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Abstract: The article is concerned with the experimental study of the crown fire effect on atmospheric
transport processes: the formation of induced turbulence in the vicinity of the fire source and the
transport of aerosol combustion products in the atmosphere surface layer at low altitudes. The studies
were carried out in seminatural conditions on the reconstructed forest canopy. It was established
that the structural characteristics of fluctuations of some atmosphere physical parameters in the case
of a crown fire practically coincide with the obtained earlier values for a steppe fire. The highest
concentration of aerosol combustion products was recorded at a height of 10–20 m from the ground
surface. It was found that the largest number of aerosol particles formed during a crown fire had a
particle diameter of 0.3 to 0.5 µm. As a result of experimental data extrapolation, it is concluded that
an excess of aerosol concentration over the background value will be recorded at a distance of up to
2000 m for a given volume of burnt vegetation. It is of interest to further study these factors of the
impact of wildfires on atmosphere under the conditions of a real large natural wildfire and determine
the limiting distance of aerosol concentration excesses over background values.

Keywords: crown fire; aerosols; mass transfer; atmosphere

1. Introduction

Currently, landscape wildfires are one of the largest natural disasters that involve large
adverse effects (air pollution, destruction of ecosystems and biodiversity, forest degradation,
and economic losses). The predicted global climate change may lead to an increase in the
frequency of forest fires, as well as the duration of the fire season, which will inevitably lead
to an increase in the number of large and catastrophic wildfires, spread of their distribution
area, and long-term degradation of forest conditions [1]. This affects the background
radiation, cloudiness, air quality, and climate on a regional and global scale [2–4]. The
composition and number of emissions from wildfires into the atmosphere depend on the
characteristics of the combustible material, volume, structure, type, chemical composition,
humidity, and fire behavior. Forest fires emit enormous amounts of gaseous components
into the atmosphere and significantly affect the cycle and accumulation of carbon in boreal
forests [5]. Furthermore, a huge amount of combustion products (gases and aerosols)
is released into the atmosphere, which can be dispersed over vast distances [6–8]. For
example, an excess of CO and NOx can change the oxidizing capacity of the atmosphere
and significantly disrupt the background chemical composition of the atmosphere [9]. It
has been proven that the concentration of such substances in the atmosphere can have
a detrimental effect on air quality, health, and climate [10,11]. In particular, the negative
contribution from excess CO, SO2, and NOx was shown by performing a sensitivity analysis
of the correlation between wildfires and carbon accumulation in living biomass, soil, and
ground layer of boreal forests [12,13].
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The record shows that a significant amount of thermal energy is released during
combustion, and intense turbulent processes in the flame of a wildfire form turbulence in the
convective column above the combustion source [14]. Obviously, this affects meteorological
parameters: wind speed, induced atmospheric turbulence, changes in temperature, and
relative air humidity [15–17]. It is known [18] that large forest fires form their “own
wind” (induced wind), which in turn stimulates the wildfire spread and prevents it from
termination. It should also be noted that massive natural wildfires are accompanied by
stable anticyclone phenomena [18,19], which prevent the formation and fall of precipitation.
Obviously, a massive release of thermal energy during large wildfires, accompanied by
turbulent processes, affects the dynamics of atmospheric processes, and affects global
climatic processes along with the release of carbon monoxide and small aerosols. On the
other hand, changes in meteorological parameters directly affect the transfer of gaseous
combustion products, plume, and aerosol. Changes in these parameters directly affect
the transfer of gaseous combustion products, smoke, and aerosol. Research in this area is
carried out using both experimental methods [17,19–22] and mathematical models [23–25].

Some numerical results published over the past decade using a fully physical approach
are presented and discussed with emphasis on the model [26]. Numerical simulations
are compared with experimental data obtained at various scales: from laboratory to field
wildfires in pastures and boreal forests. Some perspectives are presented regarding the
potential link between physical wildfire models and atmospheric models in order to study
the effects of wildfires on a larger scale. Although such models help one to make fire
management decisions, they do not take into account the interaction between wildfire
and the environment (atmospheric turbulence caused by wildfire). Therefore, several
researchers have turned to computational fluid dynamics (CFD) models to investigate the
detailed flow dynamics underlying wildfire behavior [27].

Despite the diverse studies of the natural wildfires impact on the environment and
the air state [1–3,5], there is still no understanding of the phenomenon complexity and
theoretical models of the wildfires impact on global climatic processes associated with
climate change both locally and globally. Obviously, the impact of natural wildfires on the
climate is caused not only by changes in the landscape and biogeocenoses [10,11], but also
by physical and chemical processes occurring in the fire area and atmosphere as a result of
the significant amount release of energy, gaseous, and condensed combustion products.

Tomsk State University in collaboration with the Institute of Atmospheric Optics SB
RAS carry out long-term studies of wildfires under various conditions, including ones that
are close to natural at the experimental site [28–33]. As a result, significant experience and
knowledge has been accumulated in organizing and conducting such studies, as well as
obtaining data on the natural wildfire front characteristics, its occurrence and spread, the
effect of a wildfire on meteorological parameters, the characteristics of turbulence in the
atmosphere, emissions, and transfer of combustion products [34].

This article presents the results of seminatural experimental studies of the crown fire
occurrence on the modeled forest canopy and its effect on the atmosphere characteristics:
the formation of induced atmospheric turbulence and the transfer of aerosol combustion
products in the surface layer of the atmosphere at low altitudes. The obtained experimental
results broaden the fundamental knowledge about the effect of forest fires on formation of
induced atmospheric turbulence and atmospheric transport processes in general.

2. Experiment Explanation and Used Equipment

Experiments on modeling of the crown fire occurrence were carried out on 30 April
and 5 May 2022 on the territory of the Basic Experimental Complex (BEC) of the Institute of
Atmospheric Optics SB RAS [22]. The dimensions of the experimental sites were 4 × 10 m.
Figure 1 shows a satellite image of the BEC with the locations of the experimental sites and
measuring equipment marked on it. It should be noted that the fundamental difference
between this work and similar works [14,30–32] carried out at the BEC before is the
simulation of crown fire on the reconstructed forest canopy.
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mocouples type K were placed inside the experimental strip to correct the flame emis-
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Figure 1. Satellite image of the BEC and the experimental site areas with measuring equipment:
(1) experimental area, 10 × 4 m; (2) ignition line; (3) monitoring and recording equipment (PC and
data logger “ZET LAB”); (4) JADE J530SB IR camera; (5) rack with thermocouples; (6) video camera;
(7) rack with aerosol sensors; (8) AMK-03 weather station on a 3 m mast; (9) AMK-03 weather station
on a 10 m mast; (10) AMK-03 weather station on a 6 m mast; (11) predominant wind direction during
the experiment.

The air temperature, relative humidity, and atmospheric pressure were monitored
using meteorological stations (AMK-03 ultrasonic weather station). Air temperature, T,
varied within 275–278 K. Relative air humidity varied from 42% to 44%. Atmospheric
pressure, Pe, was 713–730 mm Hg. The wind speed varied in the range of 1–6 m/s.

The moisture content of fuel vegetable materials (FVMs) was determined using an
AND MX-50 moisture analyzer with an accuracy of 0.01% and equal to W = 5.6%. The
capacity of FVM on the experimental site varied within 0.476–0.563 kg/m2. The temperature
field in the wildfire front and the flame structure were monitored using a JADE J530SB
infrared camera with a shooting rate of 50 frames/s in a narrow spectral range of 2.5–2.7 µm.
The choice of the spectral interval is determined by the emission spectrum of the main
combustion products of the flame [34]. Racks with CA (chromel–alumel) thermocouples
type K were placed inside the experimental strip to correct the flame emissivity and control
the wildfire front propagation [33]. The transfer of aerosol combustion products was
controlled using a network of PMS 7003 ground-based sensors located at a height of 2 m at
various distances (up to 105 m) from the combustion source. One sensor was attached to
the unmanned aerial vehicle (UAV) and recorded the concentration of aerosol particles at a
height of 20 m.

The experimental site (Figure 2) was an “accelerating site” of a ground fire, 1, an
area of undergrowth and shrubs, 2, and a model forest canopy, 3. Zone 1 was ignited
similarly [14] uniformly over the entire width (Figure 3). Zones 2 and 3 were reconstructed
from undergrowth (Hm = 1.2 m) and pines (Hs = 2.5 m), which were preharvested during
thinning in the territory of Tomsk forestry. Moisture content of vegetation was kept at
natural values (moisture content of needles was W = 114%). The maximum height of trees
(Hb) in the reconstructed forest canopy did not exceed 4.5 m. The lengths of the sections
were hr1 = 2 m; hr2 = 2.5 m; hr3 = 3 m.
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3. Experimental Results and Analysis

The IR thermogram (Figure 4) shows the temperature distribution in the flame at
various moments in time during the transition from a ground fire to a crown fire. Obvi-
ously, the combustion process is essentially unsteady and is accompanied by developed
turbulence in the flame.
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Ref. [14] shows that turbulent processes in the flame lead to the formation of induced
atmospheric turbulence as a result of dissipation and general heat release, which is shown
in the value change of the structural constant of fluctuations of the refractive index, C2

n,
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obtained by optical and acoustic methods, as well as the structural constant fluctuations
in temperature, C2

T , and wind speed, C2
V , which is associated with changes in air density.

Figure 5 shows graphs of fluctuations in the refractive index, which were calculated using
the following expressions:

C2
T =

〈[
T′(t + ∆t)− T′(t)

] 2〉(〈Vm〉∆t)−2/3 (1)

C2
na =

C2
T

(2〈Tk〉)2 +
C2

V

〈c〉2
(2)

C2
no =

[
8·10−5 〈P〉

〈Tk〉2

]2
C2

T (3)

C2
V =

〈[
u′(t + ∆t)− u′(t)

] 2
〉
(〈Vm〉∆t)−2/3 (4)

where C2
T is the structural constant of temperature fluctuations; C2

na—structural constant of
acoustic refractive index fluctuations; C2

no—structural constant of fluctuations of the opti-
cal refractive index; C2

V—structural constant of wind fluctuations; T′—value of turbulent
temperature fluctuation, ◦C; t—current moment of time, s; ∆t—time interval between mea-
surements of instantaneous meteorological variables, s; Vm—module of the average wind
speed vector, m/s; < >—symbol of statistical averaging; Tk—air temperature, K; c—speed
of sound, m/s; P—atmospheric pressure, hPa; u′—value of the turbulent fluctuation of the
wind speed component, m/s.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 10 

Ref. [14] shows that turbulent processes in the flame lead to the formation of in-
duced atmospheric turbulence as a result of dissipation and general heat release, which is 
shown in the value change of the structural constant of fluctuations of the refractive in-
dex, 𝐶𝑛2, obtained by optical and acoustic methods, as well as the structural constant 
fluctuations in temperature, 𝐶𝑇2, and wind speed, 𝐶𝑉2 , which is associated with changes in 
air density. Figure 5 shows graphs of fluctuations in the refractive index, which were 
calculated using the following expressions: 𝐶ଶ் = 〈ሾ𝑇ᇱ(𝑡 + ∆𝑡) − 𝑇ᇱ(𝑡)ሿଶ〉(〈𝑉௠〉∆𝑡)ିଶ/ଷ  (1)

𝐶௡௔ଶ =  𝐶ଶ்(2〈𝑇௞〉)ଶ + 𝐶௏ଶ〈𝑐〉ଶ (2)

𝐶௡௢ଶ = ቈ8 ∙ 10ିହ 〈𝑃〉〈𝑇௞〉ଶ቉ଶ  𝐶ଶ் (3)

𝐶௏ଶ = 〈ሾ𝑢ᇱ(𝑡 + ∆𝑡) − 𝑢ᇱ(𝑡)ሿଶ〉(〈𝑉௠〉∆𝑡)ିଶ/ଷ (4)

where 𝐶𝑇2  is the structural constant of temperature fluctuations; 𝐶𝑛𝑎2 —structural con-
stant of acoustic refractive index fluctuations; 𝐶𝑛𝑜2 —structural constant of fluctuations of 
the optical refractive index; 𝐶𝑉2—structural constant of wind fluctuations; 𝑇′— value of 
turbulent temperature fluctuation, °C; t—current moment of time, s; ∆t—time interval 
between measurements of instantaneous meteorological variables, s; 𝑉𝑚—module of the 
average wind speed vector, m/s; < >—symbol of statistical averaging; 𝑇𝑘—air tempera-
ture, K; c—speed of sound, m/s; P—atmospheric pressure, hPa; 𝑢ᇱ—value of the turbu-
lent fluctuation of the wind speed component, m/s. 

(a) (b) 

(c) (d) 

11:49:00 11:54:00 11:59:00 12:04:00 12:09:00 12:14:00 12:19:00 12:24:00 12:29:00
0.00

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

t, hh/mm/ss

2
CT

0.05

11:49:00 11:54:00 11:59:00 12:04:00 12:09:00 12:14:00 12:19:00 12:24:00 12:29:00
0.0

4.0×10-13

3.5×10-13

3.0×10-13

2.5×10-13

2.0×10-13

1.0×10-13

5.0×10-14

1.5×10-13

t, hh/mm/ss

 Current study
 Loboda et al., 2021

2
Cn,o

11:49:00 11:54:00 11:59:00 12:04:00 12:09:00 12:14:00 12:19:00 12:24:00 12:29:00
0.0

2.5×10-5

1.5×10-5

2.0×10-5

5.0×10-6

2

t, hh/mm/ss

 Current study
 Loboda et al., 2021 

Cn,a

1.0×10-5

11:49:00 11:54:00 11:59:00 12:04:00 12:09:00 12:14:00 12:19:00 12:24:00 12:29:00

5.0×10-3

4.0×10-2

3.5×10-2

3.0×10-2

2.5×10-2

2.0×10-2

1.5×10-2

1.0×10-2

0.0

t, hh/mm/ss

2CV

Figure 5. Change in the structural index of fluctuations in the refractive index of C2
n, obtained

by optical (a) and acoustic methods (b); structural index of fluctuations in wind speed (c) and
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The magnitude of the structural characteristic of the air refractive index fluctuations
is often used in problems of atmospheric optics for description of the turbulence effect
on optical radiation. The work [35] shows justification for the fact that turbulence in the
atmosphere surface layer has a decisive influence on the profile C2

n(z) up to heights of
the order of several kilometers; C2

n(z) is the vertical profile of the structural characteristic
of air refractive index fluctuations. Comparing the data shown in Figure 5 with the data
published in [14], obtained from modeling of steppe fires, one can conclude that the
value of C2

n in the cases of steppe and crown fires has the same order, which is associated
with the same physical mechanisms of formation atmospheric turbulence—heat release
in the combustion zone and dissipation of turbulent structures in the flame. Considering
the fact that the characteristic dimensions of the combustion zone and the characteristic
temperatures in the flame are similar for the experiment carried out and the experiment
in [14], then, accordingly, one observes values of C2

n, etc., similar in their values. It should be
noted that, similarly to [14], one can register an increase in air temperature by 2–3 degrees
and a change in wind speed.

It was found that the largest number of particles emitted into the atmosphere during
a crown fire have a diameter of 0.3–0.5 µm (Figure 6) as a result of measurements of the
aerosol particles concentration, which coincides with the data [14] obtained for a model
steppe fire.
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Figure 6. Distribution of aerosol concentration by particle diameter at a distance of 125 m from the
combustion source at different heights.

Analyzing Figure 6, one can conclude that for the detection of aerosols in the atmo-
sphere from wildfires, the most optimal heights are in the range of 10–20 m. Figure 7
shows experimental data on the concentration of aerosols with a particle diameter of at
least 0.3 µm at a height of 20 m and 2 m at various distances from the fire source, as well
as extrapolation curves. One can see from Figure 7 that with a combustion source size
of 4 × 10 m, the maximum distance where the aerosol concentration in the air exceeds
the background values at a height of 2 m and 20 m does not exceed 800 m and 2000 m,
respectively. It is obvious that at a height of 20 m, based on the concentration of aerosol
combustion products, it is possible to reliably record a smoke plume from a wildfire at a
significantly greater distance.
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Figure 7. Concentration change of aerosols with a particle diameter of at least 0.3 microns at different
heights in comparison with background value.

One can conclude from Figures 6 and 7 that a small source of wildfire in the wind
direction leads to an increase in the concentration of condensed combustion products
(plumes or aerosols) at a height of 20 m, exceeding the background values at distances up
to 2000 m. It can be considered as a characteristic sign of a natural wildfire with regard to
warning and operational signals about the source of ignition. In the case of a significantly
larger wildfire source, associated with a larger mass of vegetation involved in combustion,
the concentration of aerosols exceeding the background values will be recorded at much
greater distances [36].

4. Conclusions

The presented results in this article clearly demonstrate that the impact of wildfires on
atmospheric processes cannot be underestimated even while conducting an experiment
with a model wildfire, the size of which is incommensurably smaller than the size of real
wildfires, since the formation of atmospheric turbulence and the release of a significant
amount of aerosols of small fractions that can be transported over considerable distances
are observed. Obviously, atmospheric turbulence is formed as a result of heat release in the
combustion zone and dissipation of turbulent structures in the flame. Considering the scale
of real natural wildfires, one should understand that the formation of induced atmospheric
turbulence will have a much larger scale, which will certainly affect global atmospheric
processes. The release of gaseous and condensed combustion products and their transfer to
higher layers of the atmosphere will affect not only the quality air and human health, but
also global climate processes in general.

It is experimentally established that the values of the maximum values of C2
n obtained

by optical and acoustic methods, as well as the maximum values of C2
T and C2

V , in the case
of a steppe fire [14] and a model crown fire have the same order. It is associated with the
scale of turbulence in the flame and the dissipation of turbulent structures in it.

It can be concluded from the presented experimental data that aerosol components are
emitted into the atmosphere as a result of a crown fire, the highest concentration of which
corresponds to particle diameters of 0.3–0.5 µm. It is more than two times higher than
the concentration of particles with diameters greater than 0.5 µm. Moreover, the highest
concentration of these aerosols is observed at altitudes from 10 m to 20 m.

As a result of the experimental data extrapolation, one can assume that with the
considered volume of burnt FVM (the experimental area size is 4 × 10 m), the excess
concentration over the background value at a height of 20 m for small aerosol fractions
will be observed at a distance of up to 2000 m from the combustion source. It is of interest
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to further study these factors of the impact of wildfires on the atmosphere under the
conditions of a real large natural wildfire and determine the limiting distance at which the
concentration of aerosols will exceed the background values, depending on the size of the
wildfire source.
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