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Abstract: In the current study area (Faridabad, Gurugram, Ghaziabad, and Gautam Buddha Nagar),
the aerosol concentration is very high, adversely affecting the environmental conditions and air
quality. Investigating the impact of Land Use Land Cover (LULC) on Aerosol Optical Depth (AOD)
helps us to develop effective solutions for improving air quality. Hence, the spectral indices derived
from LULC ((Normalized difference vegetation index (NDVI), Soil adjusted vegetation index (SAVI),
Enhanced vegetation index (EVI), and Normalized difference build-up index (NDBI)) with Moderate
Resolution Imaging Spectroradiometer (MODIS) Multiangle Implementation of Atmospheric Correc-
tion (MAIAC) high spatial resolution (1 km) AOD from the years 2010–2019 (less to high urbanized
period) has been correlated. The current study used remote sensing and Geographical Information
System (GIS) techniques to examine changes in LULC in the current study region over the ten years
(2010–2019) and the relationship between LULC and AOD. A significant increase in built-up areas
(12.18%) and grasslands (51.29%) was observed during 2010–2019, while cropland decreased by
4.42%. A positive correlation between NDBI and SAVI (0.35, 0.27) indicates that built-up soils play an
important role in accumulating AOD in a semi-arid region. At the same time, a negative correlation
between NDVI and EVI (−0.24, −0.15) indicates the removal of aerosols due to an increase in veg-
etation. The results indicate that SAVI can play an important role in PM2.5 modeling in semi-arid
regions. Based on these findings, urban planners can improve land use management, air quality, and
urban planning.

Keywords: MODIS; MAIAC; AOD; AERONET; LULC; NDVI; NCR

1. Introduction

Aerosols are multi-phased particles of both solid and liquid composition in the at-
mosphere. Natural processes or anthropogenic activities can lead to the formation of
these pollutants. Aerosols, despite their small volume, can significantly alter the earth’s
environment and human life, e.g., aerosols affect the energy budget of the earth [1], the
water cycle [2], monsoon patterns [3,4], crop yield and security of food [5,6], and reduces
cloud cover [7], among others. The role of aerosols in climate change and atmospheric
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radiation balance is also undeniable. Aerosols are important contributors to local, regional,
and global climate change.

Moreover, aerosols induce the rate of mortality and morbidity [8–10]. Even an increase
in aerosols might lead to many accidents on the road, as it also reduces visibility levels [11].
In urban areas, air quality parameters are often closely linked to urbanization [12]. Ur-
banization and economic growth leading to land use land cover (LULC) transformation
mainly increase in the built-up area followed by fallow/open land and decrease in vegeta-
tion cover, agricultural land, and water bodies have resulted in increased emissions of air
pollutants, resulting in a worsening of air quality, affecting regional climate and thereby
influencing air pollution transport and diffusion [13–16]. The increased infrastructure leads
to the built-up (high-rise buildings, roads, and highways, among others) increment and
decreased cropland [17]. Looking into the wide-ranging impact of aerosols, monitoring the
spatial and temporally aerosol concentration is essential.

Aerosol Optical Depth (AOD) measures the atmospheric aerosol and the degree of
pollution in the air at a broad level. By measuring Aerosol Optical Depth (AOD), a Spatio-
temporal assessment of aerosol concentration can be performed. The AERosol RObotic
NETwork (AERONET) program provides periodic measurements of AOD, which develops
insights about aerosol characteristics and spectral dependency, but with limited spatial
coverage due to the dearth of functioning ground stations [18,19]. AOD acquisition through
Remote Sensing (RS) offers unique advantages due to its ability to achieve high spatial and
temporal resolutions over a wide geographic area. By using remote sensing, we can solve
the gaps created by the absence or dispersion of weather observatories.

Furthermore, RS provides theoretical support for managing regional atmospheric
environments due to its comprehensive understanding of aerosol concentrations and
distributions. Based on Moderate Resolution Imaging Spectroradiometer (MODIS) data col-
lection, AOD information is retrieved globally and provides daily or near-continuous time
coverage [20–27]. Terra and Aqua are both integrated into the high-resolution MCD19A2
product, which uses the multi-angle implementation of the atmospheric correction (MA-
IAC) algorithm. AOD product obtained from the algorithm is characterized by a high
resolution (1 km pixels), a wide range of inversion accuracy, and a wide range of inversion
range [28–31]. The MAIAC algorithm has been preferred by current research on AOD re-
trieval because of the high retrieval accuracy and high resolution of MODIS AOD [20,32–34].
The potential of the MAIAC retrieved AOD in the region with limited in situ data has
not been evaluated widely. Given this, it is necessary to verify the product and conduct a
spatiotemporal analysis in the data-scarce region [19,35,36].

The present study area covers the constituent part of Delhi, the National Capital
Region (NCR), which has undergone unprecedented economic developments and dramatic
urbanization over the past decades [37]. There is a proposal for special economic zones
(SEZ) in places like Noida and Gurugram. The expansion of industrial enterprises and
the financial and private sectors are to blame for the increase in urbanization [13,17].
This has drawn a significant amount labor force to the region, eventually contributing to
population expansion and changes in the LULC pattern of the current research area during
2010–2019. Rapid economic development triggers a noticeable change in LULC within
a relatively short period in the study region. However, the research region includes the
top 10 most polluted cities in the World Air Quality Report [38,39]. However, surprisingly
few studies have concentrated on the mesoscale or local level of the current research
region [40,41]. Therefore, the current study has thus attempted to provide a preliminary
study in such a data-scarce zone. Various factors, including the meteorological environment
and anthropogenic emissions, have contributed to the deterioration of air quality in the
study area. In addition, LULC types may also have significant effects on surface properties
and further affect regional meteorological conditions. To explore the impact of such
changes on air quality, we systematically examined the correlation of several spectral
indices representing the abundance of vegetation and built-up with AOD.
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Detecting the geographical complexity of the distribution of AOD is possible through
detailed information about the heterogeneity of a landscape composition by identifying
the LULC. The AOD distribution and pattern are influenced by the LULC pattern, which
is directly tied to the spatial distribution of the vegetation index and built-up index. The
link between LULC and AOD is examined through the correlation between the AOD
and spectral indices. NDVI, SAVI, EVI, and NDBI led to the quantitative association
investigation. In the south and southeast Asian countries, several studies have examined
AOD properties and their effects on global and local regions on a high spatial scale, mostly
in China [42–47]. In the Indian scenario, only a handful of studies tested MAIACAOD,
which were restricted mostly to the IGP and Delhi [32,48,49]. To the best of our knowledge,
no studies explored the response of AOD to the LULC change in the Indian scenario.

Moreover, despite being critically polluted, MAIACAOD has been rarely used in NCR
aerosol data-scarce regions [48,49]. Nevertheless, the current study area is more active in
creating and implementing regulations concerning LULC planning and air pollution man-
agement. Consequently, it is crucial to examine how LULC affects AOD at different points
in the study area. Therefore, the present study attempts the validation of MAIAC AOD
against AERONET AOD over selected constituent areas of the NCR and the correlation
analysis of LULC and AODMAIAC.

As a general hypothesis, the land use land cover and the derived indices have been
considered parameters for modeling PM2.5. Due to the strong relationship between AOD
and PM, the indices have been correlated with AOD prior to modeling to determine which
parameter should be considered further. The present study seeks to determine the changes
in LULC for the region, analyze the decadal variation of AOD for the region, validate
satellite-based AOD using the AERONET AOD, and correlate AOD with LULC indices.
The following correlation can help to identify the importance of parameters for modeling
PM2.5. Results from the study could be of use in air quality enhancement as a part of urban
& rural planning and are expected to be beneficial in identifying micro-level pollution,
aiding modeling communities, and algorithm developers in developing finer algorithms.
This study can help to identify hot spots of polluted areas, which will help policymakers
and real estate people to make a sustainable place for living. Furthermore, the results of this
study will be useful for future urban planning and forecasting and controlling air pollution.
The main objectives of the study are:

(1) To study the spatial variation of AOD in the current study area.
(2) To analyze the change in LULC from 2010 to 2019.
(3) To examine the correlation between AOD and LULC-derived indices.

2. Study Area

The present study area (28.07◦ N–28.92◦ N and 76.65◦ E–78.21◦ E) constitutes the
districts of NCR, Faridabad, Ghaziabad, Gurugram, and Gautam Buddha Nagar (Figure 1).
Presently, the rate of urbanization is 62.6% in the study area [50]. The current research
identified three types of LULC classes: (1) Cropland, (2) Built-Up, and (3) Grassland. The
present study area is dominated by heavy industrial pollution, vehicle emissions, fossil
fuel burning, anthropogenic activities, and other factors due to rapid urbanization [51–55].
Gurugram, Ghaziabad, and Faridabad are among the top 10 polluted cities in the South
Asian region [56]. Even though urbanization and air pollution are high in the current
area, aerosol characteristics are still less explored. Pre-monsoon (March-May), monsoon
(June–September), post-monsoon (October–November), and winter (December–February)
are the four major seasons in India. It is a semi-arid region with tropical climates, hot
summers (25 ◦C to 49 ◦C), and cold winters (22 ◦C to 2 ◦C) [57]. The in situ observations
of AOD has been collected from the AERONET sites of Gurugram, Amity University
(28.32◦ N, 76.92◦ E), and Gual Pahari (28.43◦ N, 77.15◦ E).
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Figure 1. Map of the study area.

3. Data Used and Methodology

In the present research, AOD observations of MODIS (AODMAIAC) combined-Terra-
Aqua collection 6 (C6) (MCD19A2) and in situ data (AODAERONET) from 2010 to 2019
have been utilized. The daily AODMAIAC (550 nm) from 2010 to 2019 with 1 km spatial
resolution has been used. In general, the current algorithm works as a combination of
image processing and time series analysis. Details of the MAIAC algorithm are provided
in the published literature [30,58]. AODs of the highest quality were utilized in the present
study at 0.55 µm. The MAIAC AOD error envelope used in the algorithm was evaluated
for accuracy using ± (0.05 + 15% ∗ AOD) [20,30,59]. A current version of MAIAC is used
in the present study, which is MCD19 with Collection 6 products.

The in-situ observations of AERONET are derived from a sunphotometer network
that offers optical properties of aerosol worldwide at a fine resolution of AOD at 5–15 min
intervals and a sky radiance at 30 min. The cloud screening of AOD and quality-control
checked (Level 2.0) data were compared with AODMAIAC for two sites of Gurugram, i.e.,
Gual Pahari and Amity University, from 2010 to 2019 with a data gap. The details of the
data have been provided in Table 1. Figure 1 shows the location of the AERONET sites.
AODMAIAC is available at 550 nm and AODAERONET at 500 nm, so to compare the data,
AODAERONET interpolating to 550 nm was done using Angstrom’s equation by using
Angstrom Exponent (α) of the 440 nm and 675 nm pair of wavelength [60].

AOD550nm = AOD500nm ×
(

550
500

)−α

(1)

Today’s alarming rate of climate change is based on alterations in land use and land
cover [61]. Considering its major contribution to climate change, habitat loss, biodiversity
loss, and improving human living standards, it is the most pressing issue within environ-
mental assessment [62,63]. The environmental changes are directly linked with land use
and land cover modifications that affect the soil moisture or the atmospheric heat budget.
These are the two major constituents of a region’s climate [64]. To plan for sustainable
economic growth, land use planners must carefully consider the adverse effects of land
use changes on the environment. To assess the environmental effects of LULC change,
the International Geosphere and Biosphere Program (IGBP) and the International Human
Dimensions Program (IHDP) collaborated and recommended research on LULC change
consequences [63,65]. The LULC patterns were mapped using MODIS LULC product
collection six level-3 (MCD12Q1) at 500 m spatial resolution obtained between 2010 and
2019. The data was accessed from the Data Access Center of LAADS [66]. Terra and Aqua
data have been used to generate MODIS’s Land Use Land Cover (LULC) product, which
includes multiple classification schemes to describe land cover attributes. A supervised
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decision tree classification method has been used in the International Geosphere-Biosphere
Programme (IGBP) to define land cover classes (17), the classes of natural vegetation (11),
classes with modified and mixed land (3), and classes of non-vegetated land (3), respec-
tively. The Land _Cover_Type_1 SDS was used in this study since it provides data with the
IGBP classification scheme. The data is divided into three basic classifications of land use
land cover in this scheme: (1) Grassland, (2) Cropland, and (3) Built-up.

MODIS vegetation indices enable the comparison of vegetation conditions across
geographies and over time. The MODIS daily vegetation indices are calculated using a
combination of blue, red, and near-infrared reflectance. NDVI, a measure of the normalized
difference vegetation index (NDVI), provides information regarding green biomass and
vegetation growth status. This is typically used to monitor vegetation cover and type.
This technique can reduce or eliminate the negative influence of error during instrument
calibration, radiation present in the atmosphere, topography, and cloud cover when quan-
tifying vegetation. Research on urban climate uses this method widely. The visible and
near-infrared reflectance bands are used to derive this index:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

where ρRed represents the reflectance value of band 1 and ρNIR band 2 for the MODIS
satellite image.

The values of NDVI are between −1 to 1, positive NDVI indicates vegetation, and
negative NDVI indicates non-vegetated surfaces. MODIS now has a new Enhanced Vege-
tation Index (EVI) product that reduces canopy background changes while maintaining
sensitivity in dense vegetation. The EVI also utilizes the blue band’s surface reflectance to
eliminate smoke residuals and the sub-pixel of thin clouds in the atmosphere.

EVI = G
(

ρNIR − ρRed
ρNIR + C1 × Red − C2 Blue + L

)
(3)

The atmospherically corrected bi-directional surface reflectance is used for calculating
the MODIS-derived NDVI and EVI. These are also free from the errors associated with
water, clouds, heavy aerosols, and cloud shadows, as they are already masked for such
measures. The surface reflectance data included with the NDVI MODIS package was used
to create the NDBI and SAVI indices. To measure the density of built-up areas and their
degree of development, the Normalized Difference Built-up Index (NDBI) was widely used.
It can be used to identify the appropriate threshold value for a particular study area to
differentiate the detailed characteristics of LULC. The NDBI was more appropriate for
quantitatively identification of built-up abundance and spatial variation than NDVI in
some previous studies [67]. The value ranges from −1 to 1, where a higher value denotes a
higher building density. It involves the following formula:

NDBI =
(
ρMIR − ρNIR
ρMIR + ρNIR

)
(4)

The mid-infrared and near-infrared reflectance values are denoted ρMIR and ρNIR,
respectively. The study also used an index that expresses the soil information effectively,
the Soil Adjusted Vegetation Index (SAVI), which can be derived from soil information by
adding soil parameters together and can be derived by:

SAVI = (1 + L)
(

ρNIR − ρRed
ρNIR + ρRed + L

)
(5)

where L is the coefficient of (L = 0.5, 1.5).
The 16 days composite data of the level-3 global product with a projection of Sinusoidal

(MOD13A2, MYD13A2) and 1 km spatial resolution is provided by MODIS. The data can
be accessed through LAADS [66]. The 1_km_16_days_NDVI and 1_km_16_days_EVI have
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been used to generate the NDVI and EVI maps for 2019, while 1_km_16_days_red_reflectance,
1_km_16_days_NIR_reflectance, and 1_km_16_days_MIR_reflectance have been used to
calculate SAVI and NDBI.

Table 1. Information about the data used in the study.

Data Description Site Duration Sites to Download Data

AERONET (Version 3 Level 2 Aerosol
Optical Depth at 500 nm)

Amity University 2010, 2016, 2017, and 2018 http://aeronet.gsfc.nasa.gov/
[68]Gual Pahari 2017, 2018, 2019

MCD19_A2 (AOD at 1 km) Gautam Buddha Nagar,
Faridabad,
Gurugram,
Ghaziabad

2010–2019
https://ladsweb.modaps.eosdis.

nasa.gov/ [66]
MOD13A2 (16 days Terra composite of

NDVI, EVI, Red, NIR, MIR
reflectance at 1 km)

2019

MYD13A2 (16 days Aqua composite of
NDVI, EVI, Red, NIR, MIR

reflectance at 1 km)
2019

MCD12Q1 (Land Cover type 1 at 500 m) 2010–2019

We have analyzed point-based collocation and 3 × 3 pixels centered at each AERONET
site in the validation part. The AERONET and MODIS provide different types of AOD
measurements. The former delivers point measurement with a high temporal resolution,
and the latter provides spatial measurement across the satellite overpass (Terra: 10:30,
Aqua: 14:30) twice daily. Therefore, for matching the pixel value of AODMAIAC with
point-based AODAERONET measurements, it is necessary to perform the averaging of (a) the
AODAERONET with the time of satellite overpass and (b) the AODMAIAC taking a spatial
window of 3 × 3 pixels centering the AERONET sites for coverage of the different type of
aerosols and various landmasses [69].

A few statistics were utilized to calculate the retrieval accuracy of the MAIAC algo-
rithms in this study. AODMAIAC was validated for 2010, 2016, 2017, 2018, and 2019, as
there is an absence of AERONET stations and minimal observations on the ground. We
have calculated match-ups (N), correlation coefficients (R), and expected error (EE) as part
of the statistical validation [20]. The equation used for EE is described in Equation (6).
Expected error envelopes have evaluated the algorithm’s performance with EE definition
of the MAIAC algorithm ± (0.05 + 15% × AODAERONET).

EEMAIAC = ±(0.05 + 0.15AODAERONET) (6)

The impact of LULC on AOD has been assessed using the MODIS land cover product
(500 m) and indices (1 km) after validation. The flowchart of the methodology is provided
in Figure 2. The data for NDVI, EVI, and surface reflectance for 2019 have been down-
loaded. The sub-datasets were extracted and reprojected from the product files for further
processing. The Area of Interest (AOI) has been clipped from the image for all the products.
The data was converted to binary representation using division with a scale factor of 10,000.
The already processed MODIS products were used for NDVI (Equation (2)) and EVI (Equa-
tion (3)). In contrast, the surface reflectance bands of MIR, NIR, and red were used for
NDBI (Equation (4)) and SAVI (Equation (5)). MODIS MAIAC AOD has been separated for
Terra and Aqua analysis using MATLAB to explore the link between Aqua and Terra with
various land uses. To match the resolution of AODMAIAC and LULC-derived indices, the
resampling has been done to grids of size 1 km x 1 km using the Fishnet tool of ArcGIS10.2
software. Approximately 5035 grids were found in the region. Every grid was assessed for
its average AOD, NDBI, NDVI, EVI, SAVI, and area fraction for several LULC categories,
including cropland, built-up, and grassland. A Pearson correlation analysis was conducted
using Statistica based on the AOD and the LULC-related metrics.

http://aeronet.gsfc.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Figure 2. Flowchart of Methodology.

4. Results
4.1. Validation of AODMAIAC Using AODAERONET

The validation of AODMAIAC with AODAERONET has been attempted in the current
study. In bin validation, the AOD values have been divided into two bins: AOD ≤ 0.5
and 0.5 < AOD ≤ 1, to know the magnitude of AOD for expected error. Approximately
93% of AOD values at Amity University and 79% at Gual Pahari fall inside the EE. This
demonstrates that the AERONET AOD observations and MAIAC AOD values within
0.5 to 1.0 are more closely aligned. The underestimation also decreased in the present AOD
range of 0.5 to 1.0. Considering the evaluation of the AODMAIAC product with AERONET
observations, it can be noted that MAIAC has outperformed the current area with a higher
correlation with the ground measurements. AODMAIAC has presented a better correlation
with AODAERONET for Amity University (0.86) than Gual Pahari (0.73). In general, the
collective correlation coefficient for both the stations of Gurugram is 0.81, and RMSE is
0.16, with total match-up points for both stations being 105. Based on the analysis, the
AODMAIAC is more efficient than other traditional algorithms for some areas of the NCR; as
the value of AOD becomes greater than 0.5, the bias increases. The result demonstrates that
as the magnitude of AOD increases, the uncertainty of the MAIAC algorithm also increases.

Nearly 79% and 74% of the total AODMAIAC retrievals lie within the EE envelope
for point-based validation at Amity University and Gual Pahari, respectively. Compared
to Gual Pahari, Amity University has more points within the expected Error (Table 2).
Moreover, low underestimation has been observed at the Amity University site. Such
observation shows that the MAIAC algorithm outperformed traditional algorithms (DB,
DT) [32].

Table 2. Expected error envelope of AODMAIAC in AOD bins of <0.5 and 0.5–1.0 (a) Amity University
(b) Gual Pahari.

EE <0.5 0.5–1.0

Amity University % within 70 92.86
N = 105
R = 0.81

RMSE = 0.16

% below 25 7.14

Gual Pahari
% within 65 78.79
% below 35 21.21
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4.2. Spatio-Temporal Variations of AOD

Spatial variation of AOD from 2010–2019 has depicted high AOD during 2015, 2016,
and 2018 (Figure 3), while in 2019, AOD decreased, which could be attributed to the
government policies toward pollution management in the study area. From 2010–2019,
Ghaziabad and Noida had the highest AOD values, while fluctuations were observed in
Faridabad and Gurugram. It was in 2018 that AOD reached its highest level. The high
population density and the increased anthropogenic activities may cause high aerosol
loading in the current study area [70].

Figure 3. Spatial distribution of annual means of AODMAIAC retrieved over Gual Pahari and Amity
University from 2010 to 2019.

NCR has seen incredible spatial growth over the past decade, with a 62.5% urbaniza-
tion level in 2011, and is expected to reach 71% by 2021. The reason for this rapid growth
is the various quantity increase in the number of vehicles and the growth of industrial
hubs [71,72].

In the monsoon season, north-western India plays a crucial role in aerosol loading
through fertilizer and traditional cultivation [73,74]. Moreover, monsoonal rainfall adds
little moisture to the air, which also triggers aerosol concentration during this season. An
in-depth analysis of driving forces is required to determine which factor is responsible
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for the significant increase in AOD. Therefore, it will be included in the future scope of
the study.

4.3. Spatio-Temporal Variations of LULC and Its Impact on AOD

The most direct link between humans and nature is land use. As a result of our
interactions with nature and the environment, LULC patterns provide a record of how and
what we interact with. LULC types were categorized according to the IGBP classification of
the MODIS LULC data file: cropland, built-up, and grassland throughout the study zone.
Figure 4a depicts the spatial distribution of LULC in 2010, and Figure 4b for 2019. Table 3
exhibits the change in area by each LULC category from 2010 to 2019. The cropland region
was estimated at 4442.31 km2, accounting for 81.19% of the total. The cropland regions
were mostly found outside of the city’s center. Building sites were mainly located in the
city center or along key suburban routes, accounting for 15.33% of the total (839.09 km2).
As shown in Table 3, the area of built-up land in urban areas has risen from 737.98 km2

to 839.09 km2, representing a growth rate of 12.05%. Grassland comprised 3.46% of the
study area, which was 189.75 km2. A significant decline in cropland has also been observed,
as cropland occupies more than 40% of the entire area. Several of them are scattered
throughout the area. Approximately 198.12 km2 of cropland have been converted into
built-up areas or grasslands. From Table 3 it can be analyzed that the built-up area has
increased from 2010 to 2019.

Figure 4. The Land use land cover distribution depicts three main classes: Cropland, Built-up, and
Grassland: (a) 2010 and (b) 2019.

Table 3. Percentage change in the area of LULC classes from 2010–2019.

LULC
Class

Percentage Change (%) Percentage Change in a Decade
(2010–2019)2011 2012 2013 2014 2015 2016 2017 2018 2019

Cropland −0.69 −0.42 −0.55 −0.88 0.12 0.26 0.15 −0.05 −2.35 −4.46

Built-up 1.91 1.10 1.58 1.42 0.46 0.54 0.40 0.56 4.68 12.05

Grassland 15.79 8.88 9.77 17.57 −5.87 −11.90 −7.94 −1.88 34.27 51.13

Figures 5–8 depict the spatial distribution of various vegetation and built-up indices
(NDVI, EVI, SAVI, and NDBI) derived from 16 days of Aqua and Terra composite. The
NDBI value range (−0.44 to 0.73) is the same for NDBI derived from both Aqua and
Terra composites. However, the difference in the range of index values is evident in
vegetation indices derived from Aqua (−0.18 ≤ NDVI ≤ 0.78) (−0.14 ≤ EVI ≤ 0.58) and
Terra (−0.14 ≤ NDVI ≤ 0.86) (−0.11 ≤ EVI ≤ 0.62) composites. Based on the analysis of
Figures 5–8, it can be seen that between 2010 and 2019, the urban area grew from the
city’s core to the region’s outskirts. Additionally, from 2010 to 2019, there was a decline
in agriculture.
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Figure 5. Maps of NDVI, NDBI, EVI, and SAVI of Aqua MODIS 2010.

Figure 6. Maps of NDVI, NDBI, EVI and SAVI of Terra MODIS 2010.
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Figure 7. Maps of NDVI, NDBI, EVI, and SAVI of Aqua MODIS 2019.

Figure 8. Maps of NDVI, NDBI, EVI and SAVI of Terra MODIS 2019.

More vegetation is usually indicated by higher and positive NDVI, EVI, and SAVI
values. Negative and lower vegetation indices are associated with urban and rural develop-
ment. The city area of Faridabad, Gurugram, Ghaziabad, and Gautam Buddha Nagar are
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associated with high positive NDBI values because of the dense built-up region. Besides
the city area, NDBI is also higher in rural areas where vegetation is absent, i.e., barren land,
open/protected areas, and grazing land [51,52,75]. In adjacent suburbs where plantation or
native farmland predominated, NDVI, EVI, and SAVI values are positive and higher. A
progressive increase in positive values of vegetation indices has been observed from sparse
grassland to dense cropland.

Figure 7 depicts the lowest values of NDVI and EVI as −0.18 and −0.14, respectively,
while the lowest value of SAVI is −0.02. Lowering the index value or wider range of index
value in the negative region for NDVI and EVI refers to a large proportion of the area under
no vegetation. However, the narrow range of SAVI in the negative region depicts a lesser
proportion of the area with no vegetation. It indicates that significant parts of the study
area with less dense/thorny bushes in the rural zone and sustainably designed built-up
areas interspaced with plantations in the urban zone have been detected by SAVI, unlike
NDVI and EVI. Hence, SAVI is proven to be a more powerful tool to detect areas with
fragmented/less dense vegetation where reflectance from underlying soil is combined with
the reflectance of vegetation. It can also be concluded that combined analysis by NDVI and
SAVI can be used to distinguish dense and light vegetation areas. Similar observations can
also be detected in Figure 8.

To examine the deviation of AOD with the spatial variation of LULC, values of
minimum, maximum, average, and standard deviation (SD) of AOD in each LULC category
have been calculated (Table 4). Average AOD in built-up regions was the highest, with
0.70 for aqua and 0.68 for terra, followed by Grassland (0.69, 0.66) and Cropland (0.67, 0.65).
The abundance of anthropogenic activities and traffic density in urban areas is the root
cause of high aerosol concentration. AOD values were generally lower for areas covered by
matured crops and grasslands. It is implied that heavily vegetated areas produce a cleaner
environment. However, with the maximum area coverage in the study area, cropland had
the widest range of AOD values (0.54–0.85 (aqua) and 0.53–0.82 (terra)) with significant
discrepancy depicted through the highest SD (0.05 (aqua) and 0.04 (terra)) among all LULC
types. In the study area, considerable use of fertilizer in agriculture to facilitate crop growth
and, from time to time, stubble burring could also increase AOD over the cropland [76].

Table 4. Statistical analysis of Aqua and Terra AOD for LULC classes in the current region.

Cropland Built-Up Grassland

Aqua Terra Aqua Terra Aqua Terra

Mean 0.67 0.65 0.70 0.68 0.69 0.66
S.D. 0.05 0.04 0.04 0.03 0.04 0.04
Min 0.54 0.53 0.59 0.56 0.59 0.56
Max 0.85 0.82 0.79 0.77 0.80 0.76

To investigate the influence of the different proportions of built-up and vegetation
over aerosol concentrations, a correlation analysis has been performed between the spectral
indices indicator of the density of vegetation and built-up, and AOD, an indicator of
aerosol concentration. Table 5 provides coefficients of correlation generated between
the AOD and spectral indices. At the significance level of 0.01, all the selected indices
were strongly related to AODs, except for NDBI. It was found that indicators associated
with urbanization, such as NDBI, correlated positively with AOD, as expected. On the
other hand, the correlation coefficient was only 0.35. The NDVI and EVI were negatively
correlated with AOD with the value of −0.24, −0.15, which shows that the vegetation has a
purification impact on AOD. The build-up increase has also raised AOD values, according
to the positive NDBI correlation (0.35). The NDVI, NDBI, EVI, SAVI, and AOD correlation
coefficients were not high enough, indicating that there may not be a clear or continuous
association on the city scale and that indexes alone are insufficient to explain the variance
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in AOD across the research region fully. Consequently, a suitable landscape context should
be used for analysis to support further research.

Table 5. The correlation coefficient of AOD with NDVI, NDBI, SAVI, and EVI.

NDVI NDBI SAVI EVI

R −0.24 0.35 0.27 −0.15

AOD values were negatively related to the variables associated with vegetation,
namely NDVI and EVI, and positively correlated with the soil coverage index, SAVI. The
analysis of Table 5 demonstrated that the NDVI, the EVI, and the AOD are weakly related.
A vegetation canopy can absorb atmospheric particles, particularly in dusty conditions. It
has been demonstrated that vegetation can effectively remove aerosols from the air due to
its adsorption and removal capabilities. The current study zone is semi-arid, with rocky
and barren lands contributing to higher AOD. Here the SAVI positive correlation justifies
that in the current study area, the soil plays an important role, and further classification is
required to understand the underlying facts of the SAVI and AOD relationship.

LULC types had a considerable impact on AOD levels, according to the above find-
ings. To better understand how LULC affects the distribution of AOD, scatter plots with
densities were displayed to illustrate correlations of NDVI, NDBI, EVI, SAVI, and AOD.
A quantitative link between AOD and NDVI values is shown in Figures 9–12. Cropland
dominates the current research region; built-up areas are concentrated in the center and
sparsely distributed. Grassland is completely dispersed, as shown in Figures 9–12.

Figure 9. Scatterplot depicting the relationship between NDVI and AOD (Aqua (a–c), & Terra (d–f))
values for different LULC classes.

It was discovered that AOD and NDBI have a weak but positive association in scat-
terplots (Figure 10), implying that while NDBI alone may not adequately explain aerosol
spatial variation, it can influence the growth of AOD. Natural surroundings altered the
effect of built-up areas on aerosol concentration, thus weakening the link between them.
The association of AOD with EVI is depicted in Figure 11. The following diagrams show
the vegetated region that was not included in the NDVI analysis.

Figure 11 shows a low and negative regional association between aerosol amount and
improved vegetation bodies in the scatterplots between AOD and EVI. There was, however,
greater consistency between AOD and EVI in agricultural areas compared to grassland
areas. Because of the negative association between these two variables, increasing cropland
and grassland acreage could reduce aerosol deposition.
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Figure 10. Scatterplot depicting the relationship between NDBI and AOD (Aqua (a–c), & Terra (d–f))
values for different LULC classes.

Figure 11. Scatterplot depicting the relationship between EVI and AOD (Aqua (a–c), & Terra (d–f))
values for different LULC classes.

Figure 12. Scatterplot depicting the relationship between SAVI and AOD (Aqua (a–c), & Terra (d–f))
values for different LULC classes.
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The quantitative link between AOD and SAVI values is depicted in Figure 10. Because
the current study location is in the semi-arid zone and contains numerous barren and rocky
parts, the impact of this area on AOD and the current index has been investigated. Figure 12
shows a weak and positive spatial association between aerosol quantity and soil-adjusted
vegetation index in the scatterplots between AOD and SAVI.

However, in agriculture and built-up regions, AOD values were more consistent with
SAVI than in grassland. Because these two variables have a positive association, increasing
the rocky and barren land area could promote aerosol deposition.

The current study area is located within the arid zone of the Koppen climate zone
classification, which features shrublands and barren (sand, gravel, drought-resistant plants,
among others) characteristics of arid climates [77]. Therefore, a weak correlation was
established between the indices drawn for vegetation and AOD.

5. Discussion

The MODIS aerosol products with a spatial resolution of 1 km × 1 km were used to
map the AOD distribution. LULC classification was determined using a MODIS with a spa-
tial resolution of 500 m by 500 m. This database analyzed variability in AOD values across
different LULC categories and correlations between AOD and LULC-related variables.
High-resolution MAIAC AOD has given a new perspective on city-level aerosol analysis.
MAIAC, the recent algorithm with high-resolution data of 1 km, assists in determining
air quality in highly urbanized areas and thus identifies the pollution hotspot. The spatial
complexity of AOD distribution must be detected to understand the impact of heterogene-
ity in the landscape composition of the region on aerosol pollution. In the current study,
MAIAC-derived AOD was validated against AERONET-derived AOD, with more than
70% of retrievals occurring within the EE. Furthermore, the study’s results showed an
increasing trend in AOD from 2010–2019, with 2018 marking its highest level. In various
other studies, the same trend was observed in the increment in AOD [32,34,78].

The main reason for atmospheric aerosol concentration was the anthropogenic emis-
sion of air pollutants in urban areas [79]. An unexpected urbanization level of 62.5% in the
National Capital Region in 2011 may explain the increase in the trend of AOD and pollution.
The percentage is expected to increase to 71% by 2021. This results in the vehicle’s multiple
growths, the development of various industrial hubs (large, medium, and small-scale indus-
tries), and the construction of brick kilns [71,72,80]. The rural area of north-western India,
aside from the urban area, contributes significantly to aerosol loading, especially during
the monsoon season, due to intensive conventional cultivation and fertilizer use [73,74].

To understand how urbanization and other prominent types of LULC are changing
in the current study area, we estimated the LULC change with MOD12Q1 land cover
product in the current study area. In this study, we have analyzed that urban built-up has
increased by 12.05%. In contrast, a decrease in cropland by 4% has been seen (Figure 3),
which is also confirmed by the cited studies that there is an increase in built-up land and
a decrease in cropland between 2000 to 2020 [13,17] as the LULC alone can only aid in
a qualitative study of AOD and LULC correlations and cannot satisfy the needs of the
study. Therefore, the indices such as NDVI, NDBI, and SAVI have been calculated to aid a
quantitative investigation.

To determine the most significant LULC factor in urbanized regions, it is necessary
to investigate LULC in such places. The LULC structure contains information on the
landscape’s variety. Remote sensing and in-situ data have been used to find the relationship
between the LULC pattern and AOD distribution and pattern by studying the spatial
distribution of vegetation index, built-up index, and soil index. There is an interrelated
relationship between LULC change and local climate change. Climate change can result
in changes in LULC and vegetation cover. In order to fully understand the relationship
between LULC and the local climate, continued scientific research is needed. The increase
in built-up areas has a maximum effect on pollution in the current study area. This implies
that AOD and LULC have a cause-and-effect relationship. The positive correlation between
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AOD and NDBI, SAVI, in semi-arid regions can be explained by increased built-up and soil
particles. The overall association was weak, indicating that the LULC factors alone should
not be utilized for further pollution calculations.

As far as we know, in Indian regions, there was no such research on such a perspective
of correlation between AOD and LULC-derived parameters. Therefore, the authors have
tried to compare the results with the studies conducted in Chinese regions. Various studies
in different polluted areas of China like Wuhan, Beijing, and Shijiazhuang ([43,81–84]) with
different satellite-derived data (MODIS, Landsat, Sentinel-2, GlobeLand30, and ASTER)
have shown that AOD was positively correlated with built-up and negatively with vege-
tation indices. The LULC and its structure contribute to aerosols and their variation. The
findings suggested that vegetation is of great importance for decreasing AOD; urbanization
increases aerosol pollution on a city scale instead. The urban areas should have dense and
porous vegetation to balance the deposition and dispersion of pollutants. The purification
effect of vegetation is also affected by several parameters, such as ventilation, topography,
and pollutant concentration. Our results have also shown similar findings to the devel-
opment of built-up leads to increased air pollution. The NDBI and AOD have shown a
positive correlation, and NDVI, EVI, and AOD have a negative correlation supporting the
purification of AOD by increasing the vegetation by planting more trees.

These studies found high AOD values in areas with highly sparse vegetation and
urban built-up surfaces. Similar observations of high mean AOD value were found for
built-up in the current study. The current study found that SAVI correlated positively
with AOD, indicating a need to classify the LULC types further and study the landscape
context to understand better the impact of SAVI on AOD in the current semi-arid region.
SAVI is a better parameter to be included in the modeling of PM2.5 for semi-arid areas
with sparse vegetation or barren land and to understand the impact of soil on air pollution.
The following limitations of the study can be further improved in the future: (a) Irregular
ground-based aerosol measurements due to limited AERONET stations; (b) The study’s
period was too short to determine LULC changes, which could be improved by considering
long-term data; (c) The coarse resolution data for classification of LULC types. Future
studies may focus on the detailed classification and its effect on aerosols and air pollution.

However, the results of this study suggest that good network AERONET sites must
be developed to record the long-term AODs in specific study areas systematically. Based
on our knowledge and research of the situation, there are no reports on the correlation
of LULC with AOD in the current study region. This study also found that LULC had a
variable effect on AOD concentration depending on the land cover. Overall, there was a
weak association, indicating that the LULC factors alone should not be utilized to calculate
pollutants further. However, AOD is generally region-dependent, with climatic conditions
having the greatest impact. As a result, the LULC and indicators can play an important
role in future pollution research. This study can help determine more parameters while
modeling PM2.5. Furthermore, it may be possible to control future scenarios of pollution at
local levels as well as to implement specific mitigation measures at the local level to achieve
sustainable development goals by using this information. The environmental authorities,
urban planners, urban ecologists, and climatologists can use the study’s results of the
interaction between human activities and environmental quality and control air quality
and land management problems at the city scale.

6. Conclusions

In most previous studies, only NDVI or NDBI has been used as a related parameter.
In the semi-arid study regions, variables such as SAVI and EVI should also be considered
important parameters. Therefore, this study aimed to explore the impact of LULC-derived
indices on AOD in parts of Delhi, NCR, as well as provide a new perspective on how aerosol
variation responds to land use patterns at the regional scale. The 77% of MAIAC retrieved
AOD lies within the expected error with nil overestimation. MAIAC retrieved AOD is
within the limit of EE and represents a robust correlation for rural and semi-urban sites,
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i.e., Gual Pahari and Amity University, respectively. LULC has significantly changed from
2010–2019 in the current region, showing rapid increases in built-up areas and grassland
and decreased cropland. The total 12% of built-up and 51% of grassland area increased in
2010–2019, whereas the cropland decreased by approximately 4%.

The highest mean AOD value was found in built-up areas (0.70), followed by grass-
lands (0.69) and croplands (0.68). According to the study’s results, AOD was positively
correlated with NDBI and SAVI at the significance levels of 0.01 and 0.05, respectively. The
results indicate that urban development also gives rise to pollution concentration, whereas
vegetation has a purification effect. The positive correlation between AOD and built-up
areas indicates that urban development has increased aerosols and air pollution levels on
a mesoscale. The soil particles may also contribute to the current semi-arid region, so it
is necessary to study the landscape context. In semi-arid regions, soil or dust particles
are the main pollutants in aerosol concentration. For semi-arid regions like the current
study area, the SAVI can be an important factor for modeling communities as an influential
parameter. There was a negative correlation between AOD and vegetated areas. To improve
the efficiency of aerosol purification, vegetation coverage should be increased. Our results
confirmed that LULC and its structure significantly affect aerosols and their variation.
Planning and land use managers may use these findings to develop appropriate urban
planning and land use management strategies. Moreover, by considering factors similar
to SAVI and EVI, the modeling community can enhance models for assessing PM2.5 in
data-scarce regions. Future studies may focus on (a) the long-term evaluation of LULC,
and AOD impacts should be studied; (b) many more parameters should be considered for
further analysis; (c) high-resolution imagery should be used for LULC classification and
could provide a better insight into various other land cover types, and (d) the comparison
of different types of AOD classes in different types of LULC classes.
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AERONET Aerosol Robotic Network
AOD Aerosol Optical Depth
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EVI Enhanced Vegetation Index
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IGP Indo-Gangetic Palin

https://ladsweb.modaps.eosdis.nasa.gov/
https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/


Atmosphere 2022, 13, 1992 18 of 21

IHDP International Human Dimensions Program
LULC Land Use Land Cover
MAIAC Multiangle Implementation of Atmospheric Correction
MODIS Moderate Resolution Imaging Spectroradiometer
NCR National Capital Region
NDBI Normalized Difference Built-up Index
NDVI Normalized Difference Vegetation Index
PM Particulate Matter
RS Remote Sensing
SAVI Soil Adjusted Vegetation Index
SD Standard Deviation
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