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Abstract: Fine particulate matter (i.e., PM2.5) has gained intensive attention due to its adverse health
and visibility degradation effects. As a significant fraction of atmospheric PM2.5, secondary inorganic
PM2.5 may be formed through the gas-phase ammonia (NH3) and particle-phase ammonium (NH4

+)
partitioning. While partitioning of NH3-NH4

+ may be simulated using a thermodynamic equilibrium
model, disagreement between model predictions and measurements have been realized. In addition,
the applicability of the model under different conditions has not been well studied. This research
aims to investigate the applicability of a thermodynamic equilibrium model, ISORROPIA II, under
different atmospheric conditions and geographic locations. Based upon the field measurements at
the Southeastern Aerosol Research and Characterization (SEARCH) network, the performance of
ISORROPIA II was assessed under different temperature (T), relative humidity (RH), and model
setups in urban and rural locations. The impact of organic aerosol (OA) on the partitioning of
NH3-NH4

+ was also evaluated. Results of this research indicate that the inclusion of non-volatile
cations (NVCs) in the model input is necessary to improve the model performance. Under high
T (>10 ◦C) and low RH (<60%) conditions, ISORROPIA II tends to overpredict nitric acid (HNO3)
concentration and underpredict nitrate (NO3

−) concentration. The predominance of one phase of
semi-volatile compound leads to low accuracy in the model prediction of the other phase. The model
with stable and metastable setups may also perform differently under different T-RH conditions.
Metastable model setup might perform better under high T (>10 ◦C) and low RH (<60%) conditions,
while stable model setup might perform better under low T (<5 ◦C) conditions. Both model setups
have consistent performance when RH is greater than 83%. Future studies using ISORROPIA II for
the prediction of NH3-NH4

+ partitioning should consider the inclusion of NVCs, the under/over
prediction of NO3

−/HNO3, the selection of stable/metastable model setups under different T-RH
conditions, and spatiotemporal variations of inorganic PM2.5 chemical compositions.

Keywords: gas-particle partitioning; inorganic PM2.5; thermodynamic equilibrium

1. Introduction

Fine particulate matter with aerodynamic diameter less than 2.5 µm (i.e., PM2.5) has
gained attention due to its adverse health effects, visibility degradation, and the impacts
on the Earth’s ecosystems and radiative balance [1–3]. Secondary inorganic PM2.5 (iPM2.5)
constitutes a significant fraction of atmospheric PM2.5 mass concentration and the chemistry
of secondary iPM2.5 formation has been investigated for decades [4–7]. The formation of
the secondary iPM2.5 may be characterized by thermodynamic equilibrium of gas-phase
ammonia (NH3) and particle-phase ammonium (NH4

+) partitioning [8,9]. It is important
to establish a holistic understanding of the formation of secondary iPM2.5 such that the
regional impact of iPM2.5 may be fully understood. Secondary iPM2.5 is usually formed
through chemical reactions between different basic and acidic gases such as NH3, nitric acid
(HNO3), and sulfuric acid (H2SO4). In general, NH3 gas is directly emitted, while HNO3
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and H2SO4 mainly form through (photo)chemical reactions during atmospheric transfor-
mation of sulfur dioxide (SO2) and nitrogen oxides (NOx) (NOx = NO + NO2). It was
reported that iPM2.5 mainly consists of ammonium nitrate (NH4NO3), ammonium sulfate
((NH4)2SO4), ammonium bisulfate (NH4HSO4), and ammonium chloride (NH4Cl) [10–16];
the latest research found that NH4HSO4 is the dominant component for SO4

2− aerosols due
to acidic properties of the particles [17]. The partitioning of total ammonia (NH3 + NH4

+)
into gas and particle phase is usually assumed to be in the thermodynamic equilibrium
state such that thermodynamic models can be used to estimate the physical phases (gas,
liquid, solid) and interactions of different precursor gases of iPM2.5 [18–20]. However,
the non-equilibrium state may exist in ambient air due to surface heterogeneity [21], the
mass transport limitation between different sizes of particles [22], and the long timescale to
reach equilibrium state for super-micron particles [23]. Consequently, the applicability of
thermodynamic equilibrium theory for modelling the NH3-NH4

+ partitioning may lead to
erroneous results under certain atmospheric conditions. As a widely used thermodynamic
equilibrium model, ISORROPIA II has been coupled to large-scale chemical transport
model (CTM) to predict the concentrations of secondary iPM2.5 at equilibrium state. In this
study, we carry out comprehensive evaluation of the applicability of the ISORROPIA II
model for predicting inorganic aerosols.

The default assumption made in the thermodynamic equilibrium model is that the gas
and particle system is in a chemical equilibrium state, i.e., the total free energy of the system
is minimized [8]. The ISORROPIA II [24] is one of the commonly used thermodynamic
models, in which gas-particle partitioning phenomenon and the impacts of temperature
(T) and relative humidity (RH) are incorporated. The mutual deliquescence region and
hysteresis phenomenon are both resolved in the model. In addition, compared with
other thermodynamic models, ISORROPIA II is more computationally efficient with stable
performance [24–27]. Input data required by the ISORROPIA II include the concentrations
of NH3, HNO3, H2SO4, hydrochloric acid (HCl) in both gas and particle phases, T and RH.
Two types of problem (forward and backward) can be solved by ISORROPIA II [28]. The
input data for forward problem include total concentrations of precursor gases existing both
in gas and particle phases. The input data for backward problem include the concentrations
of precursor gases exclusively in particle phase. In addition, thermodynamically stable
and metastable states can be set by the user to adapt to different application scenarios.
The difference between these two states reflects if the salts in the solution will precipitate
when super saturation state is achieved. For thermodynamically stable states, the salts will
precipitate when super saturation is achieved, while for metastable states, the salts remain
in the aqueous phase. The outputs of the model include the concentrations of gases, iPM2.5
chemical compositions, hydrogen ion, and water content at chemical equilibrium state for
both forward and backward problems.

The ISORROPIA II model assumes that the thermodynamic equilibrium is established
instantaneously, and the equilibrium state could also be kinetically approached, which was
done in some Chemical Transport Model (CTM) applications [29,30]. To prove the validity
of this assumption, the timescales to reach thermodynamic equilibrium state were assessed
by different researchers [31,32]. The theoretical calculations revealed that it takes around
5–30 min for submicron (PM1) and more than 1 h for super-micron (PM1–2.5) aerosols to
reach equilibrium state. Therefore, the application of equilibrium models (e.g., ISORROPIA
II) to timescales shorter than the equilibrium time would be problematic. In addition, the
field sampling with long integration time may not be able to detect the variation of gas- and
particle-phase pollutants caused by dramatic changes of ambient conditions. If ambient
conditions and inorganic aerosol compositions are variable on timescales shorter than the
sampling timescale, then that could be problematic for an equilibrium model application,
which should be calculating all the individual equilibrium states rather than an average
over all states.

Time resolution of the concentrations of iPM2.5 and its precursor gases varied in
different field studies from several minutes to 24 h due to the differences in the measurement
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instruments and techniques. Zhang et al., (2002), Yu et al., (2005), and Fountoukis et al.,
(2009) used 5–6 min measurements to assess the performance of ISORROPIA II [32–34];
Yu et al., (2005) and Takahama et al., (2004) used 1–3 h measurements to check the prediction
skill of ISORROPIA II [34,35]; Moya et al., (2001), Yu et al., (2005), and Goetz et al., (2008)
used 6–24 h measurements to investigate the performance of ISORROPIA II [34,36,37].
The measurements with 6 to 24 h time resolution may not be suitable to assess the model
prediction skill because the greater time scale loses the resolution to detect the impact of
ambient condition changes on the NH3-NH4

+ partitioning process.
Factors influencing the gas-particle system equilibrium state include ambient meteoro-

logical condition [38], surface heterogeneity and multiphase chemistry [21], and organic
aerosols coating inorganic aerosols [39,40]. Thus, the application of thermodynamic models
such as ISORROPIA II may also be affected by those factors [22]. Thermodynamic equi-
librium models predict the molar ratio R (R = ([NH4

+] − [NO3
−] − [Cl−])/[SO4

2−]) to be
2 when NH3 is abundant compared to acidic gases, corresponding to the stoichiometry
of (NH4)2SO4. Research conducted by Li et al., (2014a, b) detected the high concentration
of NH3 gas near the source region [41,42]. It was observed that the mean R was 1.75,
which is less than 2, although this ratio should be close to 2 under high NH3 concentration
environments. Further investigation suggested that wind speed may affect the local ther-
modynamic equilibrium status as the time for establishing such equilibrium may exceed
the time needed for transporting NH3-laden air parcels from emission sources under high
wind speed. The concentrations of iPM2.5 chemical compositions and precursor gases
were measured at an agricultural site located in an area impacted by the NH3 emissions
from intensive animal production activities and fertilizer application [38]. It was also
discovered that the mean R was approximately 1.43. The high NH3 concentrations at the
site present a potential to react with acidic gases, and the abundant NH3 should render
molar ratio R close to 2. Walker et al., (2006) noted that the possible reason for the low
molar ratio R may be due to the non-equilibrium state of the NH4

+-NO3
−-SO4

2− system;
the mass transport between gaseous NH3 and particles may limit the protonation of NH3
by H2SO4 [38]. Although the applicability of ISORROPIA II in rural area with high NH3
concentrations was not fully assessed in the research, the ISORROPIA II model was utilized
to investigate the responses of secondary iPM2.5 to the changes of precursor gases. Further
investigation should be conducted to advance our understanding on the thermodynamic
equilibrium assumption.

The impact of organic matter on the chemistry of NH3 and acidic gas H2SO4 involves
complex processes, and, in the literature, there are two contradictory explanations. Liggio
et al., (2011) investigated the time to achieve equilibrium state in the system of NH3-H2SO4-
organics [43]. In a closed chamber, particle-free ambient air was exposed to H2SO4 aerosols.
The initial molar ratio of total NH3/total H2SO4 was set at various values and the steady
NH4

+/SO4
2− molar ratio was treated as the equilibrium indicator. The comparison of

equilibrium time between the organic-free system and the organic-rich system indicated the
delay effect of organics on the NH3 uptake to H2SO4 particles. The inorganic particles may
be coated by organic materials, which leads to a long equilibrium time, i.e., hours instead
of minutes. Silvern et al., (2017) compared the [NH4

+]/[SO4
2−] in the air with the values in

rainwater in the eastern U.S. The results indicated that not all the SO4
2− was in the form of

(NH4)2SO4, even with abundant NH3 in ambient air [39]. The possible reason is that the
organic aerosol (OA) coating on the inorganic particles may hinder the reaction of NH3
and acidic gases. On the other hand, Pye et al., (2018) noted that the organic coatings may
not be needed to explain the [NH4

+]/[SO4
2−] because the Chemical Speciation Network

(CSN) contains measurement artifacts leading to ammonium volatilization, and aerosol
mass spectrometer (AMS) measurements also include organosulfates in total sulfate [44].
Furthermore, Guo et al., (2018) challenged the ability of organic film to retard NH3 up-
take [45]. In this newer research, the OA/PM2.5 mass fraction was utilized to represent the
thickness of organic film. No significant relationship between the measured molar ratio of
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[NH4
+]/[SO4

2−] and OA/PM2.5 mass fraction was observed. This finding may challenge
the ability of organic film to retard NH3 uptake.

The ISORROPIA II model simulates the K+-Ca2+-Mg2+-NH4
+-Na+-SO4

2−-NO3
−-Cl−-

H2O system; thus, the ISORROPIA model has been used to estimated particle pH due to
the lack of operational techniques for direct particle pH measurements [17,46]. In addition,
oftentimes, the nonvolatile cations (NVCs) such as potassium (K+), calcium (Ca2+), magne-
sium (Mg2+), and sodium (Na+) may not be monitored due to the limitation of measurement
instruments and techniques. Fountoukis et al., (2009) and Guo et al., (2018) observed that
the inclusion of measured Na+ to the model input significantly improved the performance
of ISORROPIA II in reproducing the gas-phase and particle-phase pollutants [32,45].

In this study, we explore impacts of the factors, e.g., organic materials, and ambient T
and RH, on the performance of the ISORROPIA II model with an aim to identify the possible
reasons to the underestimations or overestimations in the concentrations of gas-phase and
particle-phase species.

2. Materials and Methods
2.1. Monitoring Network Description

The Southeastern Aerosol Research and Characterization (SEARCH) Network is a
long-term air quality monitoring network established in the southeastern U.S. (AL, FL, GA,
and MS) [47]. The network provides high-quality field measurements of PM2.5 mass and
chemical compositions. More specifically, the continuous measurements of iPM2.5 chemical
compositions and its precursor gases provides information with high time resolution to
investigate the partitioning of gas- and particle-phase pollutants at eight sites covering
agricultural rural areas and urban regions.

Under the SEARCH, the concentrations of iPM2.5 chemical compositions and its
precursor gases were measured at four paired urban/nonurban sites, named as JST/YRK,
BHM/CTR, GFP/OAK, and PNS/OLF. The measurements started from 1998/1999 and
ended in 2016. These eight monitoring sites are shown in Figure 1.
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Figure 1. The geographical locations of the eight monitoring sites under the SEARCH (Green label
indicates urban sites; red label indicates rural or suburban sites).

The onsite measurements provided processed 1 h average concentrations of precursor
gases, iPM2.5 chemical compositions, and meteorological conditions. In addition, the 24 h
average measurements of iPM2.5 chemical compositions were also performed. The details
of the measurements made at the eight sites are reported in [48,49] and summarized in
Table 1.
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Table 1. Continuous and discrete field measurements at the eight sites.

Observable Technique Max
Resolution

Detection Limit
(ppb or µg m−3)

Gases
NO CL a 1 min 0.05
NO2 Photolysis/CL 1 min 0.1

HNO3 Denuder/Mo reduction/CL 1 min 0.1
NOy Mo reduction/CL 1 min 0.1
SO2 UV–fluorescence 1 min 0.2
NH3 Denuder/Pt oxidation/CL 5 min 0.2

iPM2.5 chemical compositions
SO4

2− Fe reduction/UV–fluorescence 5 min 0.4
NO3

− Filter/Mo reduction/CL 5 min 0.2
NH4

+ Filter/Pt oxidation/CL 5 min 0.1

Meteorological conditions
T/RH/SR b/BP c Various 1 min NA

WS d/WD e/Precipitation Various 1 min NA

Discrete iPM2.5 chemical compositions
NO3

− Teflon filer + IC f 24 h 0.01
Volatile NO3

− Nylon filer + IC 24 h 0.02
NH4

+ Teflon filer + AC g 24 h 0.03
Volatile NH4

+ Citric acid annular denuder + AC 24 h 0.04
SO4

2− Teflon filter + IC 24 h 0.05
K+-Ca2+-Mg2+-Na+ Teflon filter + ICP-MS h 24 h NA i

a CL: chemiluminescence; b SR: solar radiation; c BP: barometric pressure; d WS: wind speed; e WD: wind
direction; f IC: ion chromatography; g AC: automated colorimetry; h ICP-MS: inductively coupled plasma mass
spectrometry; i NA: not applicable.

2.2. Data Reduction and Processing

Some of the reported gas- and particle-phase measurements were found to be negative
or below the instrument’s detection limit. All the negative values were excluded from
the analysis, while those values below the detection limits were included in the data
analysis [50,51].

During the SEARCH data collection period, rain events happened that led to pollutant
wet depositions. The precipitation led to a rapid decrease in the concentrations of gas- and
particle-phase pollutants. Thus, the hourly and daily measurements in rain events are not
suitable to assess the performance of the thermodynamic model. In data reduction process,
the hours and days with precipitation were flagged and excluded from the analysis.

2.3. Thermodynamic Model Assessment

We explore the impact of factors including ambient T and RH, stable/metastable model
setups, and NVCs on the performance of ISORROPIA II. Comparisons of model predicted
concentrations and measurements were performed to check the over or underestimations
of ISORROPIA II under various conditions and to identify the possible reasons. In addition,
the impact of OA on the thermodynamic equilibrium partitioning of NH3-NH4

+ was
evaluated as well.

The impacts of T and RH on the model performance are assessed using the following
experimental design. The T and RH scenarios are broken down into various 5 ◦C T ×
10% RH conditions; under each condition, the model-predicted concentrations of NH3,
NH4

+, HNO3, NO3
−, and iPM2.5 (SO4

2− + NH4
+ + NO3

−) were assessed against hourly
measurements of gas-phase and particle-phase pollutants.

The gas-phase NH3 and HNO3 molar fractions under different T-RH conditions were
also analyzed. The gas-phase NH3 molar fraction ([NH3]/[NHx]) and gas-phase HNO3
molar fraction ([HNO3]/[TN]) are defined in Equations (1) and (2):

[NH3]/[NHx] =
[NH3][

NH3] + [NH+
4
] (1)
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[HNO3]/[TN] =
[HNO3][

HNO3] + [NO−
3
] (2)

where [NHx] is the sum of molar concentrations (µmol m−3) of gas-phase NH3 and particle-
phase NH4

+, and [TN] is the sum of molar concentrations (µmol m−3) of gas-phase HNO3
and particle-phase NO3

−.
The ISORROPIA II is usually utilized to predict the gas-particle partitioning given the

concentrations of precursor gases, thus forward mode is used as default in this study. The
performance of ISORROPIA II with thermodynamically stable and metastable setups under
different T and RH conditions was assessed by comparing forward model predictions with
field measurements to check the applicability of the model for predicting inorganic aerosols
under different conditions.

The hourly measurements only included the concentrations of NH3, NH4
+, HNO3,

NO3
−, and SO4

2−. The discrepancies in the predictions of gas- and particle-phase pol-
lutants may be due to the lack of other cations/anions measurements. Thus, the model
performances of ISORROPIA II in simulating NH3, HNO3, NH4

+, and NO3
− under differ-

ent gas ratios (GR) and measured charge balances were analysed. The GR characterizes
the potential reaction of NH3 and acidic gases, and measured charge balance is the molar
difference of cation (NH4

+) and anions (SO4
2− and NO3

−). More specifically, GR and
charge balance can be defined as Equations (3) and (4):

GR =
[TA]− 2[TS]

[TN]
(3)

Measured charge balance = [NH4
+] − 2 × [SO4

2−] − [NO3
−] (4)

where TA is total available ammonia (NH3 + NH4
+), TS is total sulfate (H2SO4 + HSO4

− +
SO4

2−), and TN is total nitrate (HNO3 + NO3
−).

In terms of the impact of NVCs on the model performance, only 24 h average data of
K+, Ca2+, Mg2+, and Na+ were available under the SEARCH Network. Thus, 24 h average
data of iPM2.5 chemical composition and its precursor gases were used to assess the impact
of NVCs inclusion/exclusion on the model performance. For each site, two datasets were
used to run ISORROPIA II: one was NH3-NH4

+-HNO3-NO3
−-SO4

2− system, the other one
was Ca2+-Mg2+-K+-Na+-HCl-Cl−-NH3-NH4

+-HNO3-NO3
−-SO4

2− system.
If iPM2.5 may be coated with organic film, retarding the uptake of NH3 to react with

H2SO4, then the higher OA/SO4
2− mass ratio may lead to lower probability of the reaction

between NH3 and H2SO4 [43]. The reaction of H2SO4 and NH3 was characterized by molar
ratio R, Equation (5):

R =

[
NH+

4 ]− [NO−
3 ]− [Cl−

][
SO2−

4

] (5)

The postulated organic film hypothesis was examined by testing if there was a signifi-
cant correlation between molar ratio R and OA/SO4

2− mass ratio. The negative correlation
may indicate the organic film hypothesis, while no correlation may challenge the organic
film hypothesis.

The pH was calculated to study the acidity of the inorganic aerosol:

pH = − log10
1000γH + H+

air
W

(6)

where γH+ is the hydronium ion activity coefficient, which is set as unity, Hair
+ (µg m–3)

is the hydronium ion concentration in volume of air, and W (µg m–3) is particle water
concentration associated with inorganic aerosol. Both Hair

+ and W are from the ISORROPIA
II model output.
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2.4. Statistical Tests of the Model Performance Assessment

Following the approaches by [32,52,53], four parameters were used to evaluate the
performance of the ISORROPIA II model. The four parameters’ criteria values for acceptable
model performance and associated meanings are as follows (the bracket means averaging;
Co and Cp denote measured and predicted concentration):

1. Fraction of predictions falls in a factor of two of observations (Fa2): the fraction of

data with 0.5 ≤ Cp
Co

≤ 2.0 (Fa2 ≥ 0.8).

The perfect model should have Fa2 = 1 acceptable model performance should have
Fa2 greater than 0.8.

2. Normalized mean square error (NMSE): NMSE = [(Co−Cp)2]

[Co ]×[Cp]
(NMSE ≤ 0.5).

The NMSE measures the scatter of the data and indicates both systematic and random
errors. The perfect model should have NMSE = 0 and the acceptable model performance
should have NMSE less than 0.5.

3. Fractional bias (FB): FB =
2×([Cp ]−[Co])
[Co ]+[Cp]

(−0.5 ≤ FB ≤ 0.5).

FB is symmetrical and bounded between −2 and 2; FB = −2 indicates extremely
underprediction and FB = 2 indicates extremely overprediction. The perfect model should
have FB = 0. The acceptable model performance should have FB in the range between −0.5
and 0.5.

4. Geometric mean bias (MG): MG = exp([lnCp] − [lnCo]) (0.75 ≤ MG ≤ 1.25).

The MG is suitable to assess datasets with a large range of concentrations, and the
perfect model should have MG = 1. The acceptable model performance should have MG in
the range between 0.75 and 1.25. Both FB and MG measure the mean bias of the prediction
and indicate systematic errors. The FB and MG can also be used to check the over or
underprediction of the ISORROPIA II model; FB > 0 and MG > 1 indicate overprediction
and FB < 0 and MG < 1 indicate underprediction. In addition, NMSE and MG are not
defined for zero values. In this research, FB was used as a proxy for the model performance
assessment parameter.

3. Results and Discussion
3.1. Applicability of ISORROPIA II in the Predictions of Gas- and Particle-Phase Pollutants

The ISORROPIA II model performance evaluation at the YRK site (2007–2013), JST
site (2010–2014), CTR site (2012–2013), BHM site (2011–2013), OAK site (2010), and OLF
site (2013) were presented. The model performance assessment exhibits the similar pattern
at these six sites; thus, only results at the YRK agricultural–rural site are presented in this
paper. The comparison between model predictions and measurements at the YRK site is
shown in Figure 2.

As can be seen from Figure 2, in general, the ISORROPIA II model is able to reproduce
NH3, HNO3, NH4

+, and NO3
− concentrations at the YRK site, with R2 values above 0.79.

As for NH3 and NH4
+, the slopes are 1.00 and 0.99, respectively, which indicate that the

ISORROPIA II model predicts NH3 and NH4
+ well. However, for HNO3 and NO3

−,
the ISORROPIA II model tends to underpredict HNO3 (slope is 0.97), and overpredict
NO3

− (slope is 1.16), especially when the measured concentrations of HNO3 and NO3
−

are below 4 µg m−3. Some disagreement between model prediction and measurements can
be observed. In this research, we explore the impact of ambient T and RH, model setups,
NVCs, and OA on model performance, and the following sections show the results.
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3.1.1. Ambient T-RH, Aerosol pH, and ISORROPIA II Stable and Metastable Setups

The impact of T and RH on model performance exhibits similar results at the six sites.
Figures 3–5 show the ratios of prediction over observation (Cp/Co) at the YRK site using
stable and metastable model setups.

As it can be seen from Figures 3–5, under T > 10 ◦C and RH < 60% conditions,
ISORROPIA II model tends to excessively partition N into a gas phase, i.e., to overpredict
HNO3 and underpredict NO3

−. As for the prediction of iPM2.5 (SO4
2− + NH4

+ + NO3
−),

generally, the ISORROPIA II model predicts the concentration of iPM2.5 well; most of
the Cp/Co are within the range of 0.8 and 1.2. The accuracy of the prediction of iPM2.5
is determined by three chemical compositions: SO4

2−, NH4
+, and NO3

−. One of the
assumptions made by the ISORROPIA II model is that the vapor pressure of H2SO4 is low;
thus, all the H2SO4 partitions into aerosol phase. The ISORROPIA II model always predicts
SO4

2− concentration well; if SO4
2− accounts for the most of iPM2.5 mass concentration,

then the prediction of iPM2.5 is not sensitive to the disagreement between predictions and
measurements for NO3

− and NH4
+. The analyses of the mass closure of PM2.5 in 2001–2016

at the agricultural–rural site, YRK, and industrial–residential site, JST, indicate that iPM2.5
(SO4

2− + NH4
+ + NO3

−) was the dominant components of PM2.5 mass concentration before
2011, while in 2012–2016, the mass fraction of iPM2.5 was decreased and organic carbon
matter (OCM) dominated in PM2.5 mass concentration. Among the three major chemical
compositions of iPM2.5, SO4

2− accounted for greater than 59% of iPM2.5, which may explain
the acceptable performance of ISORROPIA II in the prediction of iPM2.5 concentration.
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+ + NO3
−) using stable and metastable

model setups.

The impact of pH on the under and overprediction of nitrate partitioning was shown below.
As seen in Figure 6a,b, when pH is less than 1, ISORROPIA II tends to overpredict

HNO3 and underpredict NO3
−; when pH is greater than 3, ISORROPIA II tends to under-

predict HNO3 and overpredict NO3
−. The under and overprediction of nitrate partitioning

is caused by the sensitivity of the simulated NO3
− fraction of total nitrate (ε(NO3

−)) to the
change of pH. As seen in Figure 6c, when pH is less than 1 and greater than 3, ε(NO3

−)
tends not to be sensitive to the change of pH (less than 10% change in ε(NO3

−)); while
when pH is in the range of 1 and 3, the change in pH may have significant impact on the
nitrate partitioning. Thus, both under and overprediction of nitrate partitioning is observed
when pH is in the range of 1 and 3.
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3.1.2. Statistical Tests of Model Performance under Different T-RH Conditions

As for NH3 and NH4
+, overprediction and underprediction both happen under all

T-RH conditions. To quantitatively assess the performance of ISORROPIA II under different
T-RH conditions, under each 5 ◦C T × 10% RH condition, the model performance (only
the values of FB are shown) in the prediction of NH3, NH4

+, HNO3, NO3
−, and iPM2.5

at the YRK site was assessed. The data at the JST site exhibit the similar results; thus, the
statistical analysis results at the JST site are not shown here. We only show the values of FB
for NO3

− prediction with stable setup at the YRK site (Table 2); the results for the other
gas- and particle-phase pollutants are in the supplemental material, Tables S1–S5.

For the comparison between the model performance with stable and metastable model
setups, four parameters reveal the same conclusion about the selection of model setups
under various T-RH conditions. The FB value can not only indicate the model performance,
the sign of the value can also indicate over and underpredictions, thus FB is used in the
model performance assessment discussion. As it can be seen from Tables S1 and S3, the
performance of ISORROPIA II in the prediction of NH3 and NH4

+ is generally acceptable.
While Table 2 indicates that prediction of HNO3 and NO3

− is not satisfactory under certain
T-RH conditions, especially under higher T and lower RH conditions, the ISORROPIA II
model exhibits worse performance. The prediction of iPM2.5 is acceptable under all T-RH
conditions. The model performance in the prediction of HNO3 and NO3

− is sensitive to
the dominant physical state (gas or aerosol) of HNO3 in ambient air. Under high T (>15 ◦C)
and low RH (<60%) conditions, the ammonium nitrate (NH4NO3) may decompose into
gas-phase NH3 and HNO3 due to the semi-volatile characteristic of NH4NO3, leading
to the dominance of gas-phase HNO3 [8]; thus, most of the total HNO3 is in gas phase,
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and the NO3
− is more sensitive to the prediction uncertainties. The FB values for NO3

−

under T > 25 ◦C and RH < 70% are all negative, as small as −2, which indicates extreme
underprediction. While under low T or high RH conditions, HNO3 gas is underpredicted,
especially for T < −5 ◦C or RH > 90%. This can be explained by the fact that, under low T
and/or high RH conditions, most of the HNO3 is in particle phase and the prediction of
HNO3 gas is more sensitive to prediction uncertainties.

Table 2. Model performance assessment for NO3
− prediction with stable setup at the YRK site.

Temperature
Relative Humidity

20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100%

30–35 ◦C −2.00 M −2.00 M −2.00 M −1.98 M −1.81 M NA NA NA
25–30 ◦C −2.00 M −2.00 M −2.00 M −1.99 M −1.66 M −0.71 M −0.48 S = M NA

20–25 ◦C −2.00 M −1.95 M −1.84 M −1.97 M −1.10 M −0.27 M −0.09 M 0.25 S = M

15–20 ◦C −0.78 M −1.20 M −1.33 M −1.53 M −0.29 M 0.06 S 0.12 S 0.36 S = M

10–15 ◦C −0.65 M −0.61 M −0.49 S −0.47 M −0.02 S 0.30 S 0.29 S 0.41 S = M

5–10 ◦C −0.29 M 0.01 S 0.09 S 0.03 S 0.08 S 0.21 S 0.17 S 0.17 S = M

0–5 ◦C 0.18 S 0.30 S 0.29 S 0.25 S 0.12 S 0.09 S 0.07 S 0.17 S = M

−5–0 ◦C NA 0.40 S 0.44 S 0.30 S 0.16 S 0.08 S 0.06 S 0.13 S = M

−10–−5 ◦C NA NA NA 0.37 S 0.20 S 0.05 S 0.02 S NA
a The unacceptable FB values (<−0.5 or >0.5) are labeled as bold values; b NA: not applicable; c the FB values
closer to 0 indicates the better model performance. The S superscript indicates the stable setup performs better,
the M superscript indicates the metastable setup performs better, and the S = M superscript indicates the same
model performance.

To further investigate the partitioning of NH3-NH4
+ and HNO3-NO3

−, the measured
gas-phase NH3 and HNO3 molar fractions under different T-RH conditions are shown in
Figure 7.
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As for NH3, Table S1 shows that the values of FB are closer to 0 under T > 5 ◦C than
under T < 5 ◦C, and this indicates that the model performance of ISORROPIA II is better
under T > 5 ◦C than under T < 5 ◦C. The semi-volatile characteristic of NH4NO3 can lead to
greater gas-phase NH3 molar fraction under high T. When the gas-phase NH3 dominates
in the partitioning of NH3-NH4

+, the NH4
+ is more sensitive to prediction uncertainty

and vice versa. The model performance in the prediction of NH3 is better under T > 5 ◦C
conditions for both stable and metastable model setups. The predominance of one phase
(aerosol or gas) of semi-volatile compounds under certain T-RH conditions can amplify
the small errors in the model prediction of the other phase. The variable sensitivities to
the prediction errors for gas-phase and particle-phase pollutants are more apparent for the
partitioning of HNO3-NO3

−. As for HNO3, Figure 7 indicates that, under T > 15 ◦C and
RH < 90% conditions, most of the HNO3 stays in the gas phase. The particle-phase NO3

−

only accounts for a small fraction of total available HNO3; the mass conservation of the
HNO3 renders the NO3

− concentration more sensitive to the uncertainties in the prediction.
On the contrary, under T < 5 ◦C conditions, most of the HNO3 stays in particle phase, the
mass conservation of the HNO3 renders the HNO3 gas concentration more sensitive to the
uncertainties in the prediction. The dependence of the partitioning of HNO3-NO3

− on the
T and RH makes the prediction of NO3

− tougher than the other chemical compositions
of iPM2.5.

According to Ansari and Pandis (2000) and Fountoukis et al., (2009) [32,54], under
different T-RH conditions, the metastable and stable model setups may have different
performances in the prediction of NH3, HNO3, NH4

+, NO3
−, and iPM2.5 (SO4

2− + NH4
+ +

NO3
−). The differences of predictions using stable and metastable model setups are shown

in Figure 8.
As can be seen from Figure 8, under high RH (RH > 83%) conditions, there is no

difference for model prediction of NH3, HNO3, NH4
+, NO3

−, and iPM2.5 (SO4
2− + NH4

+ +
NO3

−) between the stable and metastable model setups. The high RH facilitates the absorp-
tion of water vapor to the iPM2.5 particles; the particle always stays in the aqueous phase
and there is no salts precipitation. Thus, the prediction of the stable and the metastable
setups is the same. However, Tables S1–S4 indicate that, under certain T-RH conditions,
stable and metastable model setups may have different performances in the prediction of
NH3, HNO3, NH4

+, NO3
−, and iPM2.5. Under T > 10 ◦C and RH < 60% conditions, the

ISORROPIA II model with metastable setup tends to perform better in the prediction of
NH3, HNO3, NH4

+, NO3
−, and iPM2.5. Under T < 5 ◦C and RH < 90% conditions, the

ISORROPIA II model with stable setup tends to perform better in the prediction of NH3,
HNO3, NH4

+, NO3
−, and iPM2.5. This can be explained by the difference in the prediction

of the partitioning of NH3-NH4
+ and HNO3-NO3

− by stable and metastable model setups.
As for NH4

+, when RH < 80%, the prediction of NH4
+ can be divided into four regions

based on the difference between stable and metastable model setups. When T > 25 ◦C,
70% < RH < 80%, or T < 5 ◦C, the NH4

+ prediction of stable setup tends to be either greater
or smaller than the metastable setup. When 5 ◦C < T < 25 ◦C and RH < 70%, the NH4

+

prediction of stable setup tends to be smaller than the metastable setup. As for NO3
−, when

RH < 80%, the prediction of NO3
− can be divided into three regions based on the difference

between stable and metastable model setups. When 70% < RH < 80%, the NO3
− prediction

of stable setup tends to be either greater or smaller than the metastable setup. When
RH < 70%, the NO3

− prediction of stable setup tends to be either equal to or smaller than
the metastable setup. Thus, the selection of stable and metastable model setups depends
on ambient T and RH at the location.
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The model performance of ISORROPIA II in simulating NH3 and NH4
+ under different

GRs and measured charge balance is shown in the Figure 9.
As can be seen from Figure 9, when the measured charge balance is negative, the NH3

is underpredicted and NH4
+ is overpredicted; when GR < 1, the NH3 is underpredicted to

a greater degree; when the measured charge balance is positive, the NH3 is over predicted
and NH4

+ is underpredicted. In ambient air, the charge balance [NH4
+] − 2 × [SO4

2−] −
[NO3

−] is equal to [OH−] − [H+] + [organic anion] + [Cl−] − [K+] − [Na+] − 2 × [Ca2+]
− 2 × [Mg2+]. However, only total NH3, total HNO3, and total H2SO4 are the input data
for ISORROPIA II in this research. In the model, the charge balance [NH4

+] − 2 × [SO4
2−]

− [NO3
−] is equal to [OH−] − [H+]. Therefore, several possible reasons may explain the

phenomena of over and underpredictions of NH3 and NH4
+:

1. The measurement uncertainties in total H2SO4 may explain part of the disagreement
between predictions and measurements. Zhang et al., (2002) used 5 min measure-
ments of iPM2.5 chemical compositions and their precursor gases to test the validity
of the thermodynamic equilibrium assumption for the partitioning of NH3-NH4

+ [33].
Good agreement was found between field measurements and ISORROPIA II predic-
tions in NO3

− and NH4
+ when ~15% downward correction in SO4

2− concentration
was applied. Yu et al., (2005) used different time resolution (5 min, 2 h, and 12 h)
measurements of NH3, NH4

+, HNO3, NO3
−, and SO4

2− to assess the ability of ISOR-
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ROPIA II in the prediction of HNO3-NO3
− partitioning. The sensitivity test indicated

that the measurement uncertainties in the SO4
2− and total NH3 concentrations may

explain the errors in the prediction of NO3
− [34].

2. The positive measured charge balance may be explained by the fact that part of the
NH4

+ cations are associated with organic anions, which the ISORROPIA II model does
not consider in the modeling system. In addition, NH4

+ cations may also be associated
with Cl−, which is not incorporated in the model input; the negative measured
charge balance may be explained by the exclusion of the NVCs in the modeling
system. Metzger et al., (2006) investigated the partitioning of NH3–NH4

+ and HNO3–
NO3

− using three thermodynamic models [55], the model performance was assessed
with/without the inclusion of NVCs and organic acid (R-COOH) in the input data. The
comparison between model prediction and observations indicated that it is necessary
to include NVCs and R-COOH in the model input of a thermodynamic model to
accurately predict the gas-particle partitioning of NH3-NH4

+ and HNO3-NO3
−.
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To further investigate the over and underprediction of gas-phase and particle-phase
pollutants, the impact of NVCs on the model performance of ISORROPIA II was assessed.

3.1.3. Nonvolatile Cations (NVCs)

The comparisons between model predictions and measurements for particle-phase
NH4

+ and NO3
− at the YRK site are shown in Figure S1. As for daily measurements of

particle-phase pollutants, in general, ISORROPIA II is able to reproduce the concentrations
of NH4

+ and NO3
−; thus, factorial ANOVA statistical analysis is then used to check if

NVCs (with/without nonvolatile cations) and model setups (stable/metastable setups)
have significant impact on the prediction of NH3, HNO3, NH4

+, NO3
−, and iPM2.5. Only

the data analysis results at the YRK site are shown in Table S6. Model setups and NVCs
have variable impacts on the predictions of gas-phase and particle-phase pollutants. For
NH3 prediction, only NVCs have significant impact on the model performance. For NO3

−



Atmosphere 2022, 13, 1977 15 of 19

prediction, only model setup has significant impact on the model performance. For HNO3,
NH4

+, and iPM2.5 predictions, both NVCs and model setup have significant impact on the
model performance.

To quantitatively assess the impact of NVCs and model setups on the model perfor-
mance, Fa2 and FB values are calculated for model assessment at the YRK site (Table S7).
Based upon the FB values, inclusion of NVCs into the modeling framework and stable
model setup has a better performance in the prediction of NH3, HNO3, NH4

+, NO3
−, and

iPM2.5 concentrations at the YRK site. Statistical summary of T and RH data at the YRK site
indicates that, in the total 467 data points for the ISORROPIA II model assessment, 81 data
points were under the T > 10 ◦C and RH < 60% conditions, under which the metastable
model setup has the better performance. In addition, 67 data points were under RH > 83%
condition, under which the performance of the model with stable and metastable setups is
the same. The other data points were under conditions in which the stable setup has the
better performance. This may indicate the preference of stable model setup at the YRK site.
This finding is consistent with the study performed by [36], in which 6 h measurements of
NH3, HNO3, NH4

+, NO3
−, and SO4

2− were used to assess the performance of ISORROPIA,
and it was found that the inclusion of NVCs as equivalent Na+ can improve the model
performance in the prediction of NO3

− concentration. Therefore, the inclusion of the
NVCs into the model framework is necessary to accurately simulate the thermodynamic
equilibrium partitioning of NH3-NH4

+.

3.1.4. Organic Aerosol (OA)

The relationships between the molar ratio-R and OA/SO4
2− mass ratio at the YRK

and JST sites are shown in Figure S2. There is a weak correlation between molar ratio-R
and OA/SO4

2− mass ratio, R2 = 0.09, and 0.17 at the YRK and JST sites, respectively; the
molar ratio-R slightly tends to decrease with OA/SO4

2− mass ratio. As shown in Figure
S2, no definite conclusion can be made about the impact of OA on the thermodynamic
equilibrium partitioning of NH3-NH4

+. The higher OA/SO4
2− mass ratio may indicate the

lower probability for the uptake of NH3 by H2SO4. However, in this research, only a weakly
negative correlation between molar ratio-R and OA/SO4

2− mass ratio can be observed.
One explanation may be that the daily data itself cannot adequately detect the impact of
OA on the equilibrium process of NH3-NH4

+ partitioning. Other factors such as T and RH
can also affect the equilibrium process, while the coarse resolution of daily measurement
cannot detect the variable sensitivities of the equilibrium process to the impacts of different
factors. Thus, higher time resolution data such as 5 min data may be required to detect the
impact of OA on the formation of iPM2.5.

3.2. Possible Reasons for the Disagreement between Model Predictions and Measurements

In assessment of the ISORROPIA II model performance under different T-RH-model
setups conditions, it is discovered that ambient T and RH, model setups, and NVCs have
significant impacts on model prediction. The inclusion of NVCs in the ISORROPIA II
input is necessary to improve the model performance. Under certain T and RH conditions,
ISORROPIA II tends to over or underpredict specific gas-phase or particle-phase pollutants.
The stable and metastable model setups may also perform differently under different
T-RH conditions. The impact of OA on the equilibrium assumption may not be detected
by daily measurements; further research is needed to study the impact of OA on the
equilibrium partitioning of NH3–NH4

+. The disagreement between model prediction and
field measurements may be due to the following reasons:

1. The hourly and daily data were used in this research to assess the performance of the
ISORROPIA II model. The duration of the daily input data may not be adequate to
detect the impact of atmospheric transport and ambient T and RH on the thermody-
namic equilibrium partitioning of NH3-NH4

+. Thus, the daily data of NH3, HNO3,
T, and RH may not be able to represent the thermodynamic equilibrium state of the
gas-particle partitioning process.
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2. The gas-particle system was not in a chemical equilibrium state. The mixture of PM1
and PM1–2.5 in secondary iPM2.5 may hinder the applicability of the ISORROPIA
II model. The simple thermodynamic equilibrium assumption for iPM2.5 may not
adequately characterize the partitioning of NH3-NH4

+ in ambient air.
3. The inorganic PM2.5 particles were assumed to be internally mixed; therefore, the

particles were treated as an ensemble bulk. However, Koo et al., (2003) observed that
dynamic model may perform better in the prediction of iPM2.5 chemical compositions.
The dynamic change of particle size distribution may require vigorous treatment
of different physical processes such as condensation, evaporation, and coagulation.
The size-resolved measurements with high time resolution are not available in this
research, thus the dynamic approach cannot be tested.

4. Field measurement uncertainty. These uncertainties can be divided into two aspects:
the measurement uncertainties caused by instruments and techniques, and the un-
certainties caused by the atmospheric transport of air mass. The values below the
instrument’s detection limit were included in the ISORROPIA II model assessment;
this may cause some disagreement between model predictions and measurements.
The small values are especially sensitive to the prediction uncertainty. In addition, the
ideal assessment of ISORROPIA II prediction skill should be based on the high time
resolution measurements under controlled conditions. Furthermore, the thermody-
namic equilibrium models should simulate the equilibrium partitioning of NH3-NH4

+

and HNO3-NO3
− happening in the same air parcel. While in the field, air parcels

laden with different concentrations of gas-phase and particle-phase pollutants may
travel from and to any direction. Thus, the average measurements in one hour or day
may not represent the thermodynamic equilibrium state of the same air parcel.

5. The history of RH experienced by air mass from different wind directions is not a
priori; thus, the decision regarding the selection of stable and metastable setups is
quite difficult, and this may also add some uncertainties to the model simulation.

Although the ISORROPIA II performance in the prediction of iPM2.5 concentration
under all T-RH conditions is acceptable in the southeast U.S. due to the dominance of
SO4

2− in the iPM2.5 concentration, it may perform differently in other regions where SO4
2−

is not dominant in the iPM2.5 concentration. The PM2.5 chemical compositions varied in
spatial and temporal scales in the U.S. The PM2.5 chemical compositions such as SO4

2− and
NO3

− exhibited inverse seasonal variation patterns in the eastern and western coastal areas
of U.S.; SO4

2− exhibited a spatial heterogeneity with higher mass fraction in the eastern U.S.
and lower mass fraction in California [56–58]. Thus, the model performance of ISORROPIA
II in the prediction of iPM2.5 may differ according to the spatial scale.

4. Conclusions

Based on the hourly and daily measurements of gas-phase and particle-phase pol-
lutants at the SEARCH Network, the performance of ISORROPIA II was assessed under
different T-RH, model setups, and NVCs conditions. The impact of OA on the thermo-
dynamic equilibrium partitioning of NH3-NH4

+ was also evaluated. Ambient T and RH,
model setups, and NVCs have significant impact on model prediction. The inclusion of
NVCs in the ISORROPIA II input is necessary to improve the model performance. Un-
der high T (>10 ◦C) and low RH (<60%) conditions, ISORROPIA II tends to overpredict
HNO3 concentration and underpredict NO3

− concentration. The predominance of one
phase (aerosol or gas) of a semi-volatile compound can amplify the small errors in the
model prediction of the other phase. The model with stable and metastable setups may
also perform differently under different T-RH conditions. Metastable model setups might
perform better under high T (>10 ◦C) and low RH (<60%) conditions, while stable model
setups might perform better under low T (<5 ◦C) conditions. Under high RH (RH > 83%)
conditions, there is no difference in the model performance with stable and metastable
setups. The dominance of SO4

2− in the iPM2.5 concentration may explain the acceptable
model performance of ISORROPIA II in the prediction of iPM2.5 under all T-RH conditions.
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Furthermore, higher resolution data may be required to investigate the impact of OA on the
thermodynamic equilibrium partitioning of NH3-NH4

+. This research provides systematic
assessment of the ISORROPIA II model under different conditions. Future studies using
ISORROPIA II for the prediction of partitioning of NH3-NH4

+ and HNO3-NO3
− should

consider the inclusion of NVCs, the under/overprediction of NO3
−/HNO3, the selection

of stable/metastable model setups under different T-RH conditions, and spatiotemporal
variations of iPM2.5 chemical compositions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13121977/s1, Figure S1: The comparison of prediction and
observation for NH4+ and NO3− at the YRK site; Figure S2: The relationships between molar ratio-R
and OA/SO42− mass ratio at the YRK and JST sites; Table S1: Model performance assessment for
NH3 prediction with stable and metastable setups at the YRK site; Table S2: Model performance
assessment for HNO3 prediction with stable and metastable setups at the YRK site; Table S3: Model
performance assessment for NH4+ prediction with stable and metastable setups at the YRK site; Table
S4: Model performance assessment for NO3− prediction with metastable setups at the YRK site;
Table S5: Model performance assessment for iPM2.5 prediction with stable and metastable setups at
the YRK site; Table S6: Factorial ANOVA test results at the YRK site; Table S7: Model performance of
ISORROPIA II at the YRK site.
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