.6083 0.3694 0.6903
OOB 244 34.6437 0.3219 0.6111 0.3728 0.675
TEST 307 34.5745 0.3203 0.6094 0.3706 0.6858

Alor Setar CV 475 14.7962 0.2554 0.5357 0.2864 0.6837
OOB 228 14.76 0.2563 0.5293 0.2796 0.6583
TEST 345 14.83 0.2562 0.53 0.2805 0.6743

D Klang CV 245 31.0173 0.2555 0.5018 0.2514 0.5918
+ OOB 222 31.033 0.2555 0.5017 0.2513 0.5824
3 TEST 859 31.2269 0.2567 0.4967 0.2463 0.619

Kuching CV 429 32.6196 0.3259 0.5742 0.3291 0.6844
OOB 238 32.6295 0.3281 0.5764 0.3316 0.6633
TEST 250 32.6036 0.3276 0.5768 0.3321 0.6664

According to the findings, CV was the most accurate method for predicting the PM10
concentration for the following day, the following 2 days, and the following 3 days in Alor
Setar, Kedah. The PA values ranged from 0.53 to 0.83, the R2 values ranged from 0.29 to
0.70, the IA values ranged from 0.68 to 0.91, the NAE values ranged from 0.15 to 0.25, and
the RMSE values ranged from 10.46 to 14.79.

Furthermore, the TEST method fits the data better than CV or OOB in predicting the
maximum daily PM10 concentration in Klang, Selangor for D+1, whereas CV was the best
method for D+2 and D+3. PA values varied between 0.50 and 0.78, R2 values between 0.25
and 0.61, IA values between 0.59 and 0.86, NAE values between 0.17 and 0.25, and RMSE
values between 21.93 and 31.01.

In the city of Kuching, Sarawak, performance indicators demonstrated that CV was the
most effective method for predicting D+1 (RMSE = 29.37, NAE = 0.27, PA = 0.70, R2 = 0.49,
IA = 0.81) and D+2 (RMSE = 34.56, NAE = 0.32, PA = 0.61, R2 = 0.37, IA = 0.71), whereas TEST
was the most effective method for predicting D+3 (RMSE = 32.60, NAE = 0.33, PA = 0.58,
R2 = 0.33, IA = 0.67).
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In comparison to the PM10,D+2 and PM10,D+3 models, the PM10,D+1 model had the
maximum accuracy of 91% (Alor Setar), 86% (Klang), and 8% (Kuching), with the lowest
values of error of 0.15 (Aor Setar), 0.17 (Klang), and 0.27 (Kuching), respectively. In the
SVM–BRT model, it was decided that the most effective technique was a combination of
the CV and TEST approaches.

In previous studies, several authors have used the BRT technique to predict PM10
concentration. For instance, BRT was used to predict hourly PM10 concentration levels
in the City of Makkah [37], with an IA value of 0.66 reported. In addition, a BRT model
was used to estimate the PM10 concentration for four different stations [32]; the reported
R2 varied between 0.61 and 0.72. A hybrid model was developed combining BRT and RR,
which was compared with a pure BRT model in predicting the PM10 concentration [12];
for the performance of the pure BRT model, R2 = 0.57 RMSE = 14.10, while R2 = 0.80 and
RMSE = 8.82 for the hybrid model.

Although the previous authors attempted to predict the PM10 concentration, their
predicted targets were different from this study. As a result, it is nearly impossible to
make direct comparisons with this study. On the other hand, this study’s findings, which
were based on performance errors and accuracy, fall within the range that other studies
have found.

4. Conclusions

Overall, these results imply that the SVM–BRT model can predict the maximum PM10
concentration that can take place during a given day. The results of the study show that
the NAE (0.15–0.33), RMSE (10.46–32.60), R2 (0.33–0.70), IA (0.59–0.91), and PA (0.50–0.84)
values were good for predicting the next day PM10 concentration. The CV approach was
selected as the best method to optimize the number of trees in most of the results, and
TEST was also selected as the best method. The results also indicated that the type and
number of predictors are different for each location. Seven variables were selected and
WS was excluded as a predictor in Alor Setar; six specified variables for the Klang station
were used as predicters, with WS and SO2 excluded; and five variables were chosen for the
Kuching station with WS, T, and SO2 removed as predictors. In conclusion, SVM–BRT is an
alternative method for predicting PM10 concentration for the next 3 days at all sites. This
model saves training time by reducing the feature size given in the data representation,
and prevents learning from noise, also known as overfitting, to improve accuracy. The
proposed model can accurately predict maximum daily air pollution episodes within three
consecutive days; it can be used as an early warning tool in giving air quality information
to local authorities to formulate air quality improvement strategies. However, the proposed
model can only be used when the sources and characteristics of PM10 remain the same and
can be used in this selected location only.

Here are some propositions for further research concerning the application of BRT
models to forecast levels of air pollution. It was found that the CV method in BRT provided
the best fit for the data, but it was also discovered that TEST and OOB could be utilized
to optimize the number of trees in BRT. In addition to the number of trees, other BRT
parameters, such as learning rate and tree complexity, should be investigated to find
parameter settings that lead to an alternative solution.
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