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Abstract: The Yunnan province of China is a typical humid region but with several severe region-

wide droughts. Drought indices are generally used to identify and characterize drought events, and 

then play a key role in drought prediction. Therefore, a novel prediction model was proposed to 

predict a comprehensive drought indicator (meteorological composite index, MCI) in Yunnan prov-

ince. This model combined the recurrent neural networks (RNN) based on a gated recurrent neural 

unit (GRU) and convolutional neural networks (CNN) with optimization using the modified parti-

cle swarm optimization (PSO) algorithm. In this model, pre-processed predictor data were input 

into the GRU module to extract the time features of the sequences. Furthermore, the feature matrices 

were input into the CNN module to extract the deep local features and the inter-relationship of the 

predictors. The model was trained and used to predict the monthly MCI drought index of the rep-

resentative five stations of Yunnan province from 1960 to 2020. The combined model was evaluated 

by comparison with traditional machine learning models such as the least absolute shrinkage and 

selection operator (LASSO) and random forest (RF), and the traditional GRU model. The results 

show significantly improved skills in root mean square error, mean absolute error and Nash–Sut-

cliffe efficiency coefficient. This novel method was valuable for the monthly drought prediction in 

Yunnan province and related climate-risk management. 

Keywords: monthly drought prediction; Yunnan province; deep learning; convolutional neural  

network (CNN); gated recurrent neural network (GRU); modified particle swarm optimization 

(PSO); the meteorological composite index (MCI); GRU–CNN model 

 

1. Introduction 

As one of the severe climate hazards, drought is caused by cumulatively low precipi-

tation and can cause severe consequences to the economy, society and environment [1,2]. 

With the growing global warming trend, drought events have been generally occurring 

quicker and becoming more intense in China [3]. As the accurate prediction of drought is 

an increasingly urgent need, previous drought-related studies mainly concentrated on 

semi-arid and semi-humid regions, such as Northeastern, Northwestern, and Northern 

China. However, humid regions such as Yunnan province located in the Southwest of China 

also experienced several severe region-wide droughts in the past decades [4–6], which were 

paid little attention. A severe drought event hit Yunnan in 2010, causing a water shortage 

affecting 7.42 million people and 4.59 million livestock, replacing 50% of the grain yield. 

Consequently, drought prediction for this region calls for attention and study. 

In general, statistical, dynamical, and hybrid models have been used in the prediction 

of droughts [7]. Markov chain has been widely used to deal with the stochastic process 
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[8]. It was employed by Paulo and Pereira [9] to predict the shift in drought levels after 

three months. Avilés et al. [10] used the Markov chain model to predict the dry and wet 

periods and found it performed better than the Bayesian model. Wang Yanji et al. [11] 

used this method to predict and analyze future drought development with the standard-

ized precipitation drought index (SPI) in China. The fuzzy rule-based modeling technique 

was also widely used in drought forecasting. For example, it was employed to predict 

regional drought [12,13] and downscale local hydrological variables from large-scale at-

mospheric circulation [14]. 

The differentially integrated moving average autoregressive model (ARIMA) also 

plays an important role in time series forecasting, which transforms non-stationary time 

series smoothly and then regresses them [15]. This model is simple in structure, and easy 

to construct and train. Yeh and Hsu [16] used a seasonal ARIMA model to predict SPI 

drought indices at various time scales and obtained good results. This method was shown 

to be robust in the study on the prediction of agricultural drought index [17]. 

Due to the unique local conditions in geography, geomorphology, and climatology, 

Yunnan province holds quite complex drought-driving mechanisms that are different 

from other regions, which are not only closely associated with precipitation and evapora-

tion but also the interaction between monsoons, topographic features, and large-scale at-

mospheric circulation [18]. Therefore, beyond the traditional physically based models, 

more powerful tools such as an artificial intelligence model could be a better choice for 

drought prediction in this region. 

In recent years, various types of machine learning and deep learning models have been 

receiving more and more popularity in the prediction of precipitation and drought. Meng-

meng Liao [19] used an ensemble method incorporating the extreme gradient boosting de-

cision tree, graph sampling aggregation model, and long short-term memory network 

model (LSTM) to forecast rainfall in Lanzhou located in a semi-arid region, and the results 

showed that the proposed model had the best results in several indices (accuracy, recall, and 

F1 score) in the five machine learning and deep learning models. Mi Qianchuan et al. [20] 

proposed a deep learning method based on the long short-term memory neural network to 

predict the standardized precipitation evapotranspiration index over China, showing the 

deep neural network holds higher skills than ARIMA. The convolutional neural network 

(CNN) is a dominate tool for computing vision but few have used it for drought prediction. 

In this study, CNN was employed to extract spatial features from the two-dimension atmos-

pheric variables. The gated recurrent neural unit (GRU) module is an ideal tool to compute 

the accumulative effect of the time series, so it is very useful for drought prediction. It was 

employed to predict drought in three cities in Henan province [21], showing a great increase 

in accuracy and reliability compared with the traditional models. 

The above research indicates that deep learning models have shown to have an ad-

vantage over the traditional statistic methods (Markov chain, fuzzy rule-based model, 

ARIMA and so on), especially based on the LSTM or GRU. However, most of the above 

deep learning models are single models, which lack deep mining of data features. In this 

paper, the GRU and CNN model was combined to obtain deep data features. More spe-

cifically, the GRU module was used for temporal feature extraction, and the CNN model 

was applied to extract both the local features and inter-relationships between the predic-

tors. The hyper-parameters of the GRU–CNN model were optimized using a modified 

PSO algorithm. This model was applied to predict the monthly drought index (meteoro-

logical composite index, MCI) [22] in the humid region of Yunnan province. This com-

bined deep learning approach finally showed significant improvement over two tradi-

tional machine learning methods and the GRU deep learning model. 
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2. Data and Methods 

2.1. Study Site 

Yunnan province is located at latitude 20°8′32′′–29o15′8′′and longitude 97°31′39′′–

106°11′47′′. It lies in the plateau region of the southwest border in China and covers 

494,000 km2. As a typical climate over Southwest China, it holds a complex and diverse 

environment and is impacted by the world’s most powerful Indian monsoon and East 

Asian monsoon and the Qinghai–Tibet Plateau. Its climate is characterized by distinct wet 

and dry seasons and precipitation varies greatly. As a result, this humid region suffers 

from severe droughts. 

2.2. Data Collection and Processing 

To test the proposed algorithms in this paper, five representative stations in the cen-

tral, northwestern, southeastern, northeastern, and southwestern Yunnan were selected 

(Figure 1) and their monthly observed data of temperature, humidity, and precipitation 

at the relevant meteorological stations from 1960 to 2020 (from the National Meteorologi-

cal Information Center/China Meteorological Administration) were used. 

 

Figure 1. Yunnan research site. 

MCI was developed from the comprehensive meteorological drought index (CI) by 

the National Climate Center, China Meteorological Administrator [22]. The indicators 

were fit for real-time meteorological drought monitoring and the history of the same pe-

riod meteorological drought assessment, which was calculated as 

 60 30 90 150aMCI K aSPIW bMI cSPI dSPI      (1)

where, SPIW60 is a normalized weighted precipitation index for the past 60 days; MI30 is 

the relative wetness index for the last 30 days; SPI90 and SPI150 denote the standardized 

precipitation index for the 90-day time scale and 150-day time scale, respectively. The val-

ues of a, b, c, and d are weighting coefficients added to each calculation factor, which de-

pend on the meteorological conditions of the study area, the calculations of these coeffi-

cients are complex, they are just tools to measure the strength of drought, so the details of 

them will not be given for the reason of simplifying the length of article; Ka is the value of 

seasonally adjusted coefficients depending on the sensitivity of crops to soil moisture in dif-

ferent seasons. The meteorological drought classes of the MCI drought index are com-

puted as shown in Table 1.  
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Table 1. Drought classification of MCI index. 

Level Category MCI 

1 No (−0.5, +∞) 

2 Light (−1.0, −0.5] 

3 Moderate (−1.5, −1.0] 

4 Severe (−2.0, −1.5] 

5 Severest (−∞, −2.0] 

2.3. Methods 

2.3.1. Pearson Analysis of Potential Predictors 

Pearson analysis is a statistical method used to measure the correlation between var-

iables and has a wide application in data analysis and prediction [23]. Correlation coeffi-

cients take values between −1 and 1, with a higher absolute value indicating a stronger 

correlation. This correlation coefficient is generally expressed as r. For two time series of 

X and Y, its Pearson correlation coefficient is calculated as 
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 (2)

where � and � are the means of the data, and r is the Pearson correlation coefficient. 

For the extraction of potential predictors from the probable predictors, correlations 

between MCI and sixteen candidate variables were individually calculated. The variables 

with high correlation (Table 2) were identified and selected as predictors. 

Table 2. Correlation analysis results of candidate predictors. 

Predictors 
Ground Pressure 

(hPa) 

2 m Air Temper-

ature 

(°C) 

Precipita-

tion 

(mm) 

Surface Temperature 

(°C) 

Relative Hu-

midity 

(%) 

10 m Wind 

Speed 

(m/s) 

Peak Sunshine 

Hours (h) 

Pearson Correlation Co-

efficient 
0.014 0.074 0.426 0.02 0.515 −0.454 −0.362 

Sig.(2-tailed) 0.705 0.044 0 0.585 0 0 0 

Predictors 
Evaporation 

(mm) 

Runoff 

(mm) 

TT 

(K) 

Convective  

Available Potential 

Energy 

(J/kg) 

Sea Level  

Pressure 

(hPa) 

Surface  

Runoff 

(mm) 

Subsurface  

Runoff (mm) 

Pearson Correlation Co-

efficient 
−0.345 0.532 0.096 0.348 −0.011 0.448 0.456 

Sig.(2-tailed) 0 0 0.009 0 0.767 0 0 

The identification and selection of predictors in the development of drought predic-

tion models are important steps for the accurate prediction of droughts. According to the 

results of Table 2, nine predictors are chosen including precipitation, relative humidity, 

10 m wind speed, peak sunshine hours, evaporation, runoff, convective available potential 

energy, surface runoff, and subsurface runoff. What is more, the previous MCI data also 

acts as a predictor which contains information on the persistence of drought. The time 

series of predictors of the past five months were also used as the input of our deep learning 

model and the MCI for the next three months was set as the label values (i.e., the depend-

ent variable). The predictor time series were standardized using the Z-score method to 

conform to a normal distribution [24]. The training set, the validation set, and the test set 

accounted for 60%, 20% and 20% of the dataset, respectively.  
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2.3.2. The Development and Application of GRU–CNN 

GRU was introduced by Chung, J. et al. in 2014 as an alternative solution to ease the 

complexity of LSTM units. It has fewer trainable parameters because it has no output layer 

of LSTM. GRU is a variant of the long short-term memory (LSTM) network with a simpli-

fication and improvement of the latter [25]. GRU introduces a gating mechanism that syn-

thesizes forgetting and input gates into an update gate with a forgetting function. GRU 

also mixes cell states and hidden states and adds some other modifications to solve the 

problems of missing long-term memory and gradient in the backpropagation of LSTM 

[26]. Its structural diagram is shown in Figure 2. 

 

Figure 2. Structure of GRU model. 

In the figure, ht−1 is the hidden state at the moment, and xt is the input at the moment, 

and the reset gate output rt and the update gate output zt are calculated as follows. 

1( )t xr t hr t rr w x w h b     (3)

1( )t xz t hz t zz w x w h b     (4)

where � is the sigmoid activation function, wxr and wxz are the weight relations be-

tween xt and rt and zt, respectively, while whr and whz are the weight relations between ht−1 

and rt and zt, respectively, and the corresponding bias terms rt and zt are denoted by br and 

bz, respectively [25]. 

The candidate state h̃ t  at the current moment is calculated by 

1tanh( ( ) )t xh t hh t t hh w x w h r b     (5)

where wxh and whh are the weight relationships between h̃ t  and xt and ht−1, bh is the corre-

sponding bias terms, and ⋅ is the vector element products. The final output ht is calculated 

as [27]. 

1 (1 )t t t t th z h z h       (6)

GRU simplifies the structure of LSTM. Compared with LSTM, the training parame-

ters of GRU are greatly reduced, and during the training process, the latter converges 

faster than the former, and its training efficiency is substantially improved [28]. 

CNN is a kind of deep neural network and is widely used in computer vision. The 

pioneering work of CNN is LeNet-5 proposed by LeCun [29], and its real outbreak stage 

is that AlexNet won the championship in the classification task of the ImageNet competi-

tion in 2012, and the classification accuracy rate is far higher than the classification results 

achieved by traditional methods. It mainly consists of a convolutional layer, pooling layer, 

and fully connected layer. The convolutional layer is the core component of the CNN and 

consists of one or more convolutional kernels. Every kernel is a matrix of learnable pa-

rameters whose size is generally taken as odd numbers, such as 3 × 3 or 5 × 5. The operation 

process of convolution is shown in Figure 3. 
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Figure 3. Convolution operation process of the CNN model. 

As can be seen from the figure, the convolution kernel is scanned row-by-row over 

the height and width of the image, and the convolution between the convolution kernel 

and the input image matrix is calculated to finally obtain the spatial characteristics of the 

image matrix, and the formula for the convolution operation is as follows: 

1
, , , ,
l l l l
i j m n i m j n i j

m n

x w o b
    (7)

where ,
l
i jx  represents the value of the i-th row and j-th column of the output matrix of 

the convolutional layer, o is the input matrix of the convolutional network, w is a convo-

lutional kernel matrix of the size m n , and ,
l
i jb  represents the bias value of the i-th row 

and j-th column of the l-th layer. 

The pooling layer is often spliced behind the convolutional layer and is a network 

structure first proposed by Lecun et al. [29]. Pooling layers can preserve features while 

simplifying the data. The most commonly used pooling operation at this stage is maxi-

mum pooling, as shown in Figure 4. 

 

Figure 4. Maximum pool process of the CNN model. 

In the above figure, the left side is the input data with a size of 4 × 4 and the solid line 

box is the convolution kernel with a size of 3 × 3. It can be seen that, after maximum pool-

ing, the amount of data is greatly reduced, but the features of the data are preserved, and 

such an operation can effectively reduce the number of parameters and prevent the model 

from overfitting [30]. The processed data are computed by the fully connected layer and 

then input into the activated function (ReLU for regression or Softmax for classification). 

The PSO algorithm, was first proposed by Kenndy and Eberhart in 1995. The algo-

rithm simulates the foraging behavior of birds and fish organisms in nature, and in es-

sence, imitates the mechanism of group search to find the optimal solution to the problem 

[31]. Particle swarm algorithms are widely used in the current fields of path planning and 

numerical optimization because of a low number of parameters, a simple structure of the 

constructed model and uncomplicated background knowledge, and ease of operation and 

implementation. The relevant formulas of the particle swarm algorithm are as follows. 

             1 1 2 21i i i i iv t v t c r pbest t x t c r gbest t x t       (8)
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     1 1i i ix t x t v t     (9)

where t  is the number of iterations;  ix t  and  iv t  denote the exact dimensional co-

ordinates and migration of the i-th particle at the t-th iteration, respectively;   is the in-

ertia weight;  ipbest t  denotes the part optimal solution of the i-th particle at the t-th 

iteration;  gbest t  denotes the global optimal solution at the t-th iteration; and 1c  and 

2c  are the learning factors [32]. In this paper, this factor is taken as 2; and 1r  are random 

numbers between 0 and 1. 

To increase the convergence speed and effect of the algorithm, the inertia weights 

were improved in this paper so that they gradually become smaller with the increase in 

the number of iterations to allow the model to better converge to the global optimum, 

which is calculated as follows. 

 
 max min

max

max

t
t

t

 
 

 
   (10)

where  t  is the value of   at the t-th iteration; max  and min  are the maximum 

and minimum values of inertia weights set, respectively, and 0.9 and 0.4 were taken for 

both in this paper; maxt  is the maximum number of iterations, which was set to 50 in this 

paper. 

In summary, we combined the GRU and CNN model to obtain the deep data features. 

The approved PSO algorithm was employed to optimize the hyper-parameters of this 

model including the number of hidden nodes in the first and second layers of the GRU, 

the number and size of convolutional kernels of the CNN. 

2.4. Model Building and Experiments 

To predict the MCI drought index in the Yunnan province, a novel GRU–CNN model 

fused with the modified PSO algorithm was proposed. The input data were the predictor 

time series of the past five months with a dimension of 5 ×  10, and the MCI drought 

indices of the next three months acted as the label and target values to be predicted with 

a dimension of 3 ×  1. Firstly, the pre-processed time series of the predictors were fed 

into the GRU unit to extract the temporal features. Secondly, the CNN module was used 

to extract the deep local features. The CNN module was composed of a two-layer CNN 

network and a fully connected layer. The structure diagram of the model is shown in Fig-

ure 5. 

 

Figure 5. Structure diagram of GRU–CNN model. 
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After the setup of the CNN–GRU model, its hyper-parameters were tuned using the 

PSO algorithm. The optimization process of the model hyper-parameters is shown in Fig-

ure 6, and the overall initial hyper-parameter settings of the GRU–CNN model based on 

the PSO algorithm are shown in Table 3. 

 

Figure 6. Hyperparameters optimization process of the improved PSO algorithm. 

Table 3. Initial hyper-parameter settings of the GRU–CNN model based on the PSO algorithm. 

Setting Parameters Value 

Particle swarm size 60 

Model learning rate 0.001 

Number of model iterations 150 

Number of GRU hidden nodes 84 

Number of CNN convolutional kernels 25 

CNN convolutional kernel size 7 

Batch size 128 

Activation function ReLU 

Loss function and fitness function MAE 

Regular optimization 0.1 

PSO maximum number of iterations 50 
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For comparison with our GRU–CNN model with hyper-parameter tuning using the 

modified PSO algorithm, three machine learning methods were run including the least 

absolute shrinkage and selection operator (LASSO) [33], random forest (RF) [34] model 

and a GRU model with its hyper-parameters tuned with the PSO algorithm. LASSO and 

RF are two traditional machine learning methods and have been developed rapidly in 

subsequent improvements and have the advantages of low training difficulty and strong 

generalization ability and are widely used in regression prediction. The hyper-parameter 

settings of the LASSO and RF models are shown in Table 4. The GRU model was ran with 

its parameter settings and hyper-parameter tuned the same as our GRU–CNN model. 

Table 4. Hyper-parameter settings of the LASSO and RF. 

LASSO RF 

Setting parameters Value Setting parameters Value 

alpha 0.1 n_estimators 80 

max_iter None criterion Gini 

tol 0.0001 max_depth 50 

selection cyclic splitter best 

2.5. Evaluation Metrics 

The mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe 

efficiency coefficient (NSE) [35] were used to test the predictive effect of the model, many 

articles have used them as the measures to evaluate the performance of models proposed 

[25,26,30], the three formulas are calculated as follows. 

1

1
ˆ

m

i i
i

MAE x x
m 

   (11)

2

1

1
ˆ( )

m

i i
i

RMSE x x
m 

   (12)
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 (13)

where m  is the number of data, ix  is the observed value, and ˆix  is the predicted 

value; NSE  is the Nash–Sutcliffe efficiency coefficient, 
t
oQ  refers to the observed value 

at time t , 
t
mQ  refers to the simulated value at time t , and oQ  refers to the average of 

the observed values. The more the Nash–Sutcliffe efficiency coefficient tends to 1, the 

higher the credibility of the model, and when the Nash–Sutcliffe efficiency coefficient 

tends to negative infinity infinitely, the lower the credibility of the model is indicated. 

3. Results 

The deep learning model (Figure 5) was set with the initial hyper-parameters in Table 

3 and then ran as shown in Figure 6. With the same data set, we also carried out prediction 

experiments with LASSO, RF and GRU. The prediction skills for the MCI drought indices 

with first, second and third months leading are shown in Tables 5–7. 
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Table 5. Performance of MCI drought index prediction models computed in the 1st month in the future. 

Models Metrics       Stations Kunming Lincang Lijiang Guangnan Qujing Average 

LASSO 

MAE 2.04 1.757 1.484 1.888 1.714 1.777 

RMSE 2.745 2.361 2.039 2.645 2.294 2.417 

NSE 0.879 0.909 0.946 0.879 0.928 0.908 

RF 

MAE 1.195 0.964 0.822 1.141 1.042 1.033 

RMSE 1.654 1.341 1.147 1.645 1.389 1.435 

NSE 0.963 0.975 0.984 0.961 0.977 0.972 

GRU 

MAE 0.545 0.474 0.486 0.503 0.351 0.472 

RMSE 0.736 0.625 0.662 0.653 0.479 0.631 

NSE 0.993 0.996 0.995 0.995 0.997 0.995 

GRU–CNN 

MAE 0.307 0.268 0.147 0.239 0.226 0.237 

RMSE 0.385 0.344 0.191 0.298 0.287 0.301 

NSE 0.998 0.999 0.999 0.999 0.999 0.998 

Table 6. Performance of MCI drought index prediction models computed in the 2nd month in the future. 

Models Metrics         Stations Kunming Lincang Lijiang Guangnan Qujing Average 

LASSO 

MAE 2.169 1.956 1.851 2.106 2.095 2.035 

RMSE 2.963 2.624 2.387 2.889 2.787 2.73 

NSE 0.847 0.877 0.916 0.838 0.877 0.871 

RF 

MAE 1.466 1.25 1.044 1.365 1.303 1.285 

RMSE 2.05 1.682 1.344 1.902 1.749 1.745 

NSE 0.939 0.957 0.977 0.943 0.959 0.955 

GRU 

MAE 0.626 0.513 0.517 0.659 0.397 0.542 

RMSE 0.801 0.764 0.738 0.847 0.512 0.732 

NSE 0.992 0.994 0.994 0.991 0.997 0.994 

GRU–CNN 

MAE 0.355 0.296 0.156 0.261 0.265 0.267 

RMSE 0.443 0.385 0.201 0.335 0.324 0.338 

NSE 0.997 0.999 0.999 0.998 0.999 0.998 

Table 7. Performance of MCI drought index prediction models computed in the 3rd month in the future. 

Models Metrics        Stations Kunming Lincang Lijiang Guangnan Qujing Average 

LASSO 

MAE 2.472 2.11 2.071 2.189 2.307 2.229 

RMSE 3.241 2.7 2.598 3.021 2.956 2.903 

NSE 0.797 0.867 0.897 0.817 0.855 0.847 

RF 

MAE 1.587 1.176 1.337 1.445 1.417 1.392 

RMSE 2.111 1.556 1.725 1.944 1.887 1.845 

NSE 0.932 0.964 0.96 0.94 0.951 0.949 

GRU 

MAE 0.799 0.649 0.497 0.681 0.448 0.615 

RMSE 1.033 0.997 0.759 0.884 0.584 0.851 

NSE 0.986 0.991 0.992 0.99 0.996 0.991 

GRU–CNN 

MAE 0.415 0.337 0.161 0.291 0.332 0.307 

RMSE 0.531 0.519 0.218 0.373 0.434 0.415 

NSE 0.997 0.998 0.999 0.998 0.998 0.998 

As shown in Tables 5–7, the GRU–CNN model outperformed all other methods 

(LASSO, RF, and GRU) under the MEA, RMSE, and NSE metrics. As the simplest method, 

the LASSO was used here as the baseline. RMSE is widely used to measure the skill of 

regression modeling. From the average of five stations, compared with LASSO, RF and 

GRU, GRU–CNN reduced their RMSE by 36–41%, 71–74% and 86–88% in turn (average). 

RF was much better than LASSO with a 36–41% reduction and the GRU was much better 

with a 54–56% reduction. However, GRU–CNN exceeded GRU with a 51–54% reduction. 

These methods also showed a similar difference in MAE. The GRU–CNN model also held 

the maximum NS. 
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As we all know, drought is a very complex, nonlinear and cumulative climate phe-

nomenon. As a result, the sequence of time series of predictors plays a key role in drought 

prediction, which means a great challenge to the regression technique. LASSO has the 

lowest skill because it is a simple and linear method. RF can deal with complex nonlinear 

problems and shows better skills than LASSO. GRU is a powerful method to compute the 

cumulative effect and does better than the previous two machine learning methods. The 

GRU–CNN model introduces the CNN module to extract the deep part features of the 

predictors and then gains the highest skills. 

The superiority of the model has been demonstrated by the above tables (Tables 5–

7). Then, we used the combined model to predict the MCI for the five selected stations. In 

Figures 7–9, we show the prediction effect of the different models with Lincang station as 

an example. Other stations had similar effects, which are not shown here to save space. 

 

Figure 7. The prediction of the MCI at the Lincang station with 1-month leading. 

 

Figure 8. The prediction of the MCI at the Lincang station with 2-month leading. 
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Figure 9. The prediction of the MCI at the Lincang station with 3-month leading. 

As an accumulation effect in water shortage, the predictability of drought is much 

lower than surface temperature and precipitation in nature. As a result, accurate prediction 

of drought index is a great challenge. Meanwhile, the reliable prediction of drought classi-

fication [23] (i.e., abnormally dry, moderate drought, severe drought, extreme drought) that 

is based on the rating of the drought index is very valuable in disaster-risk management. 

The experiments of prediction of drought classification were carried out to compare the abil-

ity of the above methods. Figure 10 shows the prediction skills of the different prediction 

models in this paper for the drought classification (computed with MCI) of the Lincang sta-

tion for the next three months. The conclusion was similar to that of the drought index, 

where the two deep learning models significantly outperformed the machine learning mod-

els, and the GRU–CNN model further performed better than the GRU model. 

 

Figure 10. The average rate of error in the prediction of drought classification in the next three 

months at LinCang. 

4. Discussion and Conclusions 

(1) Machine learning is a powerful and widely used technique for predictive model-

ing. However, on the condition of big data, deep learning is considered a better solution. 

At present, many studies have been carried out in drought prediction with machine learn-

ing methods and simple deep learning models. In this paper, an improved deep learning 
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model was introduced by combining a gated recurrent neural network (GRU) and a con-

volutional neural network (CNN) with hyper-parameters tuned with an improved PSO 

algorithm. This model was employed to predict the meteorological composite index (MCI) 

for the next three months at representative stations in the Yunnan province and was com-

pared with two traditional machine learning methods and a simple deep learning method. 

(2) Both the deep learning GRU model and the GRU–CNN model significantly out-

performed the traditional machine learning methods (LASSO and random forest) in the 

drought index prediction. This is because drought is an accumulation effect of precipita-

tion and water shortage. The deep learning model containing a recurrent neural network 

such as GRU can excel in similar problems, while LASSO and random forest usually can-

not perform well, thus showing lower predictive skills. 

(3) The GRU–CNN model was a much more effective method in the prediction of the 

drought index in Yunnan province. It had reduced error (RMSE) by about half compared 

to the present GRU model. The CNN module is a useful tool to extract the deep local 

features and interrelationship of predictors so that the introduction of the CNN module 

can bring significant improvement to the original GRU model. 

(4) Because of the above reasons, the proposed model gained more powerful abilities 

to deal with the complexities of time series predictions, such as the MCI drought index. 

The performance of the evaluation results has demonstrated the correctness of the insti-

tution of theories. 

The Limitations 

Although the proposed GRU–CNN model does have advantages compared with tra-

ditional models, there are still some defects that cannot be ignored in the present research: 

(1) The selection and identification of predictors are very important steps for accurate 

prediction of droughts. The predictors selected in this paper are only based on local data. 

Due to the complex and diverse environment in Yunnan province, the climate there is 

affected by large-scale elements, such as El Niño–Southern Oscillation [36], North Atlantic 

oscillation, and Pacific Decadal Oscillation [37]. Although the absence of these large-scale 

climate elements does not hurt the value of our idea in this model, their introduction will 

improve the upper limit of the prediction skills of the model and should be considered in 

future work. 

(2) Drought is complex and this research only covers the prediction of the drought 

index MCI of Yunnan province. A range of timescales with stable frequencies of drought 

including onset, severity, area, and duration of droughts are valuable for climate-risk 

management. Moreover, the spatial extent of drought and how this evolves was not been 

taken into account either. From this perspective, there are many works to do in the future. 

In summary, the GRU–CNN model optimized with the improved PSO algorithm 

proposed in this paper can significantly improve the regression prediction of monthly 

drought index and the prediction of drought class based on the MCI compared with the 

traditional machine learning models represented by LASSO, random forest and the basic 

recurrent neural network deep learning model. Further study and implications of this idea 

will improve the prediction of drought indices and similar regression prediction studies. 
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