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Abstract: Accurate short-term precipitation forecast is extremely important for urban flood warning
and natural disaster prevention. In this paper, we present an innovative deep learning model named
ISA-PredRNN (improved self-attention PredRNN) for precipitation nowcasting based on radar
echoes on the basis of the advanced PredRNN-V2. We introduce the self-attention mechanism and
the long-term memory state into the model and design a new set of gating mechanisms. To better
capture different intensities of precipitation, the loss function with weights was designed. We further
train the model using a combination of reverse scheduled sampling and scheduled sampling to learn
the long-term dynamics from the radar echo sequences. Experimental results show that the new
model (ISA-PredRNN) can effectively extract the spatiotemporal features of radar echo maps and
obtain radar echo prediction results with a small gap from the ground truths. From the comparison
with the other six models, the new ISA-PredRNN model has the most accurate prediction results
with a critical success index (CSI) of 0.7001, 0.5812 and 0.3052 under the radar echo thresholds of
10 dBZ, 20 dBZ and 30 dBZ, respectively.

Keywords: deep learning; spatiotemporal prediction; short-term precipitation

1. Introduction

Precipitation prediction is one of the most important meteorological services. In partic-
ular, short-term precipitation forecasting is more closely related to many aspects of people’s
lives. Short-term precipitation forecast generally refers to predicting the precipitation inten-
sity in the next 0–2 h. It is highly time-sensitive. Precise short-term precipitation forecasting
is of great practical significance, making travel easier, guiding agricultural production and
preventing and mitigating disaster.

At present, numerical weather prediction (NWP) and radar echo extrapolations are
the two mainstream methods of precipitation forecasting. Numerical weather prediction-
based methods perform future precipitation forecasting by solving complex physically
based prognostic weather equations. However, numerical weather prediction has the draw-
backs of uncertainty and parametric errors, and generates large computational overhead
in solving mathematical equations, which is more suitable for medium and long-term
precipitation prediction. The radar echo extrapolation-based method uses previous radar
echo sequences to extrapolate future radar echo sequences and thus make precipitation
forecasts for future periods. Currently, monomeric center-of-mass-based methods, mutual
correlation-based methods, and optical flow-based methods are widely used in radar echo
weather forecasting. The single-body center-of-mass-based approach is suitable for tracking
isolated, large, strong echoes of single bodies or groups of single bodies. Dixon et al. [1]
used the method for identification, tracking, analysis and proximity forecasting of thun-
derstorms on radar echo maps. The intercorrelation-based approach uses the best spatial
correlation of different regions of adjacent time radar echoes to infer the location of future
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radar echoes, such as Liang et al. [2] combining the intercorrelation-based approach with
model predicted winds for radar echo extrapolation. The optical flow approach is a method
in the field of computer vision that is also applied to weather forecasting due to its good
motion tracking capability. Zhu et al. [3] used this method for tropical cyclone precipitation
forecasting. However, radar echo has no obvious periodicity, and it does not move at a
fixed rate or have a fixed pattern of shape change. Radar echoes in different weather scatter,
merge and split over time, and also has the evolution of generation and elimination to
some extent. This poses challenges to accurate radar echo precipitation forecasting using
the traditional methods described above.

In recent years, with the development of artificial intelligence, machine learning meth-
ods are being used more and more widely. Many machine learning-based models have
shown great advantages for applications in the field of meteorology. Yang et al. [4] pro-
posed the terrain-based weighted random forests (TWRF) method, which improved the
accuracy of radar quantitative precipitation estimation. Bhuiyan et al. [5] proposed the
nonparametric statistical model based on quantile regression forests (QRF) for modeling
rainfall retrieval error. Zhang et al. [6] proposed a novel double machine learning (DML)
approach to merge multiple satellite-based precipitation products (SPPs) and gauge ob-
servations. Banadkooki et al. [7] obtained precipitation maps highly consistent with the
observed values using support vector machine optimization based on the flow regime
algorithm for precipitation forecasting. Chiang et al. [8] proposed a Bayesian merging with
gamma distribution (BMG) to solve discontinuous problems in rainfall assimilation under
more practical rainfall distribution. Kolluru et al. [9] used machine learning (SPEM2L)
algorithms for merging multiple global precipitation datasets to improve spatiotemporal
rainfall characterization. Compared with traditional machine learning methods, deep
learning models use deeper network structures that are suitable for modeling complex
dependencies. The application of deep learning methods in the field of meteorology has
not only led to more accurate weather forecasting results, but also significantly reduced the
computational cost and processing time before forecasting. The feature exactly meets the
requirements of real-time and accuracy of short-term forecasting.

Weather forecasting can be seen as a sequential problem from the temporal perspective,
i.e., using the weather conditions of a past period to predict the weather conditions of a
future period. The circular structure of recurrent neural networks (RNNs) is well suited to
dealing with sequential problems [10–15]. Convolutional neural networks (CNNs) are more
suitable for capturing spatial location information, which is often used to process various
pieces of image information [16–21]. Since many weather conditions involve both temporal
and spatial factors, the combination of RNNs and CNNs is often used for weather prediction
in order to better capture spatiotemporal correlations. Shi et al. [22] first combined CNN
with RNN to design the convolutional long short-term memory (ConvLSTM) network
for short-term precipitation forecasting in Hong Kong using a radar echo dataset, which
is gradually used in various scenarios of weather forecasting for the better combination
capability of location and sequence information [23–25]. Trajectory gated recurrent unit
(TrajGRU) [26] is another network for spatiotemporal prediction developed on the basis
of ConvLSTM, which has better motion feature extraction ability and more accurate radar
echo prediction results. Wang et al. [27] proposed the predictive recurrent neural network
(PredRNN) based on the spatiotemporal memory unit Spatiotemporal LSTM (ST-LSTM),
which can be seen as a combination of two ConvLSTM basic units stacked up and down,
with the upper part called the standard temporal memory structure and the lower part
called the spatiotemporal memory structure. The structure of the ST-LSTM cell enables it
to process spatiotemporal information better. In addition, the overall network architecture
of PredRNN enhances the utilization of visual features by adding hidden states of zigzag
transmission, which is a spatiotemporal state flowing through each node of the entire
network. As a result, compared with previous work, PredRNN is able to obtain higher
quality extrapolation images in prediction. PredRNN-V2 [28] adds a new decoupling loss to
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the basic structural unit of the original PredRNN, which allows the upper and lower parts
of the ST-LSTM structure to focus on different aspects of spatiotemporal variation better.

However, the radar echo maps obtained from the predictions of many current deep
learning models are rather blurred. In order to obtain clearer radar echo maps, many studies
have incorporated generative adversarial networks (GANs) into various deep learning
models for weather forecasting. The GAN consists of two modules, the generative model
and the discriminative model. It generates detail-rich image results through adversarial
learning. Xu et al. [29] used the GAN-LSTM model for satellite image prediction and
obtained better results than the traditional autoencoder-LSTM network. Singh et al. [30]
proposed a GAN-based discriminator loss based on the ConvLSTM network structure,
which predicts radar echo maps with high accuracy. Although the application of GAN can
make the predicted radar echo maps more clear, it tends to lead to the generated results
containing some false detailed information. This affects the accuracy of the forecast results.

The development of an attention mechanism has injected new vitality into artificial
intelligence. It has achieved excellent results in applications such as image recogni-
tion [31–35], target detection [36–39], and natural language processing [40,41]. As the
attention mechanism flourishes in various fields, it is gradually being introduced into the
meteorological field to reduce forecast errors. Lin et al. [42] introduced a channel-wise
attention mechanism that adaptively scales each simulation parameter to maximize use-
ful information when using dual-source spatiotemporal neural networks for lightning
forecasting. Yan et al. [43] incorporated the multi-head attention into a dual-channel
neural network to enhance the model’s focus on precipitation forecasting in critical
regions. Sønderby et al. [44] introduced an axial self-attention to the meteorological neu-
ral network (MetNet) architecture and achieved better results than numerical weather
prediction for precipitation forecasting on the scale of the continental United States.

In order to capture the long-term and short-term spatiotemporal correlations better,
enhance the accuracy of the model for extreme precipitation forecasting, and narrow the
gap between training and inference processes, we propose to improve the PredRNN by
using improved self-attention in this paper. In this model, the attention mechanism is
incorporated inside the ST-LSTM to generate a new ISA-LSTM spatiotemporal memory
unit, which provides better access to global feature information and long-term memory
information and is more effective in focusing on different aspects of spatiotemporal changes.
A loss function with different weights for different precipitation intensity was designed,
so that the model could capture extreme precipitation better. We used the combination
of reverse scheduled Sampling and Scheduled Sampling as the training strategy for the
model. It promotes the learning of the long-term dynamics in the sequence and narrows
the gap between training and inference processes. The new model organically combines
the above methods that contribute to the accuracy of the prediction results and avoids the
drawbacks of GAN while obtaining more clear radar echo images.

Satellite datasets and radar echo datasets are commonly used for precipitation fore-
casting. Meteorological satellites are developing rapidly and can monitor the Earth in
all directions. Although the satellite provides a wide range of optical observation capa-
bilities, it has a low resolution of cloud maps. The satellite dataset is suitable for large
scale, less resolution-demanding prediction tasks [45,46]. Radar has a limited coverage
area and can be used for real-time detection of small-scale weather processes in local areas.
The radar echo dataset is suitable for prediction tasks with smaller ranges and higher
resolutions [47,48]. Since the study in this paper focuses on short-term precipitation fore-
casting over the small region, we used the radar echo dataset for the experiment. Our
ISA-PredRNN model works best when evaluated on the radar echo dataset. Therefore,
the application of the new model is effective in improving the accuracy of short-term
rainfall prediction.

The remainder of this paper is organized as follows: In Section 2, the method of data
denoising is described, and the process of preparing the dataset is presented. In Section 3,
the problem of short-term precipitation forecasting is described, and the method used in
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this paper is presented in detail. The experimental results of the new method and several
other mainstream models are compared and analyzed in Section 4. Finally, a summary of
the paper is presented in Section 5.

2. Data and Data Processing
2.1. Study Area

Yinchuan City in the Ningxia Hui autonomous region was selected as the study region
for this research. Ningxia is located in the northwestern part of the Loess Plateau in the
middle and upper reaches of the Yellow River, and the climate type of the region is a
continental semi-humid and semi-arid climate. The region is not only arid with little
rainfall, but also has uneven spatiotemporal distribution of precipitation. Yinchuan is the
political, economic and cultural center of Ningxia and straddles two climate zones, the
warm summer Mediterranean climate (CSB) and the cool semi-arid climate (BSK). The
location of the Ningxia Hui autonomous region and the Köppen climate classification of
Yinchuan are shown in Figure 1. The main climatic characteristics of the region are scarce
rain and snow and strong evaporation of water.
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Figure 1. Location of Ningxia Hui autonomous region and Köppen classification of Yinchuan.
Ningxia Hui autonomous region, highlighted in green, is located in the northwest of China. Yinchuan,
as the capital of Ningxia, straddles two climate zones: the warm summer Mediterranean climate
(CSB) and the cool semi-arid climate (BSK).

2.2. Data Cleaning

Radar beam propagation is easily interfered with by the surrounding mountains,
buildings and dust, etc. This makes noise appear on the radar echo map. Insufficient
calibration and damage to the measurement instrument can cause noise in the radar echo
map. Deviations in the placement angle of the measuring instrument can also contribute
to the noise. If training is conducted directly using the original radar maps, it makes
the model difficult to converge with and leads to large forecast errors. In this paper, we
follow Shi et al. [20] and categorize locations that have the Mahalanobis distances higher
than the mean distance plus three times the standard deviation as outliers. These outliers
were removed using the Mahalanobis denoising method. The original and denoised
radar echo maps are shown in Figure 2. The process is as follows: First, the mean

→
µ and

covariance matrix S of all pixel points
→
x 1,
→
x 2, . . . ,

→
x n on each image are calculated. Then,
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the Mahalanobis distance DM(
→
x ) of all pixel points is calculated. Finally, the points whose

pixels are outliers are removed. This method can remove some discrete points caused by
noise. The equations for calculating the Mahalanobis distance are shown as follows:

→
µ =

n
∑

i=1

→
x i

n

S =

n
∑

i=1

(→
x i−

→
µ
)(→

x i−
→
µ
)T

n−1

DM(
→
x ) =

√
(
→
x −→µ )

T
S−1(

→
x −→µ )

(1)
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Figure 2. Sample comparison before and after denoising. (a) Original radar echo image. There is
some noise caused by various factors in the original image. (b) Denoised image. The denoised image
does not contain outliers and can be used directly by the model.

2.3. Preparation of Dataset

In order to verify the effectiveness of ISA-PredRNN in short-term precipitation fore-
casting from radar echo images, the two-year radar echo dataset from 2018 to 2019, obtained
by gathering data every six minutes in Yinchuan, Ningxia was used for training and testing
in this paper. The dataset was processed with data cleaning. Due to the small proportion of
precipitation days among all days in the dataset, 84 days of precipitation data were selected
to constitute the final dataset in this paper in order to prevent the network from treating
precipitation conditions as noise and to enable the network to learn better. The original
image contains 461× 461 pixels, in order to facilitate the learning of the model and not to
lose details, the image was cropped to a size of 200× 200 containing the Yinchuan area of
Ningxia in this paper. Since the extreme values of radar echoes in the dataset do not exceed
70 dBZ, the data were normalized by the calculation of z/70. Finally, in order to obtain
enough sequences to allow adequate training of the model, a sliding window was used in
this paper on daily radar echo data. Since the radar echo map is generated every 6 min and
the proposed model can predict the precipitation in the next 1 h, the length of the sliding
window was set to 20, with the first 10 frames used for learning and the last 10 frames used
for prediction. In this paper, the training and test sets were divided evenly to a ratio of 4:1.

3. Methodology
3.1. Problem Definition

One method of short-term precipitation forecasting is to use radar echo maps from past
periods to predict radar echo maps for future periods. Since the forecast is for precipitation
over a period of time in a region, the problem involves both temporal and spatial factors.
Specifically, a square image can be obtained by dividing the latitude and longitude range of
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an area with a certain spatial resolution. The pixel value of each grid point on the picture is
the radar echo value of the place. The local precipitation can be calculated from the radar
echo values. In this paper, we need to use multiple consecutive radar echo pictures in the
past to infer multiple consecutive radar echo pictures in the future. This problem can be
defined strictly in the following way: assuming the current time is t, we need to predict the
radar echo sequence Rt+1, Rt+2, . . . , Rt+q of time length q in the future based on the radar
echo sequence Rt−p+1, Rt−p+2, . . . , Rt of time length p in the past. The role of the model
is to minimize the gap between the series Rt+1, Rt+2, . . . , Rt+q and the real future series
R̃t+1, R̃t+2, . . . , R̃t+q. This can be expressed as:

Rt+1, Rt+2, . . . , Rt+q = fθ

(
Rt−p+1, Rt−p+2, . . . , Rt

)
(2)

where f denotes the precipitation forecast model and θ denotes the model parameters to
be optimized.

3.2. Base Model

Short-term precipitation prediction means predicting the future precipitation of an area
for a relatively short period of time in the future (e.g., 0–2 h). ConvLSTM can effectively
combine temporal and spatial information and is more suitable for dealing with such
problems. ConvLSTM is a model derived from LSTM. It uses the way of gate to control
the retention, abandonment and refresh of information. ConvLSTM includes three gates:
input gate, forgetting gate and output gate. The input gate controls the degree to which
the current moment’s input Xt is saved to the cell state Ct. The forgetting gate controls the
extent to which the cell state Ct−1 at the previous moment is saved to the current moment
Ct. The output gate determines how much the cell state Ct contributes to the current output
value Ht. The organic combination of the three gates allows the model to selectively
remember the effective information and forget the disturbing information, avoiding the
gradient disappearance and gradient explosion. The specific formulas of ConvLSTM are
shown as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)
Ht = ot ◦ tanh(Ct)

(3)

where it and ft denote the input gate and forget gate, respectively. ot denotes output
gate. ∗ denotes the convolution operation. ◦ denotes Hadamard product. σ denotes
sigmoid function. W before ∗ denote kernels for respective gates. W before ◦ denote the
corresponding weight matrices. b denotes the bias value.

The basic constituent unit ST-LSTM of PredRNN can be regarded as a merger of two
basic constituent units of ConvLSTM. The internal structure of the spatiotemporal memory
unit ST-LSTM is shown in Figure 3a. There are two memory states inside the ST-LSTM cell.
The first memory state Ct is called standard time memory, which is transmitted inside ST-
LSTM cells of adjacent time steps on the same layer. The second memory stateMt is called
spatiotemporal memory, which first propagates vertically upward between different layers
of the same time step and then passes from the top layer of the previous moment to the first
layer of the next moment. It reserves the abstract information extracted from each input
through the multi-layer network structure for the next first layer, enhancing the network’s
use of spatiotemporal information. The propagation of the spatiotemporal memoryMt
is shown in Figure 3b. The standard temporal memory state Ct and the spatiotemporal
memory stateMt can facilitate long-term and short-term dependent learning processes,
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respectively, so that the network can make more effective use of spatiotemporal information.
The specific formulas for the ST-LSTM cell are shown as follows:

gt = tanh
(
Wxg ∗ Xt +Whg ∗ Hl

t−1 + bg

)
it = σ

(
Wxi ∗ Xt +Whi ∗ Hl

t−1 + bi

)
ft = σ

(
Wx f ∗ Xt +Wh f ∗ Hl

t−1 + b f

)
C l

t = ft ◦ C l
t−1 + it ◦ gt

g′t = tanh
(
W ′xg ∗ X ′t +Wmg ∗Ml−1

t + b′g
)

i′t = σ
(
W ′xi ∗ Xt +Wmi ∗Ml−1

t + b′i
)

f ′t = σ
(
W ′x f ∗ Xt +Wm f ∗Ml−1

t + b′f
)

Ml
t = f ′t ◦Ml−1

t + i′t ◦ g′t
ot = σ

(
Wxo ∗ Xt +Who ∗ Hl

t−1 +Wco ∗ C l
t +Wmo ∗Ml

t + bo

)
Hl

t = ot ◦ tanh
(
W1×1 ∗

[
C l

t ,Ml
t

])

(4)
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Figure 3. (a) The internal structure of the ST-LSTM. ST-LSTM originates from the basic structural
unit of ConvLSTM, with the addition of the spatiotemporal memory stateMt as its feature. (b) The
propagation of the spatiotemporal memory. The blue arrows indicate that the spatiotemporal state
Mt is propagated in a zigzag pattern throughout the network.

The ST-LSTM cell introduces another set of gate structures for the spatiotemporal
memory stateMt while preserving part of the gate structures in ConvLSTM.Mt propa-
gates in a zigzag pattern throughout the network. l indicates at which layer of the network
the corresponding state is located. The input gate it, forget gate ft and input-modulation
gate gt are the original gates in ConvLSTM. They control the information flow across the
memory state Ct. The functions of i′t, f ′t and g′t are the same as above, but they control the
information flow across the memory stateMt. The output gate ot is an improvement on
the original output gate, which is shared by two memory states mentioned above. Finally,
the final hidden state Ht of this node originates from the fused spatiotemporal memory.
The design of the ST-LSTM cell allows the model to effectively simulate shape changes and
motion trajectories in spatiotemporal sequences.

During the operation of the PredRNN model, the memory states Ct andMt are often
intertwined, leading to inefficient utilization of the network parameters. A new decoupling
loss function based on PredRNN is designed in PredRNN-V2, which increases the distance
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between Ct andMt so that they focus on different aspects of spatiotemporal variation,
respectively. The specific formulas for the decoupling loss function are shown as follows:

∆C l
t = Wdecouple ∗ (it ◦ gt)

∆Ml
t = Wdecouple ∗ (i′t ◦ g′t)

Ldecouple = ∑
t

∑
l

∑
c

|〈∆C l
t ,∆Ml

t〉c|
‖∆C l

t‖c ·‖∆Ml
t‖c

(5)

where Wdecouple denotes 1× 1 convolutions shared by all ST-LSTM cells. it, gt, i′t and
g′t can be calculated from Equation (4). ∆C l

t and ∆Ml
t denote the increments of the two

memory states, respectively. By defining the decoupling lossLdecouple in terms of the cosine

similarity
∣∣∣〈∆C l

t , ∆Ml
t

〉
c

∣∣∣/∥∥∥∆C l
t

∥∥∥
c
·
∥∥∥∆Ml

t

∥∥∥
c
, the PredRNN-V2 can effectively separate the

two memory states.

3.3. Improved Self-Attention PredRNN

ConvLSTM and its variants enable the model to focus on spatial information while
processing temporal information by adding convolutional operations to the recurrent
network. The PredRNN family is evolved from ConvLSTM, and its basic structural unit
ST-LSTM can better handle the spatiotemporal correlation. However, the convolution
operations in these models are suitable for handling local spatial information. In this paper,
the self-attention mechanism was incorporated inside the ST-LSTM cell to enable the model
to capture global spatial information better. The operation principle of the self-attention
mechanism is shown in Figure 4a. The PredRNN family of networks enhances the ability
of the model to learn short-term dependent information by introducing a spatiotemporal
memory stateMt inside the memory unit. In this paper, the long-term memory state Nt
was introduced into the memory unit, and a GRU-like update gate was designed. The new
set of gate structures control the extent to which the previous moment’s memory stateNt−1
is carried over to the current moment’s state Nt, allowing the model to pay more attention
to the long-term dependence. The internal structure of the new spatiotemporal memory
unit ISA-LSTM is shown in Figure 5. The information processing flow of ISA-LSTM is
as follows: First, the hidden state Ht of the current moment and the long-term memory
state Nt−1 of the previous moment are passed through the self-attention module to extract
the globally important information of these two states. Then, the hidden state, long-term
memory state and the original hidden state obtained in the previous step are stitched in the
channel dimension, and the stitched result is passed through a GRU-like update gate to
obtain the long-term memory stateNt at the current moment. Finally, the current long-term
memory state Nt and the generated splicing result are used to calculate the output hidden
state Ĥt. The information processing flow of the ISA-LSTM is shown in Figure 4b, and the
specific formulas of the ISA-LSTM cell are shown as follows:

Zh =
(
Whv ∗ Hl

t

)
So f tmax

((
Whq ∗ Hl

t

)T(
Whk ∗ Hl

t

))
Zn =

(
Wnv ∗ N l

t−1

)
So f tmax

((
Whq ∗ Hl

t

)T(
Wnk ∗ N l

t−1

))
Z =Wz ∗ [Zh, Zn]

i′′t = σ
(
Wzi ∗ Z +W ′′

hi ∗ H
l
t + b′′i

)
g′′t = tanh

(
Wzg ∗ Z +W ′′

hg ∗ H
l
t + b′′g

)
N l

t =
(
1− i′′t

)
◦ N l

t−1 + i′′t ◦ g′′t
o′′t = σ

(
Wzo ∗ Z +W ′′

ho ∗ H
l
t + b′′o

)
Ĥl

t = o′′t ◦ N l
t

(6)

where the intermediate features Zh and Zn are obtained by applying self-attention on the
hidden stateHl

t and the previous moment memory state N l
t−1, respectively; the polymer-
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ization feature Z is obtained by aggregating the intermediate features Zh and Zn. i′′t , g′′t
and o′′t are the input gate, input-modulation gate and output gate of the new set of gating
mechanisms. N l

t and Ĥl
t are the final long-term memory states and hidden states.
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Figure 4. (a) The operation principle of the self-attention mechanism. The three matrices Kx, Qx

and Vx are originated from the input X. We can extract the global key information of the input X by
performing the corresponding operations on Kx, Qx and Vx. (b) The information processing flow of
ISA-LSTM. The final hidden state Ĥl

t and the current moment memory stateN l
t are obtained from the

previous moment’s memory state N l
t−1 and the intermediate hidden stateHl

t after being processed
by the self-attention module and the corresponding gating mechanism.
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Figure 5. Internal structure of the new spatiotemporal memory unit ISA-LSTM. The ISA module
consists of two parts: the self-attention mechanism and the GRU-like update gate. Except for the ISA
module, the rest of the ISA-LSTM is the same as the basic structural unit of the PredRNN-V2.

The overall network architecture of the new model ISA-PredRNN proposed in this
paper is shown in Figure 6b, and the network architecture of the original PredRNN-v2 is
shown in Figure 6a. We borrowed the network architecture approach from PredRNN-v2,
which uses a four-layer network structure. The difference is that we replaced all the basic
structural units in the network with the ISA-LSTM. Among them, the newly introduced
long-term memory state Nt is one of the highlights of this network architecture.
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Figure 6. (a) The overall network architecture of the original PredRNN-v2. The spatiotemporal
memoryMt spreads in a zigzag pattern throughout the network, which enhances the network’s use
of spatiotemporal information. (b) The overall network architecture of ISA-PredRNN. The newly
introduced long-term memory state Nt is one of the highlights of this network architecture, which
allows the model to pay more attention to the long-term dependence than the original PredRNN-v2.

3.4. Sampling Strategy

When using a sequential model for spatiotemporal prediction, the traditional approach
works as follows. First, the true value is used as an input in the encoding phase and the
generated value is obtained in the prediction phase. Then, based on the gap between the
generated value and the true value at the same moment, the parameters of the model
are updated by backpropagation of the gradient. Finally, it iterates in this way until the
model is trained to a suitable state. However, only the real value is used in the coding
process, which leads to the model not being able to exploit the non-Markovian nature of
the historical observations better, and only the generated values are used in the prediction
process, which leads to gaps in the training and inference process. In this paper, the
model was trained using both reverse scheduled sampling and scheduled sampling. The
data input to our model contains both ground truths and prediction values throughout
the process. Specifically, the ground truths are input with increasing probability in the
encoding phase and with decreasing probability in the prediction phase. The treatment in
this paper allows the model to dig deeper into the non-Markovian properties of historical
observations, capture the long-term dynamics in the sequence better, and also bridge the
gap between the model training and inference process.

3.5. Improved Loss Function

When deep learning models are used for weather forecasting, the precipitation fore-
casting problem is often treated as an ordinary spatiotemporal forecasting problem. This
treatment ignores the difference in the probability of occurrence of different intensities of
precipitation in forecasting, which makes the forecast results less accurate. In order to fully
consider the specific characteristics of the problem, we designed an improved loss function.
According to the statistics, about 90% of precipitation is no larger than 0.5 mm/h, and no
more than 1% of cases exceed 30 mm/h in our dataset. To capture the extreme precipitation
better and make the forecast results more accurate, the weight loss function was designed
in this paper. Specifically, since the precipitation intensity and the radar echo intensity are
positively correlated and can be transformed by the Z-R relationship, we assigned different
weights to the different radar echo intensities separately. Large weights were assigned to
large echo intensities and small weights to small echo intensities. The specific weights were
assigned as follows:

w(z) =


1 z < 20
2 20 ≤ z < 30
3 30 ≤ z

(dBZ) (7)
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where w(z) is the weight value corresponding to the radar echo intensity z at different
thresholds. The final loss function can be expressed as follows:

Lfinal = λ1LMSE + λ2LMAE + λ3Ldecouple (8)

where λ1, λ2 and λ3 control the relative importance. LMSE and LMAE are the MSE and
MAE loss functions, respectively.

4. Results
4.1. Implementation Details

The implementation of the experiment is based on the PyTorch machine learning
framework on NVIDIA GeForce GTX 1080 Ti GPUs. The CUDA version is 11.5 and the
PyTorch version is 1.7. We compared the new ISA-PredRNN algorithm with six models,
namely FC-LSTM, ConvLSTM, ConvGRU, TrajGRU, PredRNN-V2 and ISA-PredRNN
(without weight loss) to verify its advancement. During the training process, the number
of network layers of all the above seven models was set to four. The improved model has
128 convolutional kernels per layer of the network, a batch size of eight, a learning rate of
0.0001, an optimizer of Adam, and 80,000 iterations.

4.2. Evaluated Algorithm

To evaluate the performance of the improved algorithm, five metrics, probability of
detection (POD), false alarm rate (FAR), critical success index (CSI), Heidke skill score (HSS),
and mean square error (MSE), were used as the evaluation criteria for model effectiveness
in this paper. In the field of precipitation prediction, since different degrees of precipitation
conditions are given different levels of attention, the precipitation thresholds were divided
into three levels of 10 dBZ, 20 dBZ and 30 dBZ according to the intensity of radar echoes
in this paper, and the POD, FAR, CSI and HSS were calculated under each level. The four
indicators of POD, FAR, CSI and HSS are formulated as follows:

POD = TP
TP+FP

FAR = FN
TP+FN

CSI = TP
TP+FN+FP

HSS = TP×TN−FN×FP
(TP+FN)(FN+TN)+(TP+FN)(FP+TN)

(9)

where TP indicates (prediction = 1, truth = 1), FP indicates (prediction = 1, truth = 0),
TN indicates (prediction = 0, truth = 0) and FN indicates (prediction = 0, truth = 1).
The lower the FAR, the higher the POD, CSI and HSS, the better the model prediction.

4.3. Analysis and Evaluation of Experimental Results

To further illustrate the effectiveness of the algorithm proposed in this paper in
precipitation forecasting, we analyzed and evaluated the experimental results of the new
ISA-PredRNN algorithm with six other algorithms. The four index values of POD, FAR,
CSI and HSS for each algorithmic at three levels of 10 dBZ, 20 dBZ and 30 dBZ are shown
in Tables 1–3, and the best mean square error MSE in the test set obtained by each model is
shown in Table 4.

From Tables 1–3, it can be seen that the new algorithm ISA-PredRNN proposed in this
paper has the best performance on the three indicators of POD, CSI and HSS under different
thresholds, which indicates that the new model can forecast short-term precipitation more
accurately and is more robust. The new algorithm also performs well on the FAR. Although
it was higher than the ISA-PredRNN (without weight loss) and PredRNN-V2, it was lower
than the other four models. The main reason is that the ISA-PredRNN (without weight
loss) and PredRNN-V2 were not able to capture the extremes of precipitation and learn
the differences between different levels of precipitation better. They have low POD and
FAR because of these. The low FAR is the result of inadequate learning of the distribution
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of the data. All metrics of all algorithms become progressively worse as the threshold
increases, because the probability and area of storm occurrence are small and the network
fails to learn the radar echo information corresponding to the storm from the historical
data adequately.

Table 1. Comparison of the experimental results at the level of 10 dBZ.

Model CSI↑ HSS↑ POD↑ FAR↓
FC-LSTM 0.4771 0.6060 0.5654 0.2476
TrajGRU 0.6367 0.7489 0.7382 0.1805

ConvGRU 0.6626 0.7707 0.7598 0.1637
ConvLSTM 0.6625 0.7710 0.7057 0.1524

PredRNN-V2 0.6879 0.7910 0.7734 0.1404
ISA-PredRNN(w/o weight) 0.6928 0.7951 0.7790 0.1391

ISA-PredRNN 0.7001 0.8006 0.7921 0.1435
Note. POD, FAR, CSI and HSS for seven models in the threshold range of radar echo intensity greater than 10 dBZ.
‘↑’ means that the score is higher the better while ‘↓’ means that the score is lower the better.

Table 2. Comparison of the experimental results at the level of 20 dBZ.

Model CSI↑ HSS↑ POD↑ FAR↓
FC-LSTM 0.2711 0.4075 0.3013 0.2716
TrajGRU 0.4972 0.6459 0.5685 0.2057

ConvGRU 0.5243 0.6711 0.5920 0.1807
ConvLSTM 0.5280 0.6748 0.5913 0.1705

PredRNN-V2 0.5475 0.6916 0.6089 0.1588
ISA-PredRNN(w/o weight) 0.5659 0.7079 0.6303 0.1546

ISA-PredRNN 0.5812 0.7208 0.6542 0.1630
Note. POD, FAR, CSI and HSS for seven models in the threshold range of radar echo intensity greater than 20 dBZ.

Table 3. Comparison of the experimental results at the level of 30 dBZ.

Model CSI↑ HSS↑ POD↑ FAR↓
FC-LSTM 0.0488 0.0913 0.0506 0.4117
TrajGRU 0.2018 0.3273 0.2195 0.2922

ConvGRU 0.2343 0.3707 0.2578 0.2758
ConvLSTM 0.2290 0.3647 0.2467 0.2379

PredRNN-V2 0.2226 0.3531 0.2368 0.2075
ISA-PredRNN(w/o weight) 0.2738 0.4217 0.2950 0.2055

ISA-PredRNN 0.3052 0.4606 0.3347 0.2252
Note. POD, FAR, CSI and HSS for seven models in the threshold range of radar echo intensity greater than 30 dBZ.

Table 4. Best mean square error (MSE) of seven models in the test set.

Model Number
of Layer

Number
of Kernel Kernel Size MSE

FC-LSTM 4 128-128-128-128 5 × 5 178.64
TrajGRU 4 128-128-128-128 5 × 5 106.22

ConvGRU 4 128-128-128-128 5 × 5 93.74
ConvLSTM 4 128-128-128-128 5 × 5 91.95

PredRNN-V2 4 128-128-128-128 5 × 5 83.53
ISA-PredRNN(w/o weight) 4 128-128-128-128 5 × 5 79.93

ISA-PredRNN 4 128-128-128-128 5 × 5 78.27
Note. To obtain fair comparison results, the same network architecture was adopted, and all models had the same
number of layers, kernels and kernel size.

Table 4 shows that the ISA-PredRNN achieves the minimum value of MSE, indicating
that the error between the predictions and ground truths of precipitation is smaller. This
can illustrate that the ISA-PredRNN has stronger spatiotemporal prediction ability and can
obtain more accurate radar echo extrapolation results.
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In this paper, ten consecutive radar echo maps from the past were used to predict ten
consecutive radar echo maps of the future. In order to understand the performance of the
model visually, two cases representing two scenarios that often occur with radar echoes in
the field of precipitation prediction were selected from the test set for analysis. The radar
echo in the first case was strong, concentrated, and subtly variable, while the second case
contained the process of radar echo generation, development and dissipation.

Figure 7 shows the results of the first case. In this case, the radar echo was strong, but
it changed little. At the 6th minute, the prediction result of ISA-PredRNN was the closest to
the ground truth, the FC-LSTM had the worst prediction and could only predict the outline
of the radar echo, and other models could predict the overall aspect of radar echo more
accurately. By the 18th minute, the ISA-PredRNN preserved the most details in addition
to capturing the contours of the radar echoes and the locations of the strong echo regions,
while the FC-LSTM model could only roughly predict the contours of the radar echoes
and the locations of the strong echo regions, and the other models preserved more details
about the differences in the radar echoes. After that, the prediction results of each model
gradually became worse, but the ISA-PredRNN could predict the location of the strong
echo region better than other models, and the prediction results of FC-LSTM were more
different from the ground truth. Overall, the ISA-PredRNN achieved the best prediction
results because the attention mechanism and the weight loss function allowed it to capture
the differences in precipitation and the extremes of precipitation in different regions better.
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Figure 7. Prediction examples on the radar echo test set, in which the radar echo was strong but
changed little. The ten images in the first row represent the radar echo information of the past hour,
and the images in the subsequent rows represent the radar echo information of the future hour
obtained by different model predictions. The time interval between adjacent images is 6 min.

Figure 8 shows the results of the second case. In this case, the radar echo was not
as strong as that in the first one but changed greatly. The FC-LSTM had poor prediction
throughout, but the rest of the models could predict the radar echo results accurately at
the 6th minute, among which the ISA-PredRNN had the richest details, and its prediction
results were very close to the real situation. By the 18th minute, although some details were
lost in the prediction results of each model, the overall contour and change trend of radar
echoes could be approximately predicted, and the location of the strong echo region and the
difference in radar echo intensity in different regions could be predicted almost accurately,
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among which the prediction effect of ISA-PredRNN was still the best. Further on, more
details were lost, and the differences of some radar echoes were difficult to distinguish. The
echo contours predicted by TrajGRU, ConvGRU and ConvLSTM were somewhat different
from the ground truths. However, the PredRNN-V2, ISA-PredRNN (without weight loss)
and ISA-PredRNN could predict the general contours of the echoes and the locations of
the strong echo regions, and the ISA-PredRNN still retained more details in its prediction
results. Overall, the ISA-PredRNN captured the radar echo variation most accurately,
and the prediction of the FC-LSTM was the most different from the ground truth. This
is because the long-term memory state Nt in the ISA-PredRNN allowed it to remember
the changing trend of the radar echoes, while the FC-LSTM did not contain convolutional
structures, which prevented it from handling the changing position information well.
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Figure 8. Prediction examples on the radar echo test set, in which the radar echo was not as strong as
that in the first one but changed greatly.

5. Conclusions and Discussions

In this paper, we propose the ISA-PredRNN model for short-term precipitation fore-
casting, which is an improved structure based on the PredRNN-V2. The self-attention
mechanism in the model makes it possible to better extract the global information from the
radar echo map. We introduced the long-term memory state into the network architecture
and designed a new set of gating mechanisms. These improvements allow the model to
better capture long-term memory information and predict more accurately when radar
echo images are highly variable. The loss function with weights allows the model to capture
the precipitation extremes better. The model was trained using a combination of reverse
scheduled sampling and scheduled sampling, which reduces the gap between the training
and inference processes. Experimental results on a two-year radar echo dataset in the
Yinchuan area of Ningxia show that the ISA-PredRNN proposed in this paper can achieve
better performance than the other six models in the most important metrics, whether the
radar echoes are in a scene that is strong but does not change significantly with time, or is
in a dynamic process of generation and dissipation.

Although satisfactory experimental results have been obtained, there are still some
areas for improvement. Due to the uncertainty of the task and the small area and probability
of the storm occurring, ISA-PredRNN captures the extreme precipitation while increasing
the FAR. Since the atmosphere is a complex dynamical system and there are many factors



Atmosphere 2022, 13, 1963 15 of 17

affecting precipitation, we will subsequently add a variety of factors such as temperature,
wind field and barometric pressure as inputs to the network. We will also combine the
deep learning model with the numerical weather prediction to further reduce the FAR and
improve the accuracy of short-term precipitation forecasts. In recent years, more satellite
products have been used for precipitation forecasting with promising results. In future
research, we will combine the respective advantages of radar and satellite for precipitation
forecasting using multi-source datasets. The main contribution of this paper is to propose a
new model and achieve the accurate prediction of future radar echo maps. However, the
accurate translation of radar maps into actual precipitation values is challenging as well. In
future work, we will focus more on this aspect.
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