
Citation: Paskin, L.; Conan, B.;

Perignon, Y.; Aubrun, S. A Dynamic

Large-Scale Driving-Force to Control

the Targeted Wind Speed in Large

Eddy Simulations above Ocean

Waves. Atmosphere 2022, 13, 2012.

https://doi.org/10.3390/

atmos13122012

Academic Editor: Jimy Dudhia

Received: 31 October 2022

Accepted: 23 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

A Dynamic Large-Scale Driving-Force to Control the Targeted
Wind Speed in Large Eddy Simulations above Ocean Waves
Liad Paskin * , Boris Conan , Yves Perignon and Sandrine Aubrun

Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, F-44000 Nantes, France
* Correspondence: liad.paskin@ec-nantes.fr

Abstract: We performed large eddy simulations to study micro-scale wind–wave interactions under
undisturbed freestream conditions. We identified that standard approaches lead to wave-related
disturbances at the top boundary. Therefore, we developed a numerical strategy to maintain an
undisturbed wind speed at the top, while considering arbitrary waves at the bottom. In a broader
context, the method is capable of controlling the wind speed at any height in the domain, and may also
be used to enhance atmospheric simulations over land. The method comprises an evolution equation
that controls the dynamic evolution of the large-scale driving force, representing the geostrophic
forcing from the meso- to the micro-scales. In flat-bottom applications, this guided the reference
freestream velocities towards a certain target; convergence to a steady state regime was favored
and self-similarity was ensured. In wavy bottom applications considering the prescription of a
monochromatic wave, we were able to maintain a quasi-steady wind speed close to the target on the
freestream. The wave-induced disturbances were then investigated as functions of varying wave
age conditions. We performed a systematic wave age variation study by varying the reference wind
speed, and evaluated wave-induced disturbances in the velocity, normal, and shear stress profiles.

Keywords: marine atmospheric boundary layer; large eddy simulation; air-sea fluxes; meso- to
micro-scale forcing

1. Introduction

The marine atmospheric boundary layer (MABL) is often subject to significant wave-
induced (WI) disturbances governing complex wind–wave interactions above the ocean.
Ever since the pioneering theoretical work of [1–5], and up to modern experimental cam-
paigns, such as those discussed in [6–10], the wave age (WA = c/U) has been used to
classify wind-wave interactions in terms of the wave-phase (c) and mean wind (U) veloci-
ties. When a swell encounters light winds (large WA), the momentum transfers from the
sea to the atmosphere in a situation referred to as old seas, as opposed to the wave-growing
stage referred to as young seas (small WA).

A wave boundary layer (WBL) exists in the vicinity of the water surface, where
the wave’s influence directly alters the air-flow dynamics with the appearance of a WI
flow [10,11], and notably a WI stress perturbation [12,13]. Neglecting viscous effects, the WI
stress integrates into the form drag in the lower surface and is responsible for the vertical
transfer of momentum between waves and wind [14,15]. If the waves travel sufficiently
fast (large WA) with a significant wave slope, the upward transfer is such that the wave
signature emerges as a low-level jet, characterized by a local maximum in the wind velocity
profiles [16–18].

The definition of a WBL height is in debate [11,19,20], as the significance of the WI
disturbance depends on the variables of interest [10]. Many authors considered the WBL
height as being proportional to, and in the same order of magnitude as, the significant
height [20,21]. However, it was observed that during swell conditions, the WBL can reach
higher altitudes [10,19,22,23]. Moreover, WI disturbances were observed to decay with
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height at an exponential proportional to the wavelength [11,20]. Particularly in old seas,
the waves can significantly disturb the wind profiles, but a clear parametrization of this
disturbance from the sea-state conditions has not yet been achieved.

Atmospheric forecast systems [24,25], and predictive tools for design and opera-
tional purposes [26,27], rely on low-cost, semi-empirical numerical modeling, as discussed,
e.g., in [28]. The Monin–Obukhov similarity theory (MOST), [29,30], is expected to hold
sufficiently far above the wave’s influence [20,23,31,32], i.e., above the so-defined WBL.
Therefore, Charnock [33] developed a pioneer, widely employed parametrization of the WI
form drag in the upper part of the MABL. Charnock’s parametrization was followed and
improved by many [34–37]. Still, an insufficient understanding of wind–wave interaction
mechanisms prevents the accurate characterization of WI motions, or stresses, in these
semi-empirical models [11,13].

It is expected that high-fidelity computational fluid dynamics could drive the de-
velopment of more robust semi-empirical predictive tools. Fully resolved turbulence is
achievable through direct numerical simulations (DNS), within limited Reynolds numbers
representing laboratory scales [38–44]. Alternatively, large eddy simulations (LES) employ
a limited level of modeling that intervenes only at small scales, being able to resolve the
largest and most energetic scales of turbulence, at large Reynolds numbers representing
oceanic scales (c.f. [45]). Moreover, LES are often coupled to other complex dynamics
characteristic of engineering applications, such as, e.g., wind energy farming (c.f. [46]). A
pioneer LES over wavy surfaces was proposed in [47], and was followed by the develop-
ments of [48–59], with a recent review of the state-of-the-art methodology presented in [60].
The DNS model presented in Sullivan et al. [38] was adapted in [48–50], into the LES model
(from the NCAR, USA) employed herein. Further research is still required, however, before
numerous and systematically varying LES can improve the existing low-order closures
to the WBL reconstruction in semi-empirical models. In this context, we propose a new
methodology to expand LES capabilities in wind–wave interaction studies.

In the atmosphere, the flow is driven by a geostrophic wind (UG), which results from
a balance between the large-scale pressure and Coriolis forces. UG is assumed not to be
affected by the local terrain. To study large-scale dynamics, atmospheric LES approaches
use these physics to drive the flow in the numerical domain [48,60]. To avoid having to
model the entire ABL and above, a homogeneous longitudinal pressure gradient (∂P/∂x)
is widely used in micro-scale studies to drive the flow instead [47,49–57,59]. In this case,
unlike in reality, the flow travels along the pressure gradient direction as in a wind tunnel.
Combined with the case-dependent WI stresses, and with the free-slip condition (zero-
vertical-gradient of horizontal velocities) imposed in the upper boundary, both of these
strategies allow a varying wind speed profile across the vertical extension of the MABL. In
old seas and neutral atmospheric conditions, we reported the speed-up of the longitudinal
velocity up to the upper boundary of the numerical domain [52]. The WI disturbance of
the freestream is unlikely to occur in the physical MABL but is intrinsic to the numerical
formulations employed in the literature. This is observable, e.g., in [49,51,53,57]. Weakly
unstable stratification was considered in [49], and these references also report the slow-
down of the freestream velocity in young seas, or due to the presence of curved but
stationary bottoms. To keep a constant freestream velocity above a time-varying wave, we
develop herein a general strategy to control the wind speed in an atmospheric LES.

In previous studies of wind–wave interactions by LES, the large-scale driving force
(here ∂P/∂x) was usually prescribed as a constant [47–57,60]. As an exception, an ar-
bitrary time-varying force was recently employed to simulate a wind gust event [59].
Over land, however, a few applications considered transient large-scale forcing terms
in LES (c.f. [61–67]). Based on LiDAR measurements in the ABL, the overall accuracy was
improved through the prescription of a linear-time-varying, and spatially homogeneous,
pressure gradient [61]. The measurement of time-varying geostrophic winds drove the
ABL during one or multiple diurnal cycles [62,63]. Employing time-varying and height-
dependent forcing terms is in fact a common practice of data assimilation in meso- to
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micro-scale coupling procedures [64,65]. A thorough discussion of the subject was pre-
sented in [66], who propose a dynamic modeler to control the wind speed at an arbitrary
height, in the context of wild-fire applications over canopies. To model wind direction
changes in LES, the governing equations were solved in a non-inertial rotating reference
frame [67].

To accommodate unknown, time-varying momentum stresses in the simulation, the
present methodology proposes an original, dynamic ∂P/∂x modeler. An artificial evolution
equation is built for Px = ∂P/∂x, so that a target velocity is reached at a certain height
in the domain. Px remains spatially homogeneous but varies in time at periods much
longer than the resolved motions. Our strategy differs from that of [61,62], because here,
Px is modeled rather than prescribed. Considering here an evolution equation for Px, it
is an alternative to the data assimilation procedure presented in [64], or to the periodic
adaptation employed in [66]. The evolution equation built is a Partial Differential Equation
(PDE), inspired in the rigid-body (Newton) equation of motion, and acting as a dynamic
filter to the fluid’s (Navier–Stokes) momentum conservation equations.

The methodology employed is described in Section 2. The LES formulation is briefly
described in Section 2.1. The proposed ∂P/∂x modeler is described in Section 2.2. This
new methodology is compared with a reference case scenario in Section 3. Employing the
dynamic ∂P/∂x modeler, flat-bottom cases are built with varying wind speeds in Section 4,
ensuring self-similarity of the turbulent statistics, and building the initial conditions for
a varying WA comparison. Monochromatic waves are introduced in Section 5 to evalu-
ate the capability of the proposed methodology to provide consistent and efficient WA
parametrizations of WI disturbances in this canonical condition.

2. Methods
2.1. Numerical Problem Formulation

A volume domain is defined in the air (specific mass ρ∞) with sizes (xl , yl , zl), bounded
below at Sz− by the air–water free surface, and above at Sz+ by the freestream, as exempli-
fied in Figure 1. Wind and waves are aligned and propagate in the longitudinal direction (x
axis). The free surface dynamics may be imposed by any single-valued function η(x, y, t).

Figure 1. The wind tunnel-like simulation in Cartesian coordinates. Wind and waves are aligned
to the x axis. The domain is bounded below by an arbitrary single-valued wave, and above by the
freestream. The flow is driven by the large-scale pressure gradient ∂P/∂x.

In the basic configuration, a constant and homogeneous large-scale pressure gradient,
∂P/∂x, drives the flow in the longitudinal (x axis) direction. In a flat-bottom, this gives
the theoretical friction velocity u∗0 =

√
zl ∂P/∂x/ρ∞. We consider neutral stratification

conditions, where the flow is defined with characteristic length L0, characteristic velocity
u∗0 , and the characteristic period T0 = L0/u∗0 .

The canonical case of a single non-linear monochromatic wave is considered. Prevent-
ing the free surface evolution under the wind forcing, the wave is prescribed according
to a fifth-order Stokes solution [68]; with wavelength λ = L0, wave number k = 2π/λ,
and non-dimensional amplitude ka = 0.2. The dispersion equation in deep water gives
a phase velocity c =

√
g/k, and a wave period Tw = λ/c, with g the gravitational accel-

eration. This strategy establishes the relation between characteristic length and velocity
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scales with nominal WA0 = c(L0)/u∗0 . The turbulent characteristic time-scale becomes
T0 = λ/u∗0 = WA0 Tw. As an initialization procedure, the wave amplitude evolves linearly,
from zero to ka, during 100Tw.

2.1.1. Governing Equations and Boundary Conditions

An incompressible and fully turbulent flow is considered, with the Boussinesq approx-
imation for incompressibility (c.f. [69]) acting in the buoyancy terms of the momentum
and turbulent kinetic energy (TKE) conservation equations. Coriolis and viscous forces
are neglected for the sake of simplicity. The balance equations are filtered according to an
LES approach. Let ũ(x, t) = (ũ, ṽ, w̃), p̃(x, t), and θ̃(x, t) be the spatially filtered velocity,
pressure, and virtual temperature fields, respectively; û, p̂, and θ̂ are the corresponding
subgrid-scale (SGS) fields.

The modified pressure is p∗(x, t) = p̃− p∞ + ρ∞g(z− z∞) + (2ê/3), accounting for: A
reference value p∞; the static pressure ρ∞g(z− z∞), dependent on the total average specific
mass ρ∞, gravitational acceleration g, and height (z− z∞), relative to a reference z∞; and
the SGS TKE (ê) effect 2ê/3. The (modified) specific mass is ρ∗(x, t) = −ρ∞βθ(θ̃ − θ∞),
dependent on the filtered virtual temperature θ̃, the reference values [ρ∞, θ∞], and the
buoyancy parameter βθ = g/θ∞. In neutral stratification, buoyancy forces are suppressed
so ρ∗ = 0. The filtered strain rate tensor is S̃ =

[
∇ũ + (∇ũ)T]/2. The SGS-modeled shear

stress tensor, τSGS = −2νtS̃, is defined within the scope of the eddy viscosity hypothesis,
and is dependent on the turbulent kinematic viscosity νt. The Kronecker delta is denoted
by δij.

Mass and momentum balances are written as Equations (1) and (2). The SGS TKE is
modeled by the Deardorff single Equation (3) [70].

∂ũj

∂xj
= 0, (1)

ρ∞

[
∂ũi
∂t

+
∂(ũjũi)

∂xj

]
= −ρ∗δi3 −

∂p∗

∂xi
− ρ∞

∂τSGS
ij

∂xj
− ∂P

∂xi
δi1, and (2)

∂ê
∂t

+
∂(ũi ê)

∂xi
= (2νtS̃ij)S̃ij −

g
θ∞

νh
∂θ̃

∂z
+

∂

∂xj

(
2νt

∂ê
∂xj

)
− ε. (3)

The turbulent dissipation, ε = cε ê3/2/∆ f , is determined according to the filter length
scale ∆ f = [(3/2)2∆x∆y∆z]1/3. The turbulent kinematic viscosity and diffusivity are
respectively νt = cklê1/2 and νh = (1 + 2l/∆ f )νt, where l is here equal to ∆ f .

The Cartesian physical space (x, y, z) is mapped into the computational, terrain-
following space, defined with ξ1 = x, ξ2 = y, and ξ3 = ξ3(x, y, z, t). The governing
Equations (1)–(3) are rewritten in the terrain-following space as demonstrated, e.g., in [14,41].
The fundamental unknowns (ũ, p̃, ê, θ̃) are located at the cell center. The full set of equations
is presented in their discrete form and in the terrain-following space, and with the values
of the constants given, e.g., in [48].

The geometrical conservation law introduced by [71], translates into Equation (4):

∂

∂t

(
1
J

)
=

∂

∂ξ3

(
∂h
∂t

)
, (4)

relating the Jacobian of the grid transformation J, to the grid vertical position h.
A spectral discretization is adopted, so periodic Boundary Conditions (BCs) apply to

the transversal and longitudinal boundaries.

Upper Boundary Conditions

No-penetration and free-slip BCs are imposed as:
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∂θ̃

∂z
= 0,

∂ê
∂z

= 0,
∂ũξ1

∂z
= 0,

∂ũξ2

∂z
= 0, and ũξ3 = 0, at Sz+. (5)

Lower Boundary Conditions

The difference in the tangential velocities, ∆ũ[ξ1,ξ2]
, is computed from the velocities

resolved in the first cell, minus the ones prescribed at the lower surface. The wall fluxes
τw

f [ξ1,ξ2]
= ρ∞u∗2[ξ1,ξ2]

(at Sz−) are then obtained from the log law wall function:

∆ũ[ξ1,ξ2]
=

u∗ [ξ1,ξ2]

κ
ln
(

z
z0

)
, at Sz−, (6)

specifying a Robin type of BC for the longitudinal momentum equations, with a roughness
length z0 = 10−6 L0, and a von Kármán constant κ = 0.4.

The vertical velocity is imposed in the first cell as equal to the surface. The SGS TKE
flux is null, and the turbulent kinematic viscosity is given by νt = |u∗|κz. The temperature
can be specified either by its surface value or by the heat flux (here null). When the heat
flux is other than null, Equation (6) is adapted by employing MOST [30].

∆ũξ3 = 0,
∂θ̃

∂z
= 0, and

∂ê
∂z

= 0, at Sz−. (7)

2.1.2. Post-Processing
Surface Drag and Friction Velocity

The stresses are integrated and averaged at Sz− to provide the bottom surface drag
as a force per surface unit. The total drag is Ft = Fp + Ff , a combination of normal and
tangential stresses. In a wavy surface, the projection of the modified pressure p∗ normal
to the free surface η(x, y, t) leads to a pressure stress vector of horizontal components
τw

p = p∗ · (∂η/∂xi), with i = 1, 2. The form drag is the magnitude (| · |) of the space average
of this vector Fp = |〈τw

p 〉|. The friction drag is the magnitude of the averaged wall flux
vector Ff = |〈τw

f 〉|.
Equation (6) defines the point-wise wall flux and friction velocity vectors (τw

f = ρ∞u∗2).
The space-averaged friction velocity (scalar) is afterward obtained from the friction drag, as:

u∗ =
√

Ff /ρ∞, (8)

and u∗ is simply referred to as the (resolved) friction velocity hereafter.

Averages, Fluctuations, and Fluxes

Horizontal space averages 〈·〉 are performed in the computational Cartesian grid,
along [ξ1, ξ2] planes of constant ξ3. The space-averaged quantities are thus presented
as a function of the averaged height z = 〈h〉, which remains constant for a given plane.
Turbulent fluctuations of a general (filtered) field variable φ̃(x, t) are denoted and computed
as φ′ = φ̃− 〈φ̃〉. The resolved TKE is ẽ = 0.5(u′u′ + v′v′ + w′w′). Sliding time averages (·)
are afterward performed between t− tavg and t, with an average period of tavg.

The wavy bottom surface invariably requires the problem to be formulated in surface-
following coordinates, which leads to the pressure acting as a momentum flux mechanism
in the Navier–Stokes equations [14]. Therefore, the total flux (stress) becomes a combination
between pressure and friction (resolved and SGS) terms, written as τ13 = τ

p
13 + τu

13 + τSGS
13 .

The pressure term is τ
p
13 = p∗ · (∂h/∂x1), and equals the pressure drag (Fp) at Sz−, where

h = η(x, y, t). The resolved friction term is τu
13 = u′w′, and the SGS term is τSGS

13 = −2νtS̃13.
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2.1.3. Numerical Strategy
Discretization

Given the characteristic length L0, the presented domain has sizes (xl , yl , zl) = (4, 2, 5)L0.
The grid is structured. The domain is discretized with (nx, ny, nz) = (256, 128, 80), giving
a total of 655,360 cells, with sizes (∆x, ∆y, ∆z). The cells are uniformly distributed in
(x, y), but not in z. The first grid size in the z direction is zw1 = 0.5208 × 10−2L0, so that
zw1/∆x = 1/3, and it grows with a constant ratio of 1.05. Assuming for example that
ν = 1.5× 10−5 m2/s (air at 15 °C), when WA0 = 60 and λ = 100 m, then u∗ = 0.210 m/s,
and z+ = zw1 u∗/ν = 7.3× 103.

The spectral discretization applies to (ξ1, ξ2) directions, and a second-order finite
difference scheme applies to the ξ3 direction. A third-order Runge–Kutta time-stepping
scheme admits arbitrarily selected time steps (∆t). An adaptive ∆t procedure ensures that
CFL = ∆t ·max[ũ/∆x, ṽ/∆y, w̃/∆z] = 0.5.

Initialization

We followed a standard procedure for the initialization of the neutral LES-generated
MABL. First, the flow field was built from the mean theoretical solution for a turbulent
boundary layer over a flat plate, superposed to artificial, randomly generated turbulent
motions. In order to first generate resolved turbulence, we considered buoyant effects on
the momentum conservation equations during the first thousand time steps. The test cases
presented here were initialized from a converged case of constant ∂P/∂x, giving a nominal
friction velocity u∗0 . The undisturbed, space-averaged (in ξ1 and ξ2) freestream velocity 〈ũh〉
was then resolved at Sz+, thus giving the reference freestream velocity ure f 0 = 52.11 u∗0 .

2.2. A Large-Scale Dynamically Evolving Pressure Gradient Modeler

Isolating the local time derivative and the large-scale forcing in the first component
(i = 1) of Equation (2), the other terms of the right-hand side are gathered inR[P]. Thus, the
large-scale wind forcing is achieved in such an LES formulation through the longitudinal
momentum balance equation:

ρ∞
∂ũ
∂t

= R[P] − ∂P
∂x

, (9)

which is evaluated at each time-step and Runge–Kutta iteration n.
The evaluation of Equation (9) leads to a non-zero, space-averaged local time derivative

on the upper boundary ∂〈ũh0〉/∂t. As a motivation, and in a first attempt to keep a constant
freestream velocity, we may consider the correction with an increment δ[∂P/∂x]:

ρ∞
∂〈ũh1〉

∂t
= ρ∞

∂〈ũh0〉
∂t

− δ

[
∂P
∂x

]
, (10)

which is required to be null, leading to the iterative procedure:

Px,n︷ ︸︸ ︷[
∂P
∂x

]
n
=

Px,n−1︷ ︸︸ ︷[
∂P
∂x

]
n−1

+

δPx,n︷ ︸︸ ︷
δ

[
∂P
∂x

]
n
, with δ

[
∂P
∂x

]
n
= ρ∞

∂〈ũh0〉
∂t

∣∣∣∣
n
.

(11)

Through the adaptive procedure of Equations (10) and (11), 〈ũh〉 is constant at every
instant, and ∂P/∂x incorporates any turbulent disturbance in the upper boundary. This
has to be avoided since by definition, ∂P/∂x contains only large-scale dynamics. Instead,
an evolution equation was built for Px = ∂P/∂x, in which it is dynamically filtered
responding to the large-scale part of these equations.
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The large-scale filter of Equations (10) and (11) is accomplished by a mass-spring-
damper system represented in Figure 2. This determines the evolution of Px according
to a second-order PDE, which is also known as the rigid body equation of motion [72].
Denoting the first and second-time derivatives of Px by Ṗx and P̈x, respectively:

P̈x = −w2
P δPx − 2ζ wP Ṗx, (12)

which advances with the same Runge–Kutta scheme applied to the other quantities in the
LES code. The displacement from the equilibrium state is given by δPx. The system is
characterized by a natural angular-frequency wP (with natural period TP = 2π/wP ), and
a non-dimensional damping ratio ζ.

Figure 2. The Mass-Spring-Damper system ruling the evolution of the longitudinal pressure gradient
Px = ∂P/∂x, according to Equation (12).

A property of Equation (12) is that Px is not excited by frequencies much higher than
the natural, and another is that stability can be assured in the so-called critically damped
regime [72,73]. Therefore, in order to ensure that the response is limited to large periods,
we employ a large parametrization of TP , and to preserve stability, we impose the critical
damping ratio ζ:

TP = 103 xl
ure f

; and ζ = 1. (13)

Furthermore, we aim for a certain, non-null local time derivative with:

δPx = ρ∞

[
∂〈ũh0〉

∂t
− ∂〈ũh1〉

∂t

]
, and

∂〈ũh1〉
∂t

=
ure f − 〈ũh〉

TP
, (14)

so that seeking the equilibrium, 〈ũh〉 tends to the target ure f over the period TP .
The pressure gradient thus defined is spatially homogeneous but varies instanta-

neously in time, so that the mean longitudinal velocity in the upper surface tends to the
target. The methodology proposed can be easily generalized by associating the subscript ·h
to an arbitrary height in the domain.

3. Pilot Application

The proposed methodology was built to mitigate the undesired variations of freestream
velocities due to WI disturbances in LES (Section 1). Therefore to evaluate its performance,
the dynamic Px modeler is here compared with the traditional, constant Px approach.

Test Cases

Three cases are presented, initializing with freestream velocity resolved as ure f 0 = 52.11 u∗0
(see initialization in Section 2.1.3). Case 01 is the reference, with flat-bottom BC and a
constant Px = ρ∞u∗20 /zl . Case 02 introduces the monochromatic wave (WA0 = 60), still
keeping a constant Px. Case 03 considers this same wave, but also the dynamic Px modeler
here proposed, with target velocity (ure f ) equal to the initial ure f 0.
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Results

Time histories are shown in Figure 3, by employing sliding-time statistics with long
average periods tavg = 75T0. The normalized mean wind velocity in the last cell layer
(Uh/u∗0 , with Uh = |〈ũh〉|) is shown in Figure 3a. In the flat-bottom case (Case 01), the
freestream velocity deviates ∼ 2% from its initial value. The wave acts as an additional
driving force dragging the wind above. Therefore, without a diminishing Px balancing the
additional momentum transferred to the wind, the freestream velocity is greatly augmented
by the introduction of the wave in Case 02, reaching values ∼14% higher than ure f . In
Case 03, the dynamic Px algorithm is activated, and the target velocity ure f is shown as the
horizontal line in the figure. With this approach, the freestream velocity deviates only ∼1%
from the target, when t > 200T0 in Case 03.

Figure 3. Time histories of non-dimensional: (a) wind speed at Sz+; (b) friction velocity; (c) large-scale
pressure gradient; and (d) form drag. Averaged with tavg = 75T0. Case 01: Flat bottom with constant
Px, as the reference. Case 02: Wavy bottom with constant Px. Case 03: Wavy bottom with the
dynamic Px modeler.

The resolved friction velocity (u∗) is normalized by its nominal value in Figure 3b.
Concerning Case 02, the wave first leads to a rapid drop in the friction velocity, which later
returns towards u∗0 over large periods. Employing the dynamic Px in Case 03, the friction
velocity does not recover the nominal value but is kept at ∼0.88 u∗0 .

Both the freestream and friction velocities of Figure 3a,b reveal a persistent transient
regime for Case 02, which in fact has not completely converged after the 2 million time steps,
and during the period of 250T0 shown in the figures. The transient regime is significantly
mitigated in Case 03 with the dynamic Px method, which presents relatively slight velocity
variations over the whole computation, reaching a statistically steady regime for t > 200T0.

The homogeneous pressure gradient is shown in Figure 3c: Constant and equal to 1/zl
for Cases 01 and 02; dynamic and slowly evolving in Case 03, which converges towards
Px ∼ 0.6/zl for t > 200T0. The transient Px in Case 03 is responsible for keeping the
quasi-steady wind and friction velocities.

Neglecting viscous effects, the WI stress integrates into the form drag in the lower
surface, and is responsible for the vertical transfer of momentum between waves and
wind [14,15]. If the waves travel sufficiently fast (large WA) with a significant wave slope,
the upward transfer is such that the wave signature emerges as a low-level jet, characterized
by a local maximum in the wind velocity profiles [16–18].

The momentum transfer between the wave and the wind is evaluated in the non-
dimensional form drag (per surface unit) Fp/Ft, which also exhibits a transient behavior
in Figure 3d. While Case 03 converges towards Fp/Ft ∼ −15% for t > 200T0, Case 02
continues to increase after its sudden drop and minimum occurring at t ∼ 10T0. Moreover
in Case 03, Fp < 0 and the momentum transfers exclusively upwards, but for Case 02,
the form drag changes the sign, and upon becoming positive, it indicates a downward
(wind-to-wave) momentum transfer for t > 100T0.
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Interestingly for Case 02, the freestream velocity converges towards the wave phase
velocity in the last instants of Figure 3a, when Uh/c = 99.5%. This means that Miles’ critical
height, where U = c [3,74,75], is being brought inside the computational domain.

The mean wind and turbulence profiles in the last instants of the depicted evolution
are presented in Figure 4. In the longitudinal velocities of Figure 4a, the speed-up of Case
02 occurs through the whole extension of the domain, while in Case 03 the speed-up is
restricted to lower altitudes.

Figure 4. Height-dependent wind and turbulence profiles averaged with tavg = 75T0. Pilot applica-
tion. (a) longitudinal velocity; (b) total shear stress; (c) total turbulent kinetic energy (TKE).

Inferred from the velocity time histories in Figure 3a,b, the different wave ages between
Cases 02 and 03 qualitatively justify the differences in the turbulent profiles of Figure 4b,c,
where they are normalized by the resolved friction velocity u∗. In the turbulent profiles,
the disturbances previously reported in [52], for the TKE and the total shear stresses, are
again observed in Figure 4, and increased in Case 03, where the WA is higher. A systematic
WA comparison is presented in Section 5.

4. Flat-Bottom Application

In this section, we show that the proposed methodology preserves the self-similarity of
turbulent statistics for flat-bottom cases while employing the dynamic Px modeler to build
varying wind initial conditions prior to Section 5. These flat-bottom references provide
guidance for the evaluation of WI disturbances later on.

Test Cases

Five cases are presented, varying the freestream velocity from its initial value. The
dynamic Px method is thus employed with varying target velocities: Cases [01, 02, 03, 04, 05]
with target ure f = [0.75, 0.90, 1.00, 1.10, 1.25] ure f 0, respectively, and with ure f 0 = 52.11 u∗0 .
The nominal friction velocity characterizing each case is thus u∗re f = ure f /52.11, and the
corresponding characteristic time-scale is Tre f = λ/u∗re f .

4.1. Evolution and Turbulent Profiles

Time histories are shown in Figure 5, by employing sliding-time statistics with short
average periods tavg = 75× 10−3T0, in order to assess the different turbulence levels and
periods that characterize the evolution of different quantities. The mean wind velocity in
the last cell layer (Uh) is shown in Figure 5a, showing that it tends to the specified values
(ure f ) depicted by the horizontal lines in the figure. The low level of fluctuations revealed
for Uh is consistent with the low turbulence level imposed by the upper BC.

The dynamic Px is shown in Figure 5b. As expected, Px evolves in larger periods
than Uh, with its natural period imposed as TP = 77T0. The friction velocity is normalized
by u∗re f in Figure 5c. As the last cell velocity approaches the target, the non-dimensional
solution converges between the cases attesting to their self-similarity.
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Figure 5. Time histories of non-dimensional: (a) wind speed at Sz+, with target values denoted in the
horizontal lines; (b) large-scale pressure gradient; (c) friction velocity. Averaged with tavg = 75× 10−3T0.
Flat-bottom application.

The vertical wind and turbulent profiles are shown in Figure 6. They provide fur-
ther evidence that self-similarity is preserved since the cases almost perfectly collapse
in the non-dimensional, mean longitudinal velocity 〈ũ〉/u∗, turbulence intensity (TI)

TIφφ =
√
〈φ′φ′〉/〈ũ〉, and total shear stresses 〈τ13〉/(ρ∞u∗2), shown respectively

in Figure 6a–c.

Figure 6. Height-dependent wind and turbulence profiles averaged with tavg = 75T0. Flat-bottom ap-
plication. (a) longitudinal velocity; (b) turbulence intensity (TI); (c) total shear stress. The normalizing
friction velocity is resolved, as obtained from Equation (8).

4.2. Wind Velocity Profiles and Fitting

We applied a logarithmic fitting to the wind profiles, by introducing the effective
friction velocity (αuu∗) and roughness length (αzz0), in Equation (15):

uFIT =
αu u∗

κ
ln
(

z
αz z0

)
, (15)

thus recovering the log law of Equation (6) when [αu = 1, αz = 1]. With parameters [αu, αz],
the fitting minimizes the RMS difference RMSdi f f , defined in Equation (16) in an arbitrary
region zmin < z < zmax.

RMSdi f f =

√√√√ 1
n ∑

n

[
(uFIT − 〈u〉)2

〈u〉2

]
, ∀ {n | zmin ≤ zn ≤ zmax}. (16)

This fitting is embedded in an adaptive procedure determining the log law region at
zmin ≤ z ≤ zmax. Given the threshold RMSc, and starting at zmax, the lower limit (zmin)
descends while RMSdi f f < RMSc. Thus, the log law region is defined as the most extensive
portion of the ABL below zmax, in which the log fitting error is less than RMSc = 5× 10−3.
Here zmax = 0.8L0 is fixed, in order to later guide the evaluation of WI disturbances in the
lower part of the logarithmic region.

The logarithmic fitting is depicted in Figure 7, revealing different regions inside the
domain. In the numerical inner surface layer, the modeled SGS stresses are significant. In



Atmosphere 2022, 13, 2012 11 of 21

the outer surface region, highly anisotropic turbulence dominates the shear flow, the SGS
stresses become negligible with respect to the LES-resolved turbulence, and the longitudinal
velocity is given by a log law profile; this so-called logarithmic region is observed above a
numerical buffer region and below the outer layer. In the outer layer, the flow adapts to the
freestream condition, turbulence vanishes, and the velocity profiles exhibit an almost linear
behavior [52].

Figure 7. Wind longitudinal velocity profiles, with different colors for Cases 01 to 05 of the flat-
bottom application. The log law fitting to the outer surface layer (by Equation (15)) is shown with
transparent lines.

Considering the uncertainty as (±0.5) the maximum variation between the cases, the
described fitting leads to αu = 0.93± 0.03 and αz = 0.43± 0.16, with zmin/L0 = 0.03.

5. Wave Age Variation

The proposed methodology is employed here to perform a systematic WA variation
study in old seas (48 ≤WAre f ≤ 79), by varying the wind speed in the range ±25%.

Test Cases

The wavy bottom surface replaces the flat-bottom cases previously discussed in
Section 4. A single monochromatic wave is considered, with ka = 0.2 and λ = L0. The
varying wind conditions lead to nominal WAre f = c/u∗re f = [79, 66, 60, 54, 48], for Cases
[01, 02, 03, 04, 05], respectively.

5.1. Time Histories

The normalized mean wind velocity in the upper cell layer (Uh) is shown in Figure 8a.
The horizontal lines in the figure depict the target velocities (ure f ). The highest discrepancy
observed between Uh and ure f is 3.1% by the middle of the evolution depicted for Case
01 (highest WA). In the last steps of the evolution, the discrepancy in Case 01 is still the
highest and drops to 1.9%.

Contrary to the flat-bottom cases of Section 4, here u∗/u∗re f becomes a function of the
WA as observed in Figure 8b. Except for Case 01, the friction velocities drop with respect to
the reference values, and the discrepancy is larger with larger reference velocities, becoming
the largest in Cases 03, 04, and 05, with 13% deviation in the last steps of Figure 8b. Cases
03, 04, and 05 converge to the same values of u∗/u∗re f , which suggests a saturation for this
ratio at the lowest WA considered, but further investigations are needed with broader WA
ranges to confirm this trend.

The dynamic pressure gradient decreases due to the introduction of the wave, evolving
as reported in Figure 8c. The form drag evolution is depicted in Figure 8d, revealing an
exponential trend between Cases 01 and 05 that is further evaluated in Section 5.3. The
quantities presented in Table 1 were evaluated in the final time-step of the evolution
depicted in Figure 8.
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Figure 8. Time histories of non-dimensional: (a) wind speed at Sz+, with target values denoted in the
horizontal lines; (b) friction velocity; (c) large-scale pressure gradient; and (d) form drag. Averaged
with tavg = 75T0. Wavy bottom application.

Table 1. The parameters of Figure 8 probed in the final time-step, and the corresponding reference values.

Case ID
ure f

ure f 0

Uh− ure f

ure f

Px · zl

ρ∞u∗20

u∗

u∗re f
WAre f WA

1 0.75 1.85% 0.107 1.073 79 74

2 0.90 0.18% 0.361 0.926 66 72

3 1.00 1.24% 0.479 0.871 60 68

4 1.10 −0.04% 0.876 0.870 54 62

5 1.25 −0.49% 1.270 0.869 48 55

5.2. Wind Velocity Profiles

The normalized wind profiles vary substantially between the cases, as shown in
Figure 9a. The log law functions were fitted to the outer surface layer, according to the
procedure described in Section 4.2. The fitting is here depicted in Figure 9b, with the
solution reported in Table 2. The flat cases presented in Section 4.2 appear in the tables with
the case-averaged values, and the uncertainties are taken as (±0.5) the maximum variation
between the flat-bottom cases.

Figure 9. Longitudinal velocity profiles averaged with tavg = 75T0. (a) Normalized by the resolved
friction velocity. (b) Normalized by the reference friction velocity; with logarithmic profiles fitted to
the outer region, depicted in black transparent lines.

In Figure 9b, it can be seen that in the (numerical) inner surface layer, the effective
roughness length increases with increasing WA, and the buffer region extends higher in the
domain. As a consequence in Table 2, one observes a clear trend of increasing zmin with
increasing WA. The logarithmic layer is thus confined to higher altitudes, suggesting an
increased WBL height scaling with the WA.
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Table 2. Log law-fit of Equation (15) to the outer surface layer: Optimal [αu, αz], for RMSdi f f <

3× 10−3, in [zmin, zmax], with zmax = 0.8λ. [αu, αz] = [1, 1] recovers the BC of Equation (6).

iCase WAre f αu αz zmin/λ

1 79 0.94 0.03 0.18

2 66 1.40 4.16 0.14

3 60 1.48 9.41 0.11

4 54 1.57 20.09 0.08

5 48 1.58 29.01 0.06

Flat – 0.93 ± 0.03 0.43 ± 0.16 0.03

Contrary to the inner region, but as expected from the literature [34], in the outer
surface layer the effective roughness length decreases with increasing WA, as seen in Table 2.
Except for Case 01 (highest WA), there are strong friction velocity disturbances (αu) due to
the wave incidence; between Cases 2 and 5 these vary from 40% to 58%, compared to only
−6% in Case 01 and the uncertainty of ±3%.

5.3. Form Drag Parametrization

In the literature [12,38,53,76], the form drag Fp (evolution in Figure 8d), or the growth
rate parameter β = 2 Fp/[u∗2(ka)2], are usually assumed as dependent on the WA. Never-
theless, different definitions are then employed to define such a WA parameter [76]. We
discussed different definitions of friction velocity. So in order to evaluate these relations,
Figure 10a presents Fp/Ft as either dependent on the resolved WA = c/u∗ (in red circles),
or the nominal WAre f = c/u∗re f (in blue dots). Defining the nominal WAre f , u∗re f scales
linearly to the target velocity ure f , and ure f approximates the resolved freestream velocity
(Uh) with better than 3% accuracy.

Figure 10. Wave age dependency (Resolved WA, or Nominal WAre f ) and fitting of the normalized
form drag. The LES results are shown in dots and circles, and the fittings are given by full and
dot-dashed lines. (a) Form drag and the exponential fitting in linear scale. (b) The negative signs of
the slopes in the log scale are evaluated between the intervals of (a). A linear fit applies to the log of
the slopes in (b), and integrates into the exponential in (a). The fitting quality was evaluated by the
R2 criterion.

Exponential functions are fitted to the data. The fitting of constants A and B from
Equation (17) applies to the slopes of the LES results shown in Figure 10a, evaluated in the
middle of the intervals by a first-order finite difference, as denoted by the dots and circles
in Figure 10b. The constant part of the approximation function (C in Equation (17)) is set to
match exactly the solution in Case 03.

The fitting is denoted by the curves, and the quality of the procedure is evaluated
by the R2 criterion in Figure 10a,b. It is thus seen that in the present formulation, the
form drag scales better with the nominal WAre f (R2 = 0.99), which characterizes the
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non-disturbed flow, and thanks to the Px modeler used here it scales with the freestream
velocity. Therefore, the form drag dependency on the WAre f is given here by the fitting
denoted as blue full lines in Figure 10a, obtained with parameters [A = 1.07 × 10−1,
B = 6.75× 10−6, C = 2.04× 10−1].

Fp

Ft
= −B exp[A ·WA]

A
+ C (17)

5.4. Turbulent Profiles
Turbulent Normal Stresses

The TI for longitudinal and vertical velocities are shown, respectively, in Figure 11a,b.
In these figures, the colored lines depict the wavy Cases 01 to 05 as described in the legend,
and the light gray lines depict the reference, case averaged flat-bottom solution. As usual,
the variances are strongly enhanced close to the surface due to the introduction of the wave.
Farther away from the surface, on the contrary, TI diminishes. As the WA increases, the
disturbances are amplified, the variances increase close to the surface, and diminish in the
outer region.

A striking feature revealed in Figure 11 is that for each TIuu and TIww, the point where
the cases intersect with each other and the flat case solution remains almost constant:
z/λ = 0.1 for TIuu in Figure 11a, and z/λ = 0.26 for TIww in Figure 11b. Clearly, the
enhancement in TI close to the surface is due to the existence of WI motions, shown in
Paskin et al. [52] to propagate higher in the WBL for the vertical velocities. TKE budget
analyses reported in the literature (c.f. [19,77]) indicate that the decrease in TI on the outer
region is due to an imbalance between the turbulent and pressure transport terms in the
lower region, bringing turbulent motions from the outer layer into the WBL.

Figure 11. Turbulence intensity (TI) profiles averaged with tavg = 75T0. TI for longitudinal and
vertical velocity fluctuations, in (a) and (b), respectively. The light gray lines represent the case
averaged flat-bottom solution. The zoomed regions depict the intersections between the curves.

Turbulent Shear stresses

The total shear stresses (〈τ13〉) are shown in Figure 12, where they exhibit a mostly
linear behavior with varying slopes between the cases. A linear fitting was applied to
each profile and is shown with transparent lines in the figure. The theoretical flat-bottom
solution is a straight line, denoted in black, varying from 〈τ13〉 = ρ∞u∗2 at the bottom (Sz−),
to 〈τ13〉 = 0 at the top (Sz+). Due to the waves, and a non-negligible WI form drag, the total
shear stress profiles depart from other values rather than ρ∞u∗2 in the bottom, and evolve
until vanishing in the upper boundary. The fitted profiles evolve from the surface with
the values given in Table 3, and are null when z = zl . The stresses deviate from the linear
behavior in the (numerical) buffer region, zoomed in the lower right corner of Figure 12.
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Figure 12. Total shear stress, averaged with tavg = 75T0. Linear fittings are shown as transparent lines,
parameterized according to Table 3. The black line represents the theoretical flat-bottom solution. The
fitting is less accurate in the near-wall region, zoomed in the lower right corner.

The form drag (Fp) was previously discussed in Figure 8d. In Cases 01 and 02, the
drag is negative, and the waves are expected to grow. However, in Case 02, the value is
very close to zero, and not surprisingly the shear stresses closely approach the flat-bottom
solution in Figure 12. The pressure drag is clearly the determining factor that imposes
the slope of the profiles in Figure 12. To clarify this relationship, Figure 13 compares the
dependence of Ft on the WAre f , as obtained from either: Ft = Fp + Ff , with Ff = ρ∞u∗2,
resolved u∗ reported in Table 1, and Fp/Ft depicted in Figure 10a; or from the fitted value
of Ft = 〈τ13〉(z = 0), reported in Table 3. There is a very good agreement between the
predictions, for which linear fittings appear as dotted lines in the figures. Nevertheless,
there is a small but persistent bias between these estimations, probably induced by the
linear fitting employed for the 〈τ13〉 profile (in Figure 12, leading to Table 3).

Table 3. Linear fitting for 〈τ13〉(z), from Figure 12. 〈τ13〉(zl) = 0. The table gives the values of 〈τ13〉(0).

Case ID WAre f 〈τ13〉(0)/u∗2

1 79 −0.21

2 66 −0.62

3 60 −0.80

4 54 −0.98

5 48 −1.10

The fitting coefficients for Ft/u∗2 and 〈τ13〉(0)/u∗2 in Figure 13 are given in Table 4.
The offset between the curves in Figure 13 is observed in the 2% discrepancy in coefficient
B, which represents either: an offset of 3% (1.84 of 60) in the WAre f ; or an offset of 5% (0.05
of 1) in Ft/u∗2.

Table 4. The total drag (Ft) as a function of the WAre f is approximated as Ft/u∗2 = A·WAre f + B,
with coefficients given below.

Case ID A B

Resolved Ft 2.84×10−2 −2.54

Fitted from 〈τ13〉(z) 2.84×10−2 −2.48
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Figure 13. Normalized total drag as a function of the reference WAre f . Comparison between the
resolved value, and the one extrapolated from the linear fitting depicted in Figure 12. Here, a linear
fitting applies to Ft(WAre f ), and is shown with dotted lines in the figure. The fitting coefficients are
given in Table 4.

6. Discussion
6.1. Reviewing the Mathematical Formulation of a Physical MABL in LES

We considered the mathematical formulation of a marine atmospheric boundary layer
(MABL) in large eddy simulation(s) (LES), in a simplified framework summarized in
Section 6.2. The MABL is bounded below by ocean waves traveling in the free surface, and
above by the freestream. These physics translate in LES as a moving bottom with no-slip–no-
penetration, and an upper surface with free-slip–no-penetration boundary conditions (BCs).
Ocean waves carry momentum upwards or downwards in the MABL, but wave-induced
(WI) disturbances are supposedly limited to the free surface vicinity [10–13]. Nevertheless,
case-dependent WI stresses combined with a free-slip upper BC in LES allow a varying
Wind Speed (WS) profile across the vertical extension of the domain. The WI disturbance
of the freestream is unlikely to occur in the MABL but is intrinsic to the mathematical
formulations previously employed in LES (c.f. [49,51,53,57]).

Atmospheric Reynolds averaged numerical simulations (RANS) employ a no-slip
upper BC to drive the flow in the domain, which precisely imposes the mean freestream
velocity in the upper boundary (c.f. [78]). Imposing no-slip upper BCs in DNS (c.f. [38,42])
or LES (c.f. [58]) formulations differ from an atmospheric setup, as a secondary boundary
layer develops attached to the top boundary of the domain. Instead, in atmospheric
LES the flow is driven by large-scale forces. These large-scale forces exist in the MABL
coupling the meso- to the micro-scales, both as a large-scale pressure gradient and the
Coriolis force (c.f. [66]). In the vast majority of previous LES studies of micro-scale wind–
wave interactions the large-scale forces were considered as a constant [47–51,53–57,60].
However, there is no physical reason for this assumption (c.f. [59,62,65]), since the large-
scale conditions could well vary in scales much larger than the computational domain.

6.2. A Simplified Framework

The simplified numerical framework exploited in this paper and detailed in Section 2.1
can be summarized as follows: Wind and waves propagate in the same direction, in a
prismatic domain representing a wind tunnel; a single monochromatic wave is prescribed
and not resolved, in order to prevent the free surface evolution under the wind forcing;
old seas are considered, as the waves propagate rapidly compared to the wind; buoyancy
forces are neglected, thus representing neutral stratification conditions; turbulence is fully
developed in the air, so that the molecular viscosity can be neglected; Coriolis forces are
neglected, as we focus on the airflow close to the sea surface; the test cases are exploited
once the solution has converged to a statistically stationary regime.
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6.3. Evaluating Standard LES Formulations of the MABL

Considering the simplified framework adopted, the results for a standard LES formu-
lation are presented in Section 3 as Cases 01 (flat-bottom reference) and 02 (wavy bottom
reference). Case 02 reveals a certain number of artificial features unlikely to occur in the
physical MABL. Notably, the mean velocities increased to the upper boundary, and the
freestream velocity is greatly augmented due to the incidence of the wave. The freestream
velocity increases up to a moment where it drags back the propagating wave. The down-
ward momentum transfer that occurs is characteristic of young seas, even though we
attempted to reproduce old seas conditions in this simulation. The normalized total shear
stress converges towards the flat-bottom case. These processes reveal a long transient
regime, while the flow adapts all the way up to the top boundary. Most interestingly and
hardly a coincidence, the freestream self-adapts towards a condition where its velocity
matches the wave phase velocity (Uh/c = 99.5%), thus bringing Miles’ critical height
(c.f. [3,74,75]) inside the numerical domain.

Considering the dynamic pressure gradient proposed herein and employed in Case
03 of Section 3, these artificial features disappear. The friction velocity self-adapts to the
appearance of the wave, but the freestream velocity is kept constant. A steady state regime
is rapidly reached. The momentum flux occurs exclusively upwards. The WI disturbance
in the wind velocity profile is kept confined to lower altitudes.

6.4. Large-Scale Dynamically Evolving Pressure Gradient Modeler

In the physical MABL and as long as the boundary layer height is sufficiently distant
from the ocean (in neutral or unstable stratification conditions), it is more likely that the
large-scale pressure gradient (traveling instantaneously in incompressible flows) will adapt
to maintain a freestream velocity, rather than that, the freestream velocity will vary to
maintain a constant large-scale pressure gradient condition.

In order to maintain an undisturbed freestream, while resolving arbitrary WI stresses,
we developed a general method to control the wind speed at a certain height in the
numerical domain (Section 2.2). To achieve this, an artificial evolution equation was built for
the spatially-homogeneous large-scale pressure gradient: Px = ∂P/∂x. As an innovation
in the wind–wave interaction studies, Px is thus allowed to evolve in time, restricted to
scales much larger than the resolved ones. Unlike other solutions developed for inland
applications [61,62,64,66], this methodology does not require previous knowledge about
the instantaneous characteristics of a wind speed and considers a continuous evolution of
Px. This method was employed here to control the wind speed on the upper boundary but
can be easily generalized to arbitrary heights in the domain.

The evolution equation built is a second-order PDE, also known as the rigid-body
equation of motion, employed to dynamically filter the fluid momentum conservation
equations. The mass-spring-damper system is critically damped (ζ = 1) to preserve stability.
Large natural periods (TP ) ensure that Px responds to motions occurring at scales much
larger than the numerical domain. In flat-bottom applications (Section 4), this guided the
convergence of freestream velocities to a certain target ure f , over periods comparable to
TP . The convergence to a steady state regime was favored, and the normalized turbulence
statistics were shown to be invariant to different values of ure f (setup ranging by ±25%).

6.5. WI Disturbances and WA Parametrization

In the wavy bottom applications exploited here in Section 5, the quasi-steady state was
maintained in the freestream with better than 3% accuracy. This allowed a systematic WA
variation study (48 ≤WAre f ≤ 79) by varying the wind speed, in old seas, and under the
prescription of a single monochromatic wave with moderate to high steepness (ka = 0.2).
This canonical scenario was chosen for demonstration purposes, as it provides a critical
evaluation of WI momentum stresses in the atmosphere.

The WI disturbances are usually assumed as a function of the WA parameter. However,
many different definitions have been employed in the literature to define the WA, either
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in terms of the friction velocity or the wind speed measured at an arbitrary height [79].
We have shown that when Px is kept constant, the friction velocity converges towards
undisturbed values in LES. Employing the dynamic Px modeler, on the contrary, the
friction velocity exhibits a strong dependency on the WA. Therefore if the WA is defined as
a function of the resolved friction velocity, one establishes a circular dependency between
these parameters. This problem is likely to occur in the physical MABL, as there is no reason
to assume that the friction velocity remains constant with a changing sea-state condition.

A definite parametrization of WI disturbances remains beyond the scope of the present
study, but we performed these studies to attest to the self-consistency of the methodology
presented. To evaluate the behavior of different WA definitions, we fitted the form drag as
either a function of the reference or the resolved WA. The WAre f characterizing the non-
disturbed or freestream flow was found to be more accurate to describe the observations.
When evaluating the turbulent profiles, this parametrization also provided a reasonable
linear approximation of the height-dependent shear stresses.

Other observations are in accordance with the literature and attest to the robustness
of the methodology proposed. The region of validity of the logarithmic wind profiles
displaces upwards with increasing WA [19,80]. In the outer surface layer the effective
roughness length decreases with increasing WA [34,37]. Turbulence intensities (TI) are
increased in the WBL due to the WI fluctuations and diminish above the WBL due to the
downward transport of turbulent fluctuations [19,77].

7. Conclusions

We employed LES to study micro-scale wind–wave interactions, proposing a new
method to control the wind speed above arbitrary stresses in the bottom. When the sea-state
condition is modified in LES, the wind speed at the top of the domain (Uh) self-adapts to the
changes in wave-induced (WI) stresses that carry momentum downwards (wind-to-wave)
or upwards (wave-to-wind) through the domain. However, a constant Uh is desired to
correctly compare different test cases submitted to an undisturbed freestream condition.

In order to maintain an undisturbed freestream while resolving arbitrary WI stresses,
we developed a general method to control the wind speed at a certain height in the
numerical domain. To achieve this, an evolution equation was built for the spatially-
homogeneous large-scale pressure gradient: Px. In flat-bottom applications, this guided
the convergence of freestream velocities to a certain target ure f . The convergence to a
steady state regime was favored, and the normalized turbulence statistics were shown to be
invariant to different values of ure f (setup ranging by ±25%). In wavy bottom applications,
the quasi-steady state was maintained in the freestream with better than 3% accuracy. This
allowed a systematic WA variation study (48 ≤WAre f ≤ 79) by varying the wind speed,
in old seas, and under the prescription of a single monochromatic wave. This canonical
scenario provides a critical evaluation of WI momentum stresses in the atmosphere. This
methodology provides self-consistent WA parametrizations from LES and enables valuable
analyses of wind–wave interactions.

The proposed parametrizations present a qualitative description of physical processes
and trends. They are not intended to be taken in a quantitative manner due to the limited
resources in terms of grid resolution. Future work will address more realistic conditions and
finer grid resolutions, in order to present more quantitative descriptions of WI disturbances
from LES. Moreover, in future work, the dynamic large-scale forcing modeler will be
employed to enhance the comparison of physical and numerical experiments, by employing
the wind speed control at the measurement height, rather than at the upper boundary.
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