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Abstract: Long-term and high-resolution reanalysis precipitation datasets provide important support
for research on climate change, hydrological forecasting, etc. The comprehensive evaluation of the
error performances of the newly released ERA5-Land and CRA40-Land reanalysis precipitation
datasets over the Yongding River Basin in North China was based on the two error decomposition
schemes, namely, decomposition of the total mean square error into systematic and random errors and
decomposition of the total precipitation bias into hit bias, missed precipitation, and false precipitation.
Then, the error features of the two datasets and precipitation intensity and terrain effects against
error features were analyzed in this study. The results indicated the following: (1) Based on the
decomposition approach of systematic and random errors, the total error of ERA5-Land is generally
greater than that of CRA40-Land. Additionally, the proportion of random errors was higher in
summer and over mountainous areas, specifically, the ERA5-Land accounts for more than 75%, while
the other was less than 70%; (2) Considering the decomposition method of hit, missed, and false bias,
the total precipitation bias of ERA5-Land and CRA40-Land was consistent with the hit bias. The
magnitude of missed precipitation and false precipitation was less than the hit bias. (3) When the
precipitation intensity is less than 38 mm/d, the random errors of ERA5-Land and CRA40-Land are
larger than the systematic error. The relationship between precipitation intensity and hit, missed,
and false precipitation is complicated, for the hit bias of ERA5-L is always smaller than that of
CRA40-L, and the missed precipitation and false precipitation are larger than those ofCRA40-L when
the precipitation is small. The error of ERA5-Land and CRA40-Land was significantly correlated with
elevation. A comprehensive understanding of the error features of the two reanalysis precipitation
datasets is valuable for error correction and the construction of a multi-source fusion model with
gauge-based and satellite-based precipitation datasets.

Keywords: reanalysis precipitation datasets; ERA5-land; CRA40-land; error decomposition; precipitation
intensity; terrain

1. Introduction

Precipitation is one of the most fundamental processes of the hydrologic cycle and is
closely associated with water resources, agricultural production, and economic develop-
ment. As a result of global warming, extreme precipitation events have attracted increasing
attention from researchers [1]. For a long time, the studies have considered mainly gauge-
based measurements of precipitation; however, these methods have various shortcomings,
such as human–material constraints, geographical constraints, and uneven distribution,
especially in oceans, large lakes, deserts, and alpine mountains [2,3]. Since the 1990s,
advances in Earth observation space technology have presented an opportunity to obtain
information on the spatial distribution of precipitation. Although weather radar has a
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higher temporal and spatial resolution than satellite, it has limited scope and high costs.
However, the satellite-retrieved precipitation is limited by inversion algorithms and sensor
performance and has disadvantages, such as limited accuracy of output precipitation data.
Long series high-resolution precipitation datasets are essential for research on climate
changes, hydrological forecasting, etc. However, these datasets are difficult to obtain, and
the reanalysis of the precipitation datasets can overcome the above limitations [4]. Existing
research has indicated that the reanalysis-based approach well captures the seasonality
of precipitation [5–7]. Sun et al. summarized the basic features of 30 global precipitation
datasets and found large differences in the estimated values of different precipitation
datasets and a larger degree of variability in reanalysis datasets than in other types of
datasets [8]. ERA5, the fifth-generation reanalysis dataset released by the European Centre
for Medium-Range Weather Forecasts (ECMWF) and CRA40, China’s first-generation land
surface reanalysis data produced by the China Meteorological Administration (CMA), are
the two latest reanalysis precipitation datasets.

Colorado-Ruiz G evaluated the simulation performances of ERA5, ERA-Interim, and
CFSR(Climate Forecast System Reanalysis) reanalysis datasets for extreme and non-extreme
precipitation indicators in the southern United States and Mexico, and demonstrated that
ERA5 showed significantly better performance than the other two reanalysis precipita-
tion products [9]. Li et al., evaluated the performance of the CRA40 dataset in typical
monsoon regions around the world and demonstrated that CRA40 seemed to slightly
underestimate low rainfall but overestimate high rainfall. They also observed that the
average global/hemispheric precipitation increased by 0.02–0.11 mm/day/decade in all the
reanalysis precipitation (CRA40, ERA5, JRA55, and MERRA2) datasets [10]. Jiang et al. [11]
and Xin et al. [12] evaluated the accuracy of the ERA5 precipitation dataset in China and
observed significant variations in the ERA5 performance in different climatic regions. More-
over, the simulated precipitation had a large deviation, but the ability to detect precipitation
events was better than several other satellite precipitation products. ERA5 performed better
in the dry season in coastal urban areas and in the rainy season in mountainous vege-
tation areas and demonstrated insufficient simulation ability in highly urbanized areas.
Colorado-Ruiz et al. [13], Huang et al. [14], and Amjad et al. [15] indicated that although
the reanalysis of precipitation can detect precipitation events and reproduce spatial and
temporal distributions, it can lead to overestimation of precipitation in most cases.

The error decomposition method was used to reveal the error features of the two
reanalysis datasets. There are two main existing error decomposition schemes. One
was proposed by Willmott [16], in which the total mean square error was divided into
systematic and random errors. For example, Shen et al. [17] applied this scheme to evaluate
the accuracy of GPM(Global Precipitation Measurement) and TRMM(Tropical Rainfall
Measuring Mission). Similar studies were also conducted by Chen et al. [18], Tang et al. [19],
Masood et al. [20], and Tang et al. [21]. The second error decomposition scheme was first
proposed by Tian et al. [22] in 2009, and they divided the total error into hit bias (HB), missed
precipitation (MP), and false precipitation (FP). For example, Chen et al. [18] evaluated the
variations in the error components of IMERG-Late, GSMaP-MVK, and PERSIANN-CCS
SPP precipitation datasets in different seasons. Su et al. [23] evaluated the performance
of four GPM-based precipitation estimations over mainland China from April 2014 to
December 2016. Several studies have demonstrated that the topography and precipitation
intensity were closely associated with the reanalysis precipitation accuracy [22,24–26].
However, these studies focused only on the total bias of different terrains, ignoring the
correlation error of parameter estimates. Thus, the significance of the error components
and the formation of terrains have not been well understood [27,28]. Existing studies focus
only on random and systematic decomposition of errors of different properties, or focus
only on false positives and missed positives, etc. There are few reports on comprehensive
interpretation of errors by combining the two methods.

Several researchers have conducted numerous studies to assess the accuracy and
applicability of reanalysis precipitation products. The density of rain gauges in Northwest
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China is low [29], which can have an impact on the accuracy of the dataset. Only a few
studies are available on the reanalysis of precipitation data in North China, especially
the 40-year global reanalysis dataset released by CMA, i.e., CRA40-Land (CRA) for the
land surface in China. The purpose of this study was to evaluate the error features of
two reanalysis precipitation datasets, namely, ERA5-Land and CRA40-Land (CRA) in
northern China, based on the two error decomposition techniques and further analyze
the spatiotemporal variations in errors and correlation with precipitation intensity and
terrain features. This study can act as a reference for the selection of the two datasets in the
fields of meteorology and hydrology, as well as help in the selection of parameters for the
construction of the error-correction model.

The structure of this paper is as follows: (1) Section 2 introduces the study area and the
dataset, (2) Section 3 introduces the methods used in this study, (3) Section 4 is the analysis
and discussion of results, and (4) Section 5 concludes this study.

2. Study Area and Datasets
2.1. Study Area

The study area is the Yongding River Basin, a sub-basin of the Haihe River Basin.
The study area lies between 111.95–116.22◦ longitude and 38.90–41.16◦ latitude. Yongding
River flows through five provincial administrative regions, including Beijing and Tianjin,
with a catchment area of 47,000 km2, accounting for approximately 14.7% of the Haihe
River Basin. The primary tributaries of the upper reaches of the Yongding River are the
Sanggan River and the Yang River, which it is known as the Yongding River after their
confluence. This region has a semi-humid and semi-arid monsoon climate, with annual
average precipitation between 360 and 650 mm. The precipitation is concentrated mainly
in summer, and the precipitation from June to August accounts for approximately 80% of
the average annual precipitation. The study area is represented in Figure 1.
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Figure 1. Geographical location of the study area.

2.2. Ground Reference Data

In this study, CGDPA (China Gauge-based Daily Precipitation Analysis) was used as
the ground reference product, and the raw precipitation data of CGDPA were collected from
2419 meteorological stations in mainland China (including approximately 35 gauges in and
around the Yongding River Basin). The National Meteorological Information Center uses
the optimal interpolation method based on climatology to interpolate the CGDPA data into
raster data at a resolution of 0.25◦ × 0.25◦ (http://data.cma.cn, accessed on 15 August 2022).
According to the study by Shen et al. [29], the CGDPA product had high precision and could
estimate precipitation of varying magnitudes, especially heavy precipitation. In North
China, the underestimation of average daily precipitation in summer was 0.13 mm/d,
the underestimation in winter was 0.02 mm/d, and the correlation coefficient with the
observed precipitation was greater than 0.5. At present, CGDPA has been widely used in
the performance evaluation of satellite precipitation products [30–33]. The CGDPA data of

http://data.cma.cn
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daily precipitation was selected for the duration from 1 January 2017, to 31 December 2019.
Some of the missing daily data were discarded without affecting the error evaluation.

2.3. Reanalysis Data
2.3.1. ERA5-Land

The ERA5-Land data is the latest (fifth generation) climate reanalysis dataset produced
by the ECMWF, providing hourly data using the 4D-Var data assimilation technique in
the Integrated Forecast System (IFS) model cycle CY41R2. ERA5-Land data has a higher
resolution in space with enhanced product quality [34,35]. ERA5-Land is a data product
obtained by simulations using the tiled ECMWF Scheme for Surface Exchanges over Land
incorporating land surface hydrology (H-TESSEL), i.e., land surface model implemented in
ERA5-Land in offline mode using atmospheric forcing [36] (https://cds.climate.copernicus.
eu/doi/10.24381/cds.e2161bac, accessed on 15 August 2022). When compared with ERA5-
Land, the elements such as precipitation and temperature in ERA5-Land were closer to
the observed data. In addition, the model used in ERA5-Land is an updated version of
the integrated forecast system (IFS CY45R1 model), which also has a higher horizontal
resolution and more detailed physical processes and parameterization schemes. Therefore,
the land surface product is more accurate and reliable [37]. The selected data length in
ERA5-Land is consistent with CGDPA, where ERA5-Land (hereafter referred to as ERA5-
Land) has a temporal resolution of 1 h and a spatial resolution of 0.1◦ × 0.1◦, which is
resampled using a bilinear interpolation method to 0.25◦.

2.3.2. CRA40-Land

The CRA40 dataset is the first generation of land surface reanalysis products in China
produced by the CMA. The dataset covers approximately 40 years of data from 1979 to 2020,
with a spatial resolution of 34 km and a temporal resolution of 3 h (http://data.cma.cn,
accessed on 15 August 2022). The dataset is based on a data assimilation algorithm, multi-
source fusion method, Noah-3.3 Land Surface Model, and established core technologies,
such as surface parameter optimization [38]. It uses the observation data after 1979 of
approximately 60 types of space-borne sensors from nearly 80 meteorological observation
satellites, which are part of the international third-generation reanalysis products. Simulta-
neously, it also makes full use of several satellite reprocessing products released in recent
years to replace the real-time products of the same period. The data integrity and data
quality of these products were found to be significantly improved [39]. The CRA dataset
includes two types of data, namely, atmosphere-driven fusion products and land surface
products. The precipitation from CRA40-Land dataset combines the global precipitation
products generated by the global surface rain gauge analysis (CPCU) and the global satellite
precipitation (GPCP). The CRA40-Land (hereafter denoted as CRA40-Land) precipitation
data used in this study were time-aligned with CGDPA and resampled to 0.25◦ using a
bilinear interpolation method.

3. Methods
3.1. Technical Scheme

The quantitative and categorical indicators were used to evaluate the precision of the
precipitation data (Jiang et al. [11] and Xin et al. [12]). The quantitative indicators included
Pearson correlation coefficient (CC), relative bias (RB), and root mean square error (RMSE).
The closer the CC was to 1 and the closer the absolute values of RB and RMSE were to
zero, the higher the precipitation accuracy. The classification indicators used for evaluation
included the probability of detection (POD), false alarm ratio (FAR), and critical success
index (CSI).

CC =
∑n

i=1(xi − x)(yi − y)√
n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(1)

https://cds.climate.copernicus.eu/doi/10.24381/cds.e2161bac
https://cds.climate.copernicus.eu/doi/10.24381/cds.e2161bac
http://data.cma.cn
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RB =
∑n

i=1 (xi − yi)

∑n
i=1 yi

× 100% (2)

RMSE =

√√√√ n

∑
i=1

(xi − yi)
2

n
(3)

where x represents reanalysis precipitation, y denotes ground reference precipitation, and n
is the number of samples.

POD =
H

H + M
(4)

FAR =
F

H + F
(5)

CSI =
H

H + M + F
(6)

where H is the number of events observed by both reanalysis data and reference data, M is
the number of events observed by reference data but not by reanalysis data, and F is the
opposite of M.

The error decomposition methods considering the precipitation-fitting effect and
rain/no rain state were used for the error decomposition to quantitatively evaluate the
overall precipitation errors of ERA5-Land and CRA40-Land. The simultaneous assessment
of the errors of the two reanalysis precipitation products revealed the correlation of the error
with precipitation intensity and terrain. On the basis of this, the spatiotemporal variations
in error features were further analyzed. The technical scheme is shown in Figure 2.
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3.2. Systematic and Random Errors Decomposition

In 1981, Willmott [16] proposed that the mean square error (MSE) of precipitation can
be divided into systematic and random components, as shown by Equation (1).

MSE = MSEs + MSEr (7)



Atmosphere 2022, 13, 1936 6 of 18

where MSE is the total mean square, MSEs is the systematic component, and MSEr is the
random component. Equation (1) can be expanded as [40].

1
n

n

∑
i=1

(
Pr − Pre f

)2
=

1
n

n

∑
i=1

(
P∗r − Pre f

)2
+

1
n

n

∑
i=1

(Pr − P∗r )
2 (8)

P∗r = a× Pre f + b (9)

MSE =
1
n

n

∑
i=1

(
Pr − Pre f

)2
(10)

MSEs =
1
n

n

∑
i=1

(
P∗r − Pre f

)2
(11)

MSEr =
1
n

n

∑
i=1

(Pr − P∗r )
2 (12)

where Pr is the original reanalysis precipitation, Pr
* is the regressed reanalysis precipitation,

and Pref is the reference precipitation. Pr
* is expressed as a linear error model, where a is

the slope, and b is the intercept.

3.3. Hit, Missed, and False Errors Decomposition

The total precipitation error describes the degree to which the precipitation datasets
overestimate or underestimate the surface precipitation. However, they may not reveal
useful information because the error components could cancel one another, especially the
quantitative error determined under different classification and identification conditions.
The error decomposition method considering rain/no rain state was first proposed by
Tian et al. [22] and later developed by Yong et al. [41]. This method can be used to deter-
mine the error source associated with precipitation estimates. This approach decomposes
the total precipitation bias (TB) into three independent components, namely, HB (hit bias,
precipitation occurs in both R and G), MP (missed precipitation, precipitation occurs only in
G), and FP (false precipitation, precipitation occurs only in R). An in-depth analysis of the
composition and features of the total error as well as the spatiotemporal distribution fea-
tures of each sub-error can provide important information for improving the precipitation
accuracy and the rational selection of datasets.

TB = HB + MP + FP (13)

P(
→
x , t) =

{
1 if C(

→
x , t) > T

0 if C(
→
x , t) = T or missing

(14)

HB = ∑
t=1

(Rt − Gt) · P(Rt ≥ T) · P(Gt ≥ T) (15)

MP = ∑
t=1

(Rt − Gt) · P(Rt < T) · P(Gt ≥ T) (16)

FP = ∑
t=1

(Rt − Gt) · P(Rt ≥ T) · P(Gt < T) (17)

where P(
→
x , t) represents a binary-valued precipitation event mask, C(

→
x , t) represents a

precipitation field, and T represents a rain/no rain threshold. For mathematical derivation,
T = 0 is used as the rain/no rain threshold to determine the mask. However, in practice,
a small value (e.g., 0.1 mm/d or 1 mm/d) instead of 0 is usually used as the rain/no
rain threshold to determine the mask. R is the reanalysis precipitation, and G is the
reference precipitation.
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Thus, TB can be decomposed into three mutually independent components, where the
absolute values of the three components may be greater than TB mainly because of MP and
FP, which have opposite signs and can cancel one another.

4. Results and Discussion
4.1. Overall Accuracy

Xu et al. [42], Zhao et al. [43], and Li et al. [44] demonstrated that the total error and
error components were seasonally dependent, and thus, focused on three different periods:
(1) annual, (2) summer (June–August), and (3) winter (December–February).

The quantitative and classification accuracies of the two reanalysis precipitation prod-
ucts are shown in Table 1. For quantitative accuracy, CRA40-Land had lower CC and
RMSE and higher RB in the summer. Considering the RB index as the relative value of
total precipitation, CRA40-Land demonstrated higher accuracy in the summer. However,
the situation in winter was found to be different when the CC and RMSE of the two re-
analysis precipitation products were comparable, but the ERA5-Land overestimated the
data by 46.8%. If the period considered was annual, the CC, RB, and RMSE of CRA40-
Land were lower than those of ERA5-Land. Both the products overestimated the reference
precipitation but by different proportions. The larger the precipitation, the smaller the
percentage of overestimation (winter > annual > summer). There was no major difference
in the classification indicators of the two products, and the FAR and CSI of CRA-40 were
better in winter, which was in agreement with the results observed using the RB indicator.
Overall, the accuracy of CRA40-Land was found to be better than that of ERA5-Land, but
the sources and features of the two error components were still unknown. The following
section evaluates the decomposition errors of the products in detail.

Table 1. Quantitative and classification accuracies of the two reanalysis precipitation products.

Time CC RB (%) RMSE (mm) POD FAR CSI

ERA5-Land 0.78 8.5 2.90 0.99 0.07 0.92
CRA40-Land 0.87 6.6 2.16 1.00 0.08 0.91

ERA5-Land summer 0.70 3.7 5.63 0.98 0.05 0.93
CRA40-Land summer 0.84 7.3 4.00 1.00 0.08 0.92

ERA5-Land winter 0.85 46.8 0.27 0.97 0.25 0.73
CRA40-Land winter 0.85 14.0 0.27 0.96 0.11 0.86

Table 2 shows the total error and error components averaged to each grid annually,
in summer, and in winter. It can be observed that for the error decomposition scheme,
considering the precipitation-fitting effect, the total error and error components averaged to
each grid in summer were much higher than those observed annually. The trend observed
in summer was opposite of that observed in winter. In this study, a relatively large
proportion of random errors was observed, accounting for 80.1% in ERA5-Land and 69.4%
in CRA40-Land. The total error of ERA5-Land was also higher than that of CRA40-Land. In
summer, the total error of ERA5-Land was almost double that of CRA40-Land, while there
was not much difference in the total errors of the two products in winter. However, the
comprehensive evaluation of the error features of the two reanalysis precipitation products
was based on the homogenization of the equations in both time and space. Therefore,
further analysis is required considering the spatiotemporal variability.
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Table 2. Overall evaluation results of the two error decomposition schemes.

Scenario Type of
Precipitation Index Annual Summer (June,

July, and August)
Winter (December,

January, and February)

Error decomposition
method considering the

precipitation-fitting effect
(mm2/grid/d)

ERA5-Land
MSE 8.64 32.81 0.08
MSES 1.72 7.63 0.02
MSER 6.92 25.17 0.06

CRA40-Land
MSE 4.86 16.78 0.08
MSES 1.49 6.08 0.03
MSER 3.37 10.70 0.05

Error decomposition
method considering rain/no

rain state (mm/grid)

ERA5-Land

TB 94.13 24.65 7.28
HB 18.39 −5.63 0.64
MP −15.55 −11.22 −0.62
FP 91.29 41.50 7.26

CRA40-Land

TB 68.85 47.71 0.71
HB −37.48 −11.26 −0.97
MP −5.27 −2.65 −0.86
FP 111.61 61.62 2.54

For the error decomposition method considering rain/no rain conditions, the overall
evaluation was not based on the time-averaged mean values but on the cumulative errors
over time, and the errors in summer and winter were part of the annual errors. The
evaluation results indicated that the three summer months of June, July, and August were
the largest contributors to the total error. Among the three error components, FP was much
higher than the other two. It should be noted that the cumulative error results are not
necessarily reliable as the positive sign of TB and the negative sign of HB could cancel
one another. This occurs not only between the error components but also in the time
series of each component. Therefore, for a comprehensive evaluation of associated errors,
it is necessary to further analyze the precipitation data considering the spatiotemporal
variability to overcome the influence of numerical cancellation.

4.2. Systematic and Random Errors
4.2.1. Spatiotemporal Features in Different Seasons

Figures 3 and 4 show the spatial distribution of the systematic and random error
components of ERA5-Land and CRA40-Land products, and each grid was calculated as
the cumulative error. It can be observed that the random errors in the two reanalysis
precipitation products were relatively high. The annual random error in ERA5-Land
accounted for more than 75%. As shown in Figure 3f, the random error was higher in winter
and may be related to the terrain features. The plain areas exhibited lower random errors,
while the upstream mountainous regions also exhibited higher random errors. Although
the basic feature of CRA40-Land is the same as that of ERA5-Land, the proportion of annual
random errors of CRA40-Land was between 60 and 70%, which was slightly lower than
that of ERA5-Land. As shown in Figure 4f, the random error was lower in summer, and
significant spatial variability in error was observed in winter. Overall, the proportion of
systematic error of ERA5-Land was lower than that of CRA40-Land, and the difference
between the two was approximately 10%, indicating that the precipitation accuracy of
CRA40-Land in the relevant watershed needs to be improved. It was observed that the
accuracy of CRA40-Land in the upstream mountainous areas was almost comparable to
that of ERA5-Land, especially in winter.

Figure 5 shows the temporal variations in the error components. To accurately evaluate
the error features, the moving average method was used for processing, and 3 d was
considered the average time. The variations in the error components of ERA5-Land and
CRA40-Land products were significantly associated with the precipitation intensity and
were season-dependent. At high precipitation intensity (i.e., in summer), the errors were
mainly random errors, accounting for more than 80%, while winter was characterized
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mainly by systematic errors. When compared with CRA40-Land, ERA5-Land was more
sensitive to the precipitation intensity, and higher random errors were observed in ERA5-
Land than CRA40-Land at the same precipitation amount. The above analysis indicated that
the systematic and random error components were related to the precipitation intensity and
terrain features. Therefore, the correlation analysis was further conducted to understand
the relationship of error with the rain intensity and the elevation.
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4.2.2. Effect of Precipitation Intensity and Elevation

The correlation analysis of precipitation intensity and elevation with error expressed as
the two error components in terms of RMSE rather than MSE. For the correlation analysis of
precipitation intensity, each step considered the mean value of all the grid error components
within the range of precipitation intensity [p − 0.5, p + 0.5].

Figure 6 shows the distribution of the precipitation intensity and error components of
ERA5-Land and CRA40-Land products. The systematic error in the plot was fitted by a
first-order linear method of least squares, and the random error was fitted by a second-order
linear fit. According to the scattered plot of error distribution, increasing variability in
errors was generally observed with increased precipitation intensity. The systematic error
increased almost linearly, and the random error increased rapidly at lower precipitation
intensity, and then was likely to be stable. The two error components showed good fit at
the significance level of α = 0.01 with the goodness-of-fit value above 0.76 (three lines were
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located above 0.94). The fitted curve indicated that the systematic error of ERA5-Land was
always lower than that of CRA40-Land, and the random error was always higher than that
of CRA40-Land. It was observed that the fitting curves of systematic and random errors
intersected, the proportion of random error was higher before the intersection, and the
proportion of systematic error was higher after the intersection, which was in agreement
with the results of the spatiotemporal analysis in Section 4.2.1. The error components
of ERA5-Land intersected at p = 38 mm/d and those of CRA40-Land at p = 32 mm/d,
indicating that at the same precipitation intensity, CRA40-Land had a higher proportion
of systematic errors. This was also consistent with the results in Section 4.2.1, i.e., the
systematic error of CRA40-Land in summer was higher than that of ERA5-Land.
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Although the systematic error of ERA5-Land was always slightly lower than that of
CRA40-Land, its random error was always significantly higher than that of CRA40-Land in
the precipitation range of 0–38 mm, resulting in a total error of ERA5-Land higher than
that of CRA40-Land. The analysis of only the general error features cannot provide a
comprehensive understanding of the error features of precipitation.

The degrees of freedom (n) for elevation–error correlation was equal to 264. The critical
value determined by the hypothesis test of the significance of CC at α = 0.01 was 0.158,
and the CC was found to be 0.201. The correlation between the elevation and the error
components is shown in Figure 7. Generally, the correlation between the errors and the
elevation was divided into three types: (1) no correlation, i.e., not meeting the hypothesis
test of the significance of CC at α = 0.01 (represented in red); (2) weak correlation, which
satisfies the hypothesis test of the significance of CC at α = 0.01 but does not meet the
hypothesis test at α = 0.001 (represented by light blue); and (3) strong correlation, which
satisfies the hypothesis test at α = 0.001 (represented in blue).
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Overall, only the systematic error of CRA40-Land in winter failed to pass the hy-
pothesis test at α = 0.001 but passed the hypothesis test at α = 0.01. The elevation had a
significant effect on the error, with the two demonstrating a negative correlation in summer
and a positive correlation in winter. Significant seasonal variations were observed due to
enhanced precipitation in summer, and above all, the annual trend observed was the same
as that in summer. However, the concentration and dispersion degrees throughout the
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year and in summer were different. In particular, CRA40-Land had a higher concentration
degree throughout the year and summer, but a higher dispersion degree in winter. Since
the summer precipitation accounted for a large proportion, the annual precipitation com-
prised mainly summer precipitation. Therefore, a stronger elevation–error correlation was
observed for CRA40-Land in summer and ERA5-Land in winter.

4.3. Hit, Missed, and False Bias
4.3.1. Spatiotemporal Variations in Different Seasons

Given a precipitation field, it is necessary to derive a precipitation event mask based
on a rain/no rain threshold. In a study by Tian et al. [22], the threshold was set to 1 mm/d.
However, this threshold value would have ignored 365 mm of precipitation per year under
ideal conditions. Therefore, the rain/no rain threshold was set to 0.1 mm/d in this study.

The spatial distribution of the error components, namely, TB, HB, MP, and FP of ERA5-
Land and CRA40-Land are shown in Figures 8 and 9, respectively, and the accumulated
errors were calculated for each grid. As shown in Figure 8a, it can be observed that the
total error distribution of ERA5-Land, mostly overestimation, was influenced by the terrain
features, and the error gradually increased with the increase in elevation. The contribution
of HB to the total error was more than that of other error components. Although CRA40-
Land showed spatial variability, it had a weak relationship with topography (Figure 9a),
and the associated error was significantly lower than that of ERA5-Land. The overall feature
of TB was difficult to understand due to the mutual interferences of each component. The
error associated with summer precipitation was relatively higher.
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Figure 9. (a–l) TB, HB, MP, and FP of CRA40-Land reanalysis precipitation data.

The temporal variations of different error components are shown in Figure 10. Each
step was processed by the moving average method, and the average time considered was
3 d. It can be observed that the error associated with the precipitation intensity was difficult
to ascertain, whether it was overestimation or underestimation. A large temporal variation
was observed in the ERA5-Land data. At high-intensity rainfall (p > 20 mm/d), the total
error of ERA5-Land was higher than that of CRA40-Land. However, the CRA40-Land data
was observed to be relatively stable, and the total error and its components varied only
within a small range. Although the error was significantly associated with the precipitation
extremes, the variations in the error of CRA40-Land were not as large as those of ERA5-
Land, which leads to greater uncertainty during data overestimation or underestimation.
The TB and HB of both datasets had good consistency at higher TB. The under-reported
small precipitation amounts of the two datasets, especially CRA40-Land, were ignored.
Further analysis of the error features should focus on the correlation analysis between
precipitation intensity and error.

4.3.2. Correlation of Error with Precipitation Intensity and Elevation

Contrary to the results in Section 4.2.2, TB, HB, MP, and FP were related to the rain/no
rain threshold. Figure 11 shows the relationship between the precipitation intensity and the
error at different rain/no rain thresholds. The total errors of ERA5-Land and CRA40-Land
were overestimated at lower rain intensity, then showed a tendency of underestimation,
and slowly approached 0 after reaching the critical value. The two reanalysis precipitation
datasets had different rain intensities at zero total error (TERA5-Land = 7.5 mm, TCRA40-Land
= 1.6 mm). The rain intensity integral was based on the cumulative error, and from the total
error perspective, the cumulative error of CRA40-Land was higher than that of ERA5-Land.
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The HB of ERA5-Land was always found to be lower than that of CRA40-Land, especially
at low rain intensity; the MP of ERA5-Land was higher than that of CRA40-Land at low
rain intensity and almost comparable at high rain intensity, and the FP of ERA5-Land was
higher than that of CRA40-Land at precipitation intensity in the range of 4–40 mm/h.
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The above analysis indicated that the total error was the result of the combined effects
of multiple components. The HB of ERA5-Land was very low; however, it should overcome
the error components of MP and FP to improve accuracy. On the other hand, CRA40-Land
should overcome HB to improve its accuracy.

Figure 12 shows the correlation analysis of the elevation with the error components,
namely, TB, HB, MP, and FP. If the rain/no rain state was considered, the two reanalysis
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products had different precipitation features. In particular, there was an increase in TB
of ERA5-Land with the increase in elevation, and higher accuracy of ERA5-Land was
observed in the plain areas. On the contrary, TB of CRA40-Land showed a decreasing trend
with increasing elevation, and the accuracy was higher in the mountainous areas. The
error during the summer precipitation in ERA5-Land demonstrated no correlation or weak
correlation with elevation, and the error was less affected by elevation at high precipitation
amounts. No correlation was observed between HB of CRA40-Land and elevation, and
the error was higher than that of ERA5-Land, which is in agreement with the results from
the error analysis of precipitation described previously in this study. Except in winter,
the MP of ERA5-Land had a high concentration degree, while the dispersion degree of
CRA40-Land significantly increased at elevations higher than 1000 m.
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5. Conclusions

In this study, the error features of the two newly released reanalysis precipitation prod-
ucts (ERA5-Land and CRA40-Land) were analyzed by two error decomposition methods.
The major conclusions drawn from this study are as follows:

(1) The systematic and random error decomposition approach demonstrated that the
random error accounted for a large proportion of the total mean square error, and
the total error of ERA5-Land was higher than that of CRA40-Land. The spatial
distribution of the error components indicated that the annual random error of ERA5-
Land accounted for more than 75%, and that of CRA40-Land was between 60 and
70%. The spatial pattern of errors was significantly correlated with the terrain features,
and the random errors in mountainous areas were larger. The temporal variation
of the error components indicated that they were significantly dependent on the
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seasons, and the proportion of random errors in summer was larger. Compared with
CRA40-Land, ERA5-Land possessed a higher ratio of random errors in summer.

(2) On the basis of the hit, missed, and false errors decomposition approach, the spatial
pattern of the errors indicated that the total error of ERA5-Land was strongly related to
terrain features. The total bias gradually increased with elevation, and it is consistent
with the hit bias. Although, the total error of CRA40-Land presented spatial variability,
it had a weak relationship with terrain variation. The magnitudes of the total error and
its components for CRA40-Land were significantly lower than those of ERA5-Land.
The temporal variations of the error indicated that the summer error was significantly
larger than in other seasons, and the total error of ERA5-Land was higher than that of
CRA40-Land at high precipitation intensities (p > 20 mm/d).

(3) When the precipitation intensity was lower than 38 mm/d, the random errors of
ERA5-Land and CRA40-Land were relatively higher than the systematic errors. This
is one of the reasons for the large random error of the solution in the two precipitation
reanalysis datasets. In general, the correlation between the elevation and the system-
atic and random errors was relatively strong, and the error components throughout
the year as well as in summer and winter accepted the hypothesis test of significance
of the correlation coefficient at α = 0.001. With regard to the hit bias, missed precip-
itation, and false precipitation, for ERA5-Land, the hit bias was lower than that of
CRA40-Land regardless of the precipitation intensity, the missed precipitation was
higher than that of CRA40-Land at low rain intensity, and the false precipitation was
larger than that of CRA40-Land in the intensity range of 4–40 mm/d. The correlation
between hit bias and elevation was weak, and the error associated with the summer
precipitation in ERA5-Land generally showed no correlation or weak correlation
with elevation. The correlation between the elevation and missed precipitation of
CRA40-Land gradually disappeared when elevation exceeded 1000 m.

The error features of ERA5-Land and CRA40-Land over the Yongding River Basin in
North China can provide a reference for the selection of these two datasets in the related
fields of meteorology and hydrology and can also provide some guidance for the bias
correction and muti-source precipitation fusion. It should be noted that this study still
has some limitations. Global-scale errors require further in-depth study. The systematic
and random error decomposition method ignores the error product term on the right
side of the equation, and the impact of this on the error decomposition also needs to be
quantitatively analyzed.
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