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Abstract: As the power generation mode with the lowest carbon emissions, wind power generation 

plays an indispensable role in achieving the goal of carbon neutralization. To optimize the wind 

power density (WPD), forecasting is crucial to improve wind power utilization and power system 

stability. However, because near-surface wind is characterized by notable randomness, diversity, 

intermittence, and uncontrollability, accurately forecasting the WPD on wind farms remains a chal-

lenging task. In this study, we attempted to improve the WPD forecast in the middle- and high-

latitude regions of China (wind energy resources are abundant there) by selecting the relatively 

optimal planetary boundary layer (PBL) scheme, as the PBL processes exert notable effects on the 

near-surface wind field directly. Based on a whole month in the summer (July 2021), seven PBL 

schemes were compared quantitatively by using the Weather Research and Forecasting (WRF) 

model for a total of 70 runs (for each run, the forecast period was 3 days). The results show that no 

PBL schemes could always show the best performance in forecasting all variables, and the forecast 

accuracy showed a notable dependence on the evolution of the weather systems. Among the seven 

PBL schemes, the Medium-Range Forecast (MRF) scheme showed the overall best performance in 

forecasting the 100 m wind speed, sea level pressure, and 2 m temperature, which ensured that it had 

the highest forecast skill for the WPD in the middle- and high-latitude regions of China. Further anal-

yses indicate that the background conditions were also well forecasted by the MRF scheme (ranked 

first or second). This was a crucial reason why the WPD forecast was the best for the MRF scheme. 

Keywords: wind power density; wind energy; Weather Research and Forecasting (WRF) model; 

planetary boundary layer 

 

1. Introduction 

The kinetic energy associated with horizontal wind is referred to as wind energy [1-

2]. By using specially designed blades, wind turbines absorb wind energy and convert it 

into electric energy[3]. This is called wind power generation. Wind energy is clean and 

renewable, being one of the best alternatives to traditional fossil fuel energy. According 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [4], 

among all the current power generation technologies, wind power generation shows the 

lowest carbon emissions. Therefore, to reach the goal of carbon neutralization, there is an 

urgent need to increase the proportion of wind power generation. Furthermore, benefits 

of wind energy are wide-ranging, as it contributes to sustainable job creation, public 

health cost savings, water consumption savings, and so on (https://gwec.net/report-
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capturing-green-recovery-opportunities-from-wind-power-in-emerging-economies/#) 

(accessed on 01 September 2022). 

Although wind energy shows more advantages than traditional fossil fuel energy in 

many aspects, as discussed above, its limitations are also notable [3, 5]. One of these is that 

the power generation of wind farms is difficult to predict, as wind fields are characterized 

by remarkable randomness, diversity, intermittence, and uncontrollability [6-10]. Various 

methods were developed to forecast the wind at the near-surface level, which can be 

roughly divided into two types: physical models that are mainly based on the thermody-

namic and dynamic mechanisms of the atmosphere [11-13], and statistical models [14-17] 

that are mainly based on statistical features (this type includes machine learning and deep 

learning). For the former type, numerical models are effective and widely used tools, 

which can provide longer-term forecasts of wind speed and related meteorological factors 

than those of statistical models. Because of its advantages, a series of studies attempted to 

forecast wind energy by using numerical models. For instance, Bai et al. [18] evaluated the 

performance of the Penn State/NCAR Mesoscale Model (MM5) in forecasting the wind 

speed in Inner Mongolia; Zhang et al. [19] utilized the Weather Research and Forecasting 

(WRF) model [20] to forecast the wind energy of wind farms in Guizhou; Mughal et al. 

(2017) employed the WRF model to predict wind power generation in Kenya; Han and 

Nan [21] used the Karlsruhe Atmospheric Mesoscale Model [22] to generate high-resolu-

tion forecasts of wind energy in Europe. However, thus far, all numerical models show 

unignorable forecast errors, which increase the uncertainties for the accurate prediction 

of wind energy. Therefore, providing accurate wind forecasts at near-surface levels, par-

ticularly for the 100 m hub height (usually, the wind turbines’ hubs are at the height of 

100 m), is of great importance to improve the wind power utilization and power system 

stability. 

The planetary boundary layer (PBL) is the layer at the bottom of the atmosphere, 

which has the closest relationship to human activities [23-24]. All the wind turbines of 

wind farms are situated in this layer. Turbulence, sensible heat flux, latent heat flux, and 

friction dissipation in the PBL all notably affect the near-surface wind field [25]. At pre-

sent, numerical models use a variety of parameterization schemes [20] to describe the 

main processes in the PBL. However, as different PBL parameterization schemes were 

developed based on different physical models and different observation data, their per-

formances for wind forecasting in a specified area are different [13]. Therefore, to improve 

the wind forecast of a targeted region, it is crucial to select the relatively optimal PBL 

scheme for the region. 

China is rich in wind energy resources [3]. To achieve the goal of carbon neutraliza-

tion, the Chinese government has made efforts to speed up the development of the wind 

power industry [13, 26], and by the end of 2021, the installed wind power capacity in 

China ranked first in the world. According to a 42-year statistic from Li et al. [27], for 

China, the areas with the most abundant wind energy on land are mainly located in mid-

dle and high latitudes, particularly for Northwest China, North China, and Northeast 

China. Therefore, improving the accuracy of the wind forecast in these regions is crucial 

for China’s wind power industry. Due to its relatively high forecasting skills, the WRF 

model is a widely used numerical model in wind forecasting [12, 19, 28-31]. It provides a 

series of PBL parameterization schemes [20], which affect the accuracy of wind forecasts 

remarkably [13]. However, to the best of our knowledge, no studies have compared the 

PBL parameterization schemes in forecasting wind power density (WPD) and associated 

factors in the middle- and high-latitude regions of China. Therefore, the primary purpose 

of this study is to fill this knowledge gap and to determine the relatively optimal PBL 

scheme for this region. This will provide a useful reference for the efficient utilization of 

wind energy in China. 

2. Data, Model Configuration and Methods 

2.1. Data 
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A total of four types of data were used in this study: (i) the hourly, 0.125o × 0.125o 

atmospheric model high-resolution 10-day forecast provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF; https://www.ecmwf.int/en/forecasts/da-

tasets/set-i) (accessed on 01 September 2022) was used to generate the initial and bound-

ary conditions for the WRF model; (ii) the hourly 0.25o × 0.25o ERA5 reanalysis data from 

the ECMWF (Hersbach and Dee, 2016; Huang et al., 2021), including sea level pressure, 

100 m wind field, geopotential height, etc.; (iii) the observed data at the surface stations 

shown in Figure 1, including 10 m wind field (3-hourly), 24 h precipitation (daily), and 2 

m temperature (3-hourly), were used to evaluate the performances of different PBL 

schemes; and (iv) the GPM IMERG Final Precipitation data (daily) [32] were used to com-

pare the horizontal distribution of the accumulated precipitation forecasted by different 

PBL schemes. 

 

Figure 1. Distribution of the surface observational stations (small red circles) that were used for the 

evaluation of the performances of different PBL schemes, where the shading represents the terrain 

(m). 

2.2. Model Configuration 

The WRF model v4.4 [20] was employed in this study. To cover the main body of the 

middle- and high-latitude regions of China, we used the domain shown in Figure 2 for 

the numerical experiments. The domain has 959 (west–east direction) × 826 (north–south 

direction) horizontal grids, 51 terrain-following vertical levels (top level was at 50 hPa), 

and a grid span of 3 km. The WRF double-moment six-class scheme [33], the Rapid Radi-

ative Transfer Model with GCM applications scheme [34], the Dudhia shortwave scheme 

[35], and the five-layer thermal diffusion land surface model [36] were used in the simu-

lations. No cumulus scheme was used in the simulations, as the grid span of 3 km is con-

vection-permitting. 
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Figure 2. The domain used for the simulations (the whole range was used in simulations), where 

the shading is the terrain (m). 

Based on previous studies evaluating the PBL schemes [13, 37], a total of seven PBL 

schemes (Table 1) which showed adequate performances in China were compared to de-

termine the best one for forecasting the WPD and related factors in the middle- and high-

latitude regions of China. This includes the Medium-Range Forecast scheme (MRF) [33], 

the Mellor–Yamada Nakanishi and Niino Level 2.5 scheme (MYN) [38], the Bougeault and 

Lacarrere scheme (BLS) [39], the Yonsei University scheme (YSU) [40], the asymmetric 

convective model version 2 scheme (ACM) [41], the Grenier–Bretherthon–McCaa scheme 

(GBM) [42], and the University of Washington moist turbulence scheme (UWS) [43]. July 

of 2021 was selected as the test period for the simulations in the present study, as it ranked 

second in history in terms of the accumulated precipitation over the middle- and high-

latitude regions of China (http://www.cma.gov.cn/2011xwzx/ 

2011xqxxw/2011xqxyw/202112/t20211229_589812.html?from=singlemessage) (accessed 

on 01 September 2022). A series of rainfall events appeared during this period, which were 

mainly caused by the shortwave troughs and extratropical cyclones in the westerly wind, 

mesoscale vortices, and surface low-pressure systems [44]. Heavier precipitation tended 

to lower the wind forecast accuracy [45], and the results of this study can be used as a 

reference for this situation. Considering the huge calculation costs and the representative-

ness of the results, we initiated the WRF model every 72 h from 0000 UTC 1 July 2021 to 

0000 UTC 31 July 2021 (i.e., at 0000 UTC on 01, 04, 07, 10, 13, 16, 19, 22, 25, and 28 July 

2021), and forecasted for a 3-day period to cover the entirety of July 2021. Therefore, for 

each PBL scheme, there were 10 runs, and for all seven PBL schemes, there were a total of 

70 runs. For convenience, 7 runs (using different PBL schemes) started at the same time 

were called a group—those started at 0000 UTC 1 July 2021 were named group I, those 

started at 0000 UTC 04 July 2021 were named group II, …, and those started at 0000 UTC 

28 July 2021 were named group X (Figure 3). 
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Figure 3. Panel (a) shows the correlation coefficient (COEF) for the 24 h forecast of the 100 m wind 

speed, and panel (b) shows the root mean square error (RMSE) for the 24 h forecast of the 100 m 

wind speed (b). Panel (c) is the same as (a) but for the 48 h forecast, and panel (d) is the same as (b) 

but for the 48 h forecast. Panel (e) is the same as (a) but for the 72 h forecast, and panel (f) is the 

same as (b) but for the 72 h forecast. The red arrow shows the best scheme, and the blue arrow marks 

the worst scheme. Mean = the temporal mean of all 10 runs from I to X. 

  



Atmosphere 2022, 13, 2034 6 of 19 
 

 

Table 1. A summary of the planetary boundary layer schemes used in this study, where ‘Local’ 

means that for a given point, only the points directly vertically adjacent to it can affect it, and ‘Non-

local’ means that for a given point, the points at multiple vertical levels can affect it. 

Full Name Abbreviation Key Features Reference 

The Medium-Range 

Forecast scheme 
MRF Nonlocal [33] 

The Mellor–Yamada 

Nakanishi and Niino 

Level 2.5 scheme 

MYN Local [38] 

The Bougeault and 

Lacarrere scheme 
BLS Local [39] 

The Yonsei University 

scheme 
YSU Nonlocal [40] 

The asymmetric con-

vective model, version 2 
ACM Nonlocal [41] 

The Grenier–Breth-

erthon–McCaa 

scheme 

GBM Local [42] 

The University of 

Washington moist 

turbulence scheme 

UWS Local [43] 

2.3. Evaluation Methods 

A total of seven variables (Table 2) from the forecast were evaluated to reach a com-

prehensive comparison of the seven PBL schemes. For the 100 m wind speed, sea level 

pressure, and 500 hPa geopotential height, the ERA5 reanalysis data were used for the 

evaluation (the WRF output data were first interpolated into a coarser resolution of 0.25o 

× 0.25o by using the bilinear interpolation, which was then used in evaluation). For the 10 

m zonal wind, 10 m meridional wind, 2 m temperature, and 24 h precipitation, the surface 

observational data at the stations shown in Figure 2 were used for evaluation (the WRF 

output data were interpolated onto the stations shown in Figure 2). 

Table 2. The schemes ranked from first to third in terms of the overall performance (i.e., the mean 

of the 24 h, 48 h, and 72 h forecasts). 

 Ranks First Ranks Second Ranks Third 

100 m wind speed MRF MYN YSU 

10 m zonal wind MRF MYN/YSU -- 

10 m meridional wind MRF YSU MYN 

Sea level pressure MRF YSU MYN 

500 hPa geopotential height MRF MYN YSU 

2 m temperature MYN MRF YSU 

24 h precipitation  YSU MRF MYN 

All variables except for the 24 h precipitation were evaluated by the root mean square 

error (RMSE) and the correlation coefficient (COEF). The former was used to reflect the 

difference in values between the forecast and real situation (ERA5 reanalysis and station 

observation were used as the real situation); the latter was used to show how consistent 

the horizontal distributions of the forecast and the real situation were with each other. 

Their expressions are as follows: 

RMSE = √
1

𝑁
∑ (𝐹𝑖 − 𝑂𝑖)

2𝑁
𝑖=1  (1) 
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COEF = ∑ (𝐹𝑖 − �̅�)𝑁
𝑖=1 (𝑂𝑖 − �̅�)/√∑ (𝐹𝑖 − �̅�)2∑ (𝑂𝑖 − �̅�)2𝑁

𝑖=1
𝑁
𝑖=1  (2) 

where N is the total station/grid numbers for calculation, Fi is the forecast at station/grid 

i, and Oi is the reanalysis/observation at station/grid i. For each 3-day run, we mainly eval-

uated 24-, 48-, and 72-hour forecasts. After interpolating the 24/48/72 h forecasts from each 

3-day run onto the ERA5 grid/station, we calculated the RMSE and COEF following Equa-

tions (1–2) within the targeted region. The girds/stations within the targeted region of this 

study must meet two requirements: the first is that they are located within the range 

shown in Figure 1; the second is that they belong to China. These ensure that our evalua-

tion mainly focused on the middle- and high-latitude regions of China. 

In this study, we mainly focused on the rainfall events that were no weaker than 

moderate rain (i.e., 24 h precipitation ≥10 mm), as their associated latent heating could 

notably affect the dynamic field of the atmosphere [44-45]. To evaluate the precipitation 

forecast, we used two factors. The first is the threat score (TS) [46], and the second is the 

bias score (BIAS) [47]. The former can represent how consistent the precipitation forecast 

is with the real situation (TS is between 0 and 1, with a larger value representing better 

forecast); the latter can reflect the bias of the precipitation forecast from the real situation 

(BIAS = 1 means the best forecast, BIAS > 1 means precipitation grids are overestimated, 

and BIAS < 1 means precipitation grids are underestimated). Their expressions are as fol-

lows: 

TS = 𝑁𝐴/(𝑁𝐴 + 𝑁𝐵 + 𝑁𝐶) (3) 

where NA is the total number of stations where precipitation of a certain intensity appears 

in both the forecast and observation, NB is the total number of stations where precipitation 

of a certain intensity only appears in the forecast, and NC is the total number of stations 

where precipitation of a certain intensity only appears in the observation. 

BIAS = 𝐹/𝑂 (4) 

where F is the total number of stations where precipitation of a certain intensity appears 

in the forecast, and O is the total number of stations where precipitation of a certain inten-

sity appears in the observation. In order to show the precipitation bias clearly, we rede-

fined BIAS as: 

BIAS = |1 − 𝐹/𝑂| (5) 

In this sense, BIAS = 0 means the best forecast, and a large BIAS indicates a worse 

forecast. 

3. Evaluation on the Forecasts of Wind Power Density-Related Factors 

The WPD is an effective factor to evaluate the wind energy resource available at a 

site. It indicates the amount of wind energy at a site that can be converted into electrical 

energy (measured in watts per square meter) [48]. The WPD is widely used in the field of 

wind power generation, and its expression [49-50] is as follows: 

WPD = 𝜌𝑉3/2 (6) 

where ρ is the air density and V is horizontal wind speed, both of which were at the 100 

m hub height. From Equation (6), it can be found that to improve the forecast accuracy of 

WPD, we need to improve the forecasts of both ρ and V. As V3 is usually much larger than 

𝜌, it is crucial to improve the wind speed forecast at the height of 100 m. 

As documented in many studies, air density is often used as a constant. However, for 

the middle- and high-latitude regions of China, this is not appropriate, since many plat-

eaus and mountains are above 1000 m or more (Figure 1). Because most numerical models 

do not output air density directly, we used the state equation for ideal gases to calculate 

it: 
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𝜌 = 𝑝/𝑅𝑇 (7) 

where p, R, and T are the pressure, gas constant for dry air, and the temperature, respec-

tively [25]. From Equation (7), it is clear that to improve the forecasts of ρ, we need to 

improve the forecast of pressure and temperature at near-surface levels. 

3.1. Evaluation on the 100 m Wind Speed Forecast 

The COEFs and RMSEs of the 24-, 48-, and 72-hour forecasts of the 100 m wind speed 

are shown in Figure 3. It is clear that for the 24/48/72 h forecast, both the COEF and RMSE 

were fluctuating over time, which means the forecast accuracy depended on the evolution 

of the weather systems. Overall, larger COEFs tended to appear with smaller RMSEs, and 

vice versa, implying that better/worse forecasts (larger COEF and smaller RMSE means 

better forecast) usually showed consistent features in COEFs and RMSEs. Moreover, com-

parisons among Figure 3a–f show that longer forecast times tended to have smaller COEFs 

and larger RMSEs, implying that the forecasts mainly became worse as the forecast time 

increased. 

For the 24 h forecast, as Figure 3a shows, of the total 10 groups of runs, there were 7 

groups where the maximum COEFs appeared in the run with the MRF scheme (I, II, IV, 

V, VI, VIII, and IX). For the remaining, MYN (III and X) and YSU (VII) showed the largest 

COEFs. In terms of RMSE, MRF had the smallest RMSEs in eight groups (I, II, IV, V, VI, 

VII, VIII, and IX), and the remaining minimum RMSEs appeared in MYN (III and X). 

Therefore, it can be concluded that for the 24 h forecast of the 100 m wind speed, the MRF 

scheme showed the best performance and the MYN ranked second. This can be confirmed 

by the mean state of the 10 groups of runs (the rightmost column of Figure 3a,b), and from 

the mean state, it can also be found that the YSU scheme ranked third, whereas the GBM 

showed the worst performance among the seven PBL schemes. 

For the 48 h forecast, the MRF scheme had the largest COEFs in six groups (II, IV, VI, 

VII, IX, and X; Figure 3c), and the smallest RMSEs in seven groups (I, II, III, VI, VII, IX, 

and X; Figure 3d). Moreover, for the mean state (the rightmost column of Figure 3c,d), the 

MRF showed the maximum COEF and the minimum RMSE. Therefore, it is the best 

scheme for the 48 h forecast of the 100 m wind speed. The MYN and YSU schemes ranked 

second and third, respectively, in terms of the mean state. 

For the 72 h forecast of the 100 m wind speed, the MRF scheme also showed the over-

all best performance because (i) it showed the maximum COEFs in seven groups (II, IV, 

V, VII, VIII, IX, and X; Figure 3e) and smallest RMSEs in six groups (II, IV, VII, VIII, IX, 

and X; Figure 3f), and (ii) it had the largest COEF and smallest RMSE in terms of the mean 

state (the rightmost column of Figure 3e,f). The MYN and YSU schemes tied for the second 

place in terms of mean state (Table 2). 

In summary, for the forecasts of the 100 m wind speed, the MRF scheme showed the 

overall best performance among all seven PBL schemes (Table 2). Therefore, this scheme 

is strongly recommended for the 100 m wind forecast in the middle- and high-latitude 

regions of China. 

3.2. Evaluation on the Sea Level Pressure and 2 m Temperature Forecasts 

Evaluating the forecasts of sea level pressure and 2 m temperature have dual mean-

ings: the first is that these two factors directly determine the calculation accuracy of the 

air density, which is indispensable to calculate the WPD, and the second is that they affect 

the evolution of the 100 m wind through pressure gradient force and baroclinity [1, 7]. 

In order to obtain the overall performance of the sea level pressure forecast, we cal-

culated the averaged RMSE (i.e., the arithmetic mean of the RMSEs for the 24 h, 48 h, and 

72 h forecasts of the sea level pressure) and averaged COEF (i.e., the arithmetic mean of 

the COEFs for the 24 h, 48 h, and 72 h forecasts of the sea level pressure) for each PBL 

scheme. The results are illustrated in Figure 4. We found that the MRF scheme showed 

the smallest RMSEs in six groups of runs (IV, V, VI, VIII, IX, and X; Figure 4a), and it also 
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showed the largest COEFs in six groups of runs (II, III, IV, VII, IX, and X; Figure 4b). More-

over, in terms of the mean state, the RMSE and COEF were the smallest and largest (right-

most of Figure 4) among all seven PBL schemes, respectively, while the YSU and MYN 

schemes ranked second and third (Table 2), respectively. Comparisons between the tem-

poral mean (from 1 July to 31 July) of the sea level pressure forecasts with that of ERA5 

(blue contours in Figure 5) indicate that the forecast using the MRF scheme showed the 

most consistent features with ERA5′s sea level pressure, particularly for the 1004 hPa con-

tour in the western section of Inner Mongolia and the northern sections of Henan and 

Anhui. All the discussions mentioned above mean that the MRF scheme was the best 

scheme for forecasting the sea level pressure. This was an important reason why the MRF 

scheme was the relatively optimal scheme for the 100 m wind speed forecast. 

 

Figure 4. Panel (a) shows the averaged root mean square error (RMSE) for the 24 h, 48 h, and 36 h 

forecasts of the sea level pressure (hPa), and panel (b) shows the averaged correlation coefficient 

(COEF) for the 24 h, 48 h, and 36 h forecasts of the sea level pressure, where the red arrow shows 

the best scheme, the small shaded boxes mark the overall best scheme, and the blue arrow marks 

the worst scheme. Mean = the temporal mean of all 10 runs from 1 July to 28 July. 
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Figure 5. Panel (a) shows the temporal mean (from 1 July to 31 July) of the sea level pressure (blue 

contour; hPa) and the wind power intensity at the height of 100 m (shading; W m−2). Panel (b) is the 

same as (a) but for the simulation using the MRF scheme. Panel (c) is the same as (b), but for the 

MYN scheme. Panel (d) is the same as (b), but for the BLS scheme. Panel (e) is the same as (b), but 

for the YSU scheme. Panel (f) is the same as (b), but for the ACM scheme. Panel (g) is the same as 

(b), but for the GBM scheme. Panel (h) is the same as (b), but for the UWS scheme. 

For the overall performance of the 2 m temperature forecast, as Figure 6a shows, the 

MYN scheme had the minimum RMSEs in five groups of runs (I, II, IV, VI, and IX), and 

those for the YSU scheme and the MRF scheme were three groups (V, VIII, and X) and 

two groups (III and VII), respectively. In terms of the COEF, the MYN scheme showed the 

maximum values in seven groups of runs (I, II, V, VI, VII, VIII, and IX; Figure 6b), and 

those for the MRF scheme and the YSU scheme were two groups (III and IV) and one 

group (X), respectively. For the mean state, the MYN scheme also showed the best 
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performance, as it had the smallest RMSE and largest COEF (rightmost column of Figure 

6), while the MRF scheme and YSU scheme ranked second and third, respectively. 

 

Figure 6. Panel (a) shows the averaged root mean square error (RMSE) for the 24 h, 48 h, and 36 h 

forecasts of the 2 m temperature (K), and panel (b) shows the averaged correlation coefficient 

(COEF) for the 24 h, 48 h, and 36 h forecasts of the 2 m temperature, where the red arrow shows the 

best scheme, and the blue arrow marks the worst scheme. Mean = the temporal mean of all 10 runs 

from 1 July to 28 July. 

3.3. Evaluation on 10 m Wind Forecast 

The power law is widely used to determine the wind speed at the 100 m hub height 

by using the 10 m wind speed [27, 51]. This means that the 10 m wind speed is closely 

related to the 100 m wind speed; thus, it is also necessary to evaluate the forecast accuracy 

of the 10 m wind. From Figure 7, it can be found that for the 10 m zonal wind, the MRF 

scheme showed the overall best performance, because (i) it had the smallest RMSEs in six 

groups (I, II, III, VII, VIII, and IX) and the mean state, and (ii) it had the largest COEFs in 

six groups (I, II, III, VII, VIII, and IX) and the mean state. The MYN and YSU schemes 

showed similar performances in terms of the mean state, and they both ranked second. 

 

Figure 7. Panel (a) shows the averaged root mean square error (RMSE) for the 24 h, 48 h, and 36 h 

forecasts of the 10 m zonal wind (m s−1), and panel (b) shows the averaged correlation coefficient 

(COEF) for the 24 h, 48 h, and 36 h forecasts of the 10 m zonal wind, where the red arrow shows the 



Atmosphere 2022, 13, 2034 12 of 19 
 

 

best scheme, and the blue arrow marks the worst scheme. Mean = the temporal mean of all 10 runs 

from 1 July to 28 July. 

For the 10 m meridional wind, as Figure 8 shows, the MRF scheme also showed the 

best performance among all seven PBL schemes: its RMSEs were minimized in four 

groups of runs (II, III, VII, and VIII) and the mean state, and its COEFs were maximized 

in five groups of runs (I, III, VII, VIII, and IX) and the mean state. The YSU scheme was 

the second best scheme in terms of the mean state, and the MYN scheme ranked third. 

 

Figure 8. Panel (a) shows the averaged root mean square error (RMSE) for the 24 h, 48 h, and 36 h 

forecasts of the 10 m meridional wind (m s−1), and panel (b) shows the averaged correlation coeffi-

cient (COEF) for the 24 h, 48 h, and 36 h forecasts of the 10 m meridional wind, where the red arrow 

shows the best scheme, and the blue arrow marks the worst scheme. Mean = the temporal mean of 

all 10 runs from 1 July to 28 July. 

In summary, as discussed in Sections 3.1–3.3, the MRF showed the overall best per-

formance for forecasting the factors that were used for calculating the WPD. Therefore, as 

the shading in Figure 5 shows, the temporal mean (from 1 July to 31 July) of the WPD 

forecasted by the MRF showed the most consistent features with the WPD calculated by 

ERA5. Therefore, it is strongly recommended to use the MRF scheme for the WPD forecast 

in the middle- and high-latitude regions of China. 

4. Evaluation on the Forecasts of the Background Conditions 

4.1. Evaluation on 500 hPa Geopotential Height Forecast 

According to the quasi-geostrophic theory, the weather systems at 500 hPa (e.g., 

trough, ridge, cyclones, etc.) exert notable effects on the lower-level systems [7, 25]. This 

could directly affect the 100 m wind field, and therefore, it is necessary to evaluate the 

forecast of 500 hPa geopotential height. From Figure 9, it can be found that the MRF was 

the best scheme because (i) it showed the smallest RMSEs in six groups of runs (II, IV, V, 

VI, VIII, and IX) and the mean state, and (ii) it showed the largest COEFs in seven groups 

(II, III, IV, VII, VIII, IX, and X) and the mean state. The MYN and YSU schemes ranked 

second and third, respectively, in terms of the mean state. This is consistent with the rank-

ing of the 100 m wind speed forecast, as a better 500 hPa geopotential height forecast pro-

vided better background conditions for the weather systems at lower levels. The temporal 

mean (from 1 July to 31 July) of the 500 hPa geopotential height is shown in Figure 10. We 

found that the shortwave trough that appeared in the regions east of 108 °E reproduced 

by the MRF scheme was the most consistent with that of ERA5. Moreover, for this scheme, 



Atmosphere 2022, 13, 2034 13 of 19 
 

 

the 500 hPa temperature field and 200 hPa strong wind band were also well forecasted. 

All these contributed to a high-skill forecast of the 100 m wind speed. 

 

Figure 9. Panel (a) shows the averaged root mean square error (RMSE) for the 24 h, 48 h, and 36 h 

forecasts of the 500 hPa geopotential height (gpm), and panel (b) shows the averaged correlation 

coefficient (COEF) for the 24 h, 48 h, and 36 h forecasts of the 500 hPa geopotential height, where 

the red arrow shows the best scheme, and the blue arrow marks the worst scheme. Mean = the 

temporal mean of all 10 runs from 1 July to 28 July. 
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Figure 10. Panel (a) shows the temporal mean (from 1 July to 31 July) of the 500 hPa geopotential 

height (black contour; gpm), the 500 hPa temperature (red contour; °C), and the 200 hPa strong wind 

(shading; m s−1). Panel (b) is the same as (a) but for the simulation using the MRF scheme. Panel (c) 

is the same as (b), but for the MYN scheme. Panel (d) is the same as (b), but for the BLS scheme. 

Panel (e) is the same as (b), but for the YSU scheme. Panel (f) is the same as (b), but for the ACM 

scheme. Panel (g) is the same as (b), but for the GBM scheme. Panel (h) is the same as (b), but for 

the UWS scheme. 

4.2. Evaluation on the 24-hour Accumulated Precipitation Forecast 

Precipitation is the product of the evolution of weather systems, and it can feed back 

on the weather systems through releasing latent heat. The greater the intensity of the pre-

cipitation, the stronger the feedback. For precipitation no weaker than moderate rain (i.e., 
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24 h precipitation ≥ 10 mm), the overall performances of different PBL schemes are illus-

trated in Figure 11. We found that in terms of the threat score (Figure 11a), the YSU scheme 

showed the highest forecast skill, as its TS was the largest for six groups of runs (I, II, V, 

VI, IX, and X) and the mean state. The MRF and MYN schemes ranked second and third, 

respectively, in terms of the mean state. For the BIAS score, as Figure 11b shows, the YSU 

was also the best scheme, as its BIAS was the smallest for five groups of runs (I, V, VI, 

VIII, and IX) and the mean state. In terms of the mean state of BIAS, the MRF and MYN 

schemes also ranked second and third, respectively. In summary, as mentioned above, for 

the 24 h precipitation forecast, the YSU, MRF, and MYN schemes ranked first to third, 

respectively (Table 2). 

 

Figure 11. Panel (a) shows the averaged threat score for the 24 h, 48 h, and 36 h forecasts of 24 h 

accumulated precipitation, and panel (b) shows averaged bias score for the 24 h, 48 h, and 36 h 

forecasts of 24 h accumulated precipitation, where the red arrow shows the best scheme, and the 

blue arrow marks the worst scheme. Mean = the temporal mean of all 10 runs from 1 July to 28 July. 

The accumulated precipitation of July is illustrated in Figure 12. It can be seen that 

there were mainly four precipitation centers in July 2021 (numbers in Figure 12a). All 

seven PBL schemes overestimated the precipitation centers I–IV, with the smallest over-

estimation in YSU (Figure 12e). This also confirmed that the precipitation was reproduced 

the best by the YSU scheme. Compared with others, the overestimations of the precipita-

tion forecast were smaller in the runs with MRF and MYN. For the precipitation intensity 

of heavy rainfall (i.e., 24 h accumulated precipitation was between 25 mm and 49.9 mm) 

and torrential rainfall (i.e., 24 h accumulated precipitation was above 50 mm), MRF and 

YSU ranked first and second (not shown). This also explained why the four precipitation 

centers were well reproduced by these two PBL schemes. In July 2021, the PBL was fre-

quently unstable (rainfall was frequent), and therefore, the MRF scheme showed an over-

all better performance than the other PBL schemes, as it allowed a more accurate descrip-

tion of deeper mixing in an unstable PBL [33]. A better precipitation forecast acted as a 

favorable background condition for the 100 m wind speed forecast. 
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Figure 12. Panel (a) shows the accumulated precipitation from 1 July to 31 July (shading; mm) de-

rived from the GPM precipitation. Panel (b) is the same as (a) but for the simulation using the MRF 

scheme. Panel (c) is the same as (b), but for the MYN scheme. Panel (d) is the same as (b), but for 

the BLS scheme. Panel (e) is the same as (b), but for the YSU scheme. Panel (f) is the same as (b), but 

for the ACM scheme. Panel (g) is the same as (b), but for the GBM scheme. Panel (h) is the same as 

(b), but for the UWS scheme. ‘I’, ‘II’, ‘III’, and ‘IV’ mark the four precipitation centers. 

5. Conclusions and Discussion 

Of all the current power generation technologies, wind power generation shows the 

lowest carbon emissions. Therefore, to reach the goal of carbon neutralization, wind 

power generation plays an indispensable role. However, due to the randomness, diver-

sity, intermittence, and uncontrollability of wind at near-surface levels, accurately fore-

casting the WPD on wind farms is still challenging. As the wind turbines of wind farms 
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are situated in the PBL, where the turbulence, sensible heat flux, latent heat flux, and fric-

tion dissipation all exert direct effects on the near-surface wind field, it is crucial to select 

the relatively optimal PBL scheme to improve the WPD forecast. The middle- and high-

latitude regions of China have the most abundant wind energy resources in China. Im-

proving the wind power density forecast in this region is of particular importance to 

China’s wind power industry. In view of this, we compared the performances of seven 

PBL schemes (i.e., MRF, MYN, BLS, YSU, ACM, GBM, and UWS) by using the WRF model 

v4.4 for a total of 70 runs (for each run, the forecast period was 3 days). Overall, for all 

evaluations, we found that (i) there were no PBL schemes which could always show the 

best performances in forecasting all variables; (ii) the forecasts mainly became worse as 

the forecast time grew; and (iii) the forecast accuracy showed a notable dependence on 

the evolution of the weather systems. For some types of weather systems (e.g., high-pres-

sure ridge, anticyclone, etc.) or during some stages of a weather system (e.g., slowly var-

ying stage, steady maintain stage, etc.), the forecast accuracy was relatively high, whereas 

for others, the accuracy was lower. How the forecast accuracy depends on the weather 

systems’ evolution is an important scientific question which deserves further investiga-

tion. 

To evaluate the forecast accuracy of the WPD, according to its calculation expression, 

we evaluated a total of three factors: the first was the 100 m wind speed, which played a 

decisive role in calculating the WPD; the second and the third were the sea level pressure 

and 2 m temperature, both of which not only could reflect the forecast accuracy of the air 

density, but also could affect the evolution of the 100 m wind speed through pressure 

gradient force and baroclinity (stronger baroclinity was favorable for more intense release 

of the available potential energy, during which the kinetic energy would be enhanced). In 

terms of the evaluation of the 100 m wind speed, it was found that for the 24 h, 48 h, and 

72 h forecasts and their total, the MRF scheme was the best (Table 1), whereas the GBM 

scheme showed the lowest forecast skills among all seven PBL schemes. For the forecast 

of the sea level pressure, the MRF scheme also showed the best performance, whereas for 

the 2 m temperature forecast, the MYN scheme ranked first, and the MRF scheme ranked 

second. Therefore, we strongly recommend using the MRF scheme for the WPD forecast 

in the middle- and high-latitude regions of China. 

In addition to the WPD forecast, the MRF scheme also showed the best performances 

when forecasting the 10 m zonal wind, 10 m meridional wind, and 500 hPa geopotential 

height. For precipitation no weaker than moderate rainfall, the MRF scheme ranked sec-

ond, while the YSU scheme ranked first (Table 2). Overall, these findings indicate that the 

background conditions for the evolution of the 100 m wind speed were well forecasted by 

the MRF scheme, which contributed to obtaining a relatively optimal WPD forecast. How-

ever, as we only used one month in the summer (July 2021) to evaluate the performances 

of different PBL schemes, whether the results could be suitable for other seasons still 

needs further comparison. Moreover, in addition to the PBL schemes, the microphysics 

schemes also notably affect the forecast accuracy of the WPD. Therefore, we suggest con-

ducting the evaluations on different microphysics schemes, and the WPD forecast in the 

middle- and high-latitude regions of China could thus be further improved. 
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