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Abstract: Kenya is dominated by a rainfed agricultural economy. Recurrent droughts influence
food security. Remotely sensed data can provide high-resolution results when coupled with a
suitable machine learning algorithm. Sentinel-1 SAR and Sentinel-3 SLSTR sensors can provide the
fundamental characteristics for actual evapotranspiration (AET) estimation. This study aimed to
estimate the actual monthly evapotranspiration in Busia County in Western Kenya using Sentinel-1
SAR and Sentinel-3 SLSTR data with the application of the gradient boosting machine (GBM) model.
The descriptive analysis provided by the model showed that the estimated mean, minimum, and
maximum AET values were 116, 70, and 151 mm/month, respectively. The model performance
was assessed using the correlation coefficient (r) and root mean square error (RMSE). The results
revealed a correlation coefficient of 0.81 and an RMSE of 10.7 mm for the training dataset (80%),
and a correlation coefficient of 0.47 and an RMSE of 14.1 mm for the testing data (20%). The results
are of great importance scientifically, as they are a conduit for exploring alternative methodologies
in areas with scarce meteorological data. The study proves the efficiency of high-resolution data
retrieved from Sentinel sensors coupled with machine learning algorithms, focusing on GBM as an
alternative to accurately estimate AET. However, the optimal solution would be to obtain direct
evapotranspiration measurements.

Keywords: actual evapotranspiration; Busia County; gradient boosting machine; Kenya; estimation
modeling; Sentinel-1 SAR; Sentinel-3 SLST

1. Introduction

Water fluxes are fundamental for many theoretical, practical, and applied disciplines of
climatology, hydrometeorology, and agriculture. Thus, the estimation and quantification of
actual evapotranspiration (AET) are equally indispensable in realizing the global, regional,
and country-specific 2030 17 sustainable development goals of the common agenda of the
UN. The sustainable development goals (SDG) include SDG1—no poverty, SDG6—clean
water and sanitation, SDG13—climate action, and SDG2—zero hunger [1]. Moreover,
the Food and Agriculture Organization (FAO) SDG indicator 6.4.1—the change in water
use [2] efficiency, as well as 6.4.2—the level of water stress [3] over time, is essential for
several sectors related to the global economy, such as agriculture, industry, mining, and
power production. In this context, agriculture services represent the most significant share
of water consumption [4], with a higher percentage in the semiarid and Mediterranean
climatic regions [5]. In this regard, AET estimation is crucial for adequately implementing
sustainable agricultural systems and achieving food security in developing countries.
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The importance of actual evapotranspiration cannot be undervalued, particularly in
light of the current global challenges such as food insecurity and climate change. It is a
major hydrological cycle component [6], along with precipitation, depicting the primary
constituents of the surface energy budget [7]. Moreover, it is a crucial component of regional
and global environmental phenomena associated with meteorological, agricultural, and
hydrological applications [8–10]. Not only do its changes influence precipitation, stream-
flow, and surface temperature, among other hydro-climatological variables [11,12], but
it also plays a vital role in the climate system, coupled with water, carbon, and energy
cycles [13]. Despite the creation of global initiatives aiming to directly measure AET, such
as the FLUXNET project [14], short and inconsistent field surveys exist. In view of this,
previous studies on machine learning applications have progressively been used in various
environment-related fields. A study by Malik et al. [15] demonstrated the potential of
the gradient boosting machine (GBM) model for pan-evaporation process prediction in
Iran and India. In addition, Shrivastav and Jha [16] successfully used the GBM to explore
the effects of temperature and humidity on COVID transmission. Furthermore, Frey [17]
demonstrated that the GBM has a significant predictive performance in natural resource
management aiming to enhance ecological sustainability. Hailstorm prediction and forecast-
ing and severe weather forecasting have been performed efficiently, proving the suitability
of the GBM and other machine learning models [18,19]. An accurate estimation of AET re-
mains a challenging scientific problem [20–23] due to the associated prediction uncertainty
when quantifying the actual evapotranspiration [14,24]. Although the gradient boosting
machine has been used extensively in this field, limited research has been conducted to
investigate its efficiency for AET estimation, which is the aim of the present study.

It is also significant that studies have extensively explored these differences, reveal-
ing significant uncertainties in AET estimations using various modeling techniques and
approaches [25–28]. The authors of [29] provided insight regarding the vast disparities
in evapotranspiration assessment using multiple theoretical methods compared to other
global variable uncertainties, many of which are retrieved using satellite remote sensing
systems [30–32]. Nevertheless, [33] found that AET products show the lowest uncertainties
in the case of the LSM (land surface model) and moderate uncertainties when using a
moderate resolution imaging spectroradiometer (MODIS), with the highest uncertainties
observed when using the water budget approach. However, in recent years, remote sensing
has made significant progress in estimating and assessing AET variation over time and
space. Studies have employed remote-sensing-based models in AET-related studies. Using
the surface energy balance index (SEBI), two-source model (TSM), surface energy balance
algorithm for land (SEBAL), surface energy balance system (SEBS), Eta mapping algo-
rithm (ETMA), and atmosphere–land exchange inverse model (ALEXI), many researchers
have successfully assessed and predicted AET spatiotemporal variation in different re-
gions across the globe [34–40]. In the same context, [41] suggested a more sophisticated
analysis aiming to reduce the range of uncertainty in observation-based AET estimations
based on a combination of the remote sensing and machine learning tools discussed in the
present study.

In practice, combining remote sensing data and machine learning models can effi-
ciently improve water flux balance modeling and management strategies to create a more
sustainable future. This can be explained by the spatiotemporal variability in water fluxes,
which is highly influenced by the heterogeneity of the land surface, topography, lithology
climate, meteorological conditions, soil moisture content characteristics, and vegetation
vigor and density [42,43]. As evapotranspiration represents a vital component of the hy-
drosphere and atmosphere, this induces complex land–atmosphere feedback processes and
drivers. Recent developments achieved by the European Space Agency (ESA), such as the
Sentinel-1 SAR (synthetic aperture radar) and Sentinel-3 sea and land surface temperature
radiometer (SLSTR), are revolutionary in terms of their provision of free data access to the
public. It is worth noting that SLSTR involves the acquisition of TIR (thermal infrared)
data [44] and its comparison with the NDVI (normalized difference vegetation index) tem-
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poral variation [45], which is an objective of this present research study. Remotely sensed
data retrieved from Sentinel sensors are the prerequisites for the potential application of
spectral and spatial-temporal characteristics [46] in agriculture [45,47].

Studies on AET estimation and quantification have gained momentum in recent years.
For instance, [48] found that Sentinel-2 and Sentinel-3 data offer the most essential and
suitable spectral information required for AET estimation, despite the remarkable differ-
ences in the spatial resolution from 10 m to 1 km. Furthermore, various projects, such as the
Sen-ET project (https://www.esa-sen4et.org/, accessed on 5 July 2022), have demonstrated
that the high-spatial-resolution remotely sensed data (10–60 m) retrieved from Sentinel-2
and medium-spatial-resolution (1 km) thermal data captured by Sentinel-3 produce reli-
able AET estimates with great accuracy. Similarly, [10] successfully estimated AET using
multispectral data, proving the potential of remote sensing for drought monitoring studies.
Although remotely sensed data have been widely and extensively used for earth observa-
tion, limited research has been conducted in Kenya through the combination of machine
learning and remotely sensed data and the investigation of its efficiency in AET estimation
and prediction. In this context, to ensure the continuous monitoring of water resource
consumption and balance, a combination of variables, especially VH, VV, VV−VH, and
VH/VV, are of interest since they have rarely been used in previous studies [45]. These
variables, combined with Sentinel-3 data such as the NDVI and land surface temperature
(LST), therefore, can provide valuable spectral information associated with AET, unlike
other processes, such as conventional pan-evaporation and lysimetric and eddy covariance,
which require enormous datasets acquired from field campaigns [49]. The scarcity of mete-
orological data has led to an urgent need to explore alternative approaches for estimating
AET in regions. Therefore, this study is of critical scientific benefit because it provides the
basis for utilizing up-to-date alternative approaches and methodologies and integrating
them with a machine learning model GBM for AET prediction in local and regional areas
with insufficient meteorological data. Furthermore, the study demonstrates the potential of
remote sensing to estimate actual evapotranspiration. The proposed approach provides a
foundation for future local and regional research applications. This is because evapotran-
spiration estimates are fundamental parameters for water balance modeling, an essential
aspect of Kenya’s dominated rainfed agriculture, which is its economic mainstay [50,51].

In Kenya, remote sensing for the estimation of AET is critical for drought monitor-
ing [52] since the high evapotranspiration potential leads to hydric stress and, consequently,
lower crop yields [50]. Our study establishes a basis for research in other regions in Kenya,
because around 89% of its total landmass (29 out of 47 counties) is influenced by arid and
semiarid climates [53]. These areas are prone to water scarcity, a global challenge recognized
by the UN that has led to calls for action to manage water [54,55], as well as food insecurity
due to low agricultural production, the low adaptive capacity of households, and high
vulnerability to climate extremes, which have strong negative socio-economic impacts [56].
For instance, Sorre [57] indicated that the increased frequency and amount of temperature
and precipitation anomalies have led to recurring droughts in Busia County. Deficiencies in
precipitation and fluctuations in evapotranspiration influence water availability [58]. In this
regard, our study aims to investigate the efficiency of the machine learning model, i.e., the
GBM, combined with remotely sensed data retrieved from Sentinel-1SAR and Sentinel-3
SLSTR sensors in AET estimation and to determine the main variables influencing its spatial
distribution over Busia County in Western Kenya.

2. Materials and Methods
2.1. Study Area

Kenya lies between the latitudes of 4.5◦ N and 4.5◦ S and longitudes 34◦ E and
42◦ E in Eastern Africa, covering 582,646 km2 of the land surface, with a population of
47,564,296 million [59]. As Kenya is administratively divided into forty-seven counties,
it has a diverse climate and is a prosperous country with geographical features such as
the famous Great Rift Valley and iconic Mount Kenya, with a height of 5199 m above sea

https://www.esa-sen4et.org/
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level, and Lake Victoria. Busia County, presented in Figure 1, is in the west and divided
into seven administrative sub-counties: Funyula, Budalangi, Butula, Matayos, Nambale,
Teso North, and Teso South, lying on latitudes of 0◦27’ to 38.7684” north and longitudes of
34◦6’ to 41.2632” east. It borders Bungoma to the north, Kakamega to the east, and Siaya
to the southwest. The study area has a tropical climate with an average temperature of
22 ◦C and an average rainfall of 1691 mm annually [60]. It has an annual mean maximum
temperature range of 26 ◦C to 30 ◦C [61] and a mean minimum temperature range of 14 ◦C
to 22 ◦C [57,62]. Busia County experiences a bimodal rainfall distribution with an extended
rainy season in April–May and a short rainy season in October [63]. It is also prone to
flooding, specifically in the Budalangi Constituency, Teso North Sub-County, situated in
the low-lying swampy zone [64,65]. The altitude varies from 1130 m on the shores of Lake
Victoria to approximately 1500 m in Funyula and the North Teso Hills. Overall, the study
area has a complex terrain along the Samia Hills, with the Kavirondo Rocks, granitic hills
in Amukura, and Chelelemuk representing a conspicuous topographic stretch. Busia is
characterized by sandy loam soils with dark clay domination in the northern and central
parts, making it agriculturally prosperous [66], with diverse food and cash crops, including
tobacco, cotton, maize, robusta coffee, sugarcane cultivation, and various horticultural
crops [62].
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Figure 1. Busia County in western Kenya: The geographic location of the sampling points. The AET
raster map was retrieved from the WaPOR official website.

2.2. Used Data and Processing

Sentinel-1 SAR ground-range-detected (GRD) data, acquired on 24 September 2021,
and Sentinel-3 SLSTR Level 2 data, acquired on 29 September 2021, were downloaded from
the Copernicus Open Access Hub Portal (https://scihub.copernicus.eu/dhus/#/home,
accessed on 8 September 2022). Detailed information about Sentinel products is avail-
able online in the user guides [67]. A 30 m raster map of the actual evapotranspiration
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(mm) in Busia County in September 2021 was retrieved from the WaPOR (the FAO portal
to monitor Water Productivity through Open access of Remotely sensed derived data)
(https://wapor.apps.fao.org/, accessed on 8 September 2022). More details about the
reference data can be found in the metadata file available on the WaPOR 2.1 official web-
site. SLSTR, referring to the sea and land surface temperature radiometer, is a dual-scan
temperature radiometer selected for the ESA Sentinel-3 mission in low Earth orbit as a part
of the Copernicus Programme [67]. It provides a full range of applications related to earth
observation, the most prominent of which are the sea surface temperature (SST) assessment
and land monitoring [68,69]. SLSTR products offer highly accurate global and regional sea
and land surface temperatures (SST and LST) for climatological and meteorological appli-
cations. The Sentinel-3 mission provides images of a high frequency and resolution [70]. It
has sufficient complexity to interpret data due to its dependence on many factors, such as
moisture content, surface heterogeneity, and vegetation cover monitoring, among others.
SAR comprises high-resolution returns of radar frequency energy from terrain illuminated
by a sensor-generated directed beam of pulses. It monitors both geophysical and biophysi-
cal components [71]. The physical characteristics of the surface features include surface
roughness, geometric structure, and digital elevation models [72].

Sentinel-1 ground-range-detected (GRD) data were co-registered, radiometrically
calibrated, and then geometrically corrected using range Doppler terrain correction and
filtered through the speckle effect using a three-by-three Lee filter [73]. Once the data were
converted to a decibel scale, the ratio (VH/VV), the difference (VH-VV), and the radar
vegetation index (RVI) were derived using the band math tool on the Sentinel Application
Platform (SNAP). Once the Sentinel-3 SLSTR Level 2 data were co-registered, they were
geometrically corrected. Then, the LST, TCWV, NDVI, and FVC features were extracted.
After the LST values were converted from Kelvin to degrees Celsius (◦C), the products
were resampled to 30 m, stacked, and clipped using ArcMap 10.3. The derived covariates
are presented in Table 1. For the reference map, random sampling was conducted using
the “create random points” function in ArcMap 10.3 manufactured by ESRI in San Diego,
USA. As a result, 250 sampling points were created (Figure 1). Then, we extracted the
corresponding multiple values from the Sentinel-1 and Sentinel-3 derivative variables.
Once the database had been created in ArcMap 10.3, it was imported to RStudio to train,
calibrate, and test the gradient boosting model (GBM) [74]. Only 80% of the data were used
for the training, while the remaining 20% were used for the testing. Figure 2 describes the
flow chart of the study, the variables from the satellite image, and the gradient boosting
machine estimation model.

Table 1. Variables used in the study and their descriptions.

Variable Description

VH Sigma naught (σ◦) backscatter intensity in
decibels (dB)

VV Sigma naught (σ◦) backscatter intensity in
decibels (dB)

Diff The difference between VH and VV (dB)

ratio The ratio between VH and VV (dB)

RVI Radar vegetation index in (dB), 4 × VH
VH + VV [75]

LST Land surface temperature in degrees Celsius
(◦C)

FVC Fractional vegetation cover

TCWV Total column of water vapor (kg/m2)

NDVI Normalized difference vegetation index

https://wapor.apps.fao.org/
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2.3. Gradient Boosting Machine (GBM)

The ‘gbm’ R package was used to train and calibrate the model (RDocumentation).
The gbm R package implements extensions to [76] the AdaBoost algorithm and Friedman’s
gradient boosting machine [77]. The AdaBoost algorithm trains a decision tree, whereby
each observation is assigned an equal variable weight. After that, the weight of the difficult-
to-classify observations aims to improve the prediction, so that the final ensemble represents
the weighted sum of the previous tree models. GBM is a predictive modeling algorithm
that leads to the decision making of tree-like structures to reduce residual errors from the
previous iteration [78]. Hence, it is highly competitive with random forest algorithms. In
addition, boosting improves the trees’ accuracy [79]. This machine learning algorithm was
used because of its robust characteristics that produce better predictions than the simpler
ones [80,81]. Several studies have used this model for applications such as sentiment
classification [82], where GBM performed better than random forest. GBM has been used
for predictive functions [83] in related clinical research and produces better results in
cases of complex relationships. Khoi et al. [84] also demonstrated its good performance in
predicting the water quality index. The model has further shown an exclusive potential
to predict the impact of air quality on urban areas and an impressive performance in
predicting pollution caused by human activities [85].

Furthermore, GBM is an ensemble-based model that can be used for regression and
classification purposes for decision making [86] and builds on weak successive trees to
improve the previous tree. It is reliable when fitting new models to produce accurate
estimates [87]. GBM portrays superior results when combined with other techniques to
minimize the prediction error. Its basic concept is presented as follows:

Inputs:
The input data are (x, y)Ni=1, where Ni=1 is the sampling dataset. x = (x1, . . . , ) refers

to the input variables, and y refers to the response variable.
Number of iterations M.
The choice of loss of functions is Ψ(y, f), where Ψ is the loss function, y is the response

variable, and f is the function expressed as follows:

f̂(x) = y, f̂(x) = argmin[f(x)Ψ(y, f(x))]. (1)
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where f̂(x) is the estimate or approximation function (predictive learning) of x, f(x) is the
functional dependence and f̂(x) is the function estimate (predictive learning), and Ψ(y, f)
is the loss function.

The choice of base learner model is h (x, θ), a custom base learner function, which
implies a node regression tree induced in a best-first manner.

Algorithm:
Initialize f̂(0), where f̂ is a function and (0) is a constant, the initial constant value

prediction.
For t = 1 to M, do:
Compute the negative gradient gt(x), where gt(x) is the negative gradient of the loss

function associated with the whole ensemble.
Fit a new base-learner function h(x, θt), which is a simple parameterized function of

the input variables x, and h is a regression tree.
Find the best gradient descent step size ρt:

ρt = argminρ ∑ i = 1NΨ[yi, f ˆt− 1(xi) + ρh(xi, θt)] (2)

where ρt is the gradient descent.
Update the function estimate. For the function estimate at the tth iteration, the opti-

mization rule is, therefore, defined as:

f ˆ t← f ˆt− 1 + ρth(x, θt) (3)

An updated model ensures framework overfitting, which is restrained by the end
number of gradient boosting repetitions number.

Source: Friedman’s gradient boost algorithm [76,77].

2.4. Limitations of the Applied Datasets and Methodology

Data derived from different sensors with different properties, e.g., radiometric, spatial,
and spectral resolutions, might lead to uncertainties during modeling, mainly because
some preprocessing steps might lead to the loss of spectral characterization and information
in the pixels. In addition, the machine learning model applied is predictive; therefore,
it cannot generalize and outline the exact relationship between AET and the spectral
information retrieved from Sentinel-1 SAR and Sentinel-3 SLSTR Level 2. These issues
can only be resolved when a more extensive database size is accessible and additional
variables are integrated into the model. Moreover, the machine learning model was semi-
automatically calibrated. Future research will focus on the optimization algorithms for
the model hyperparameters, which will reduce the estimation errors and further improve
its accuracy. However, the present work satisfactorily demonstrates the applicability of
the methodology used and elucidates the importance of machine learning in modeling
hydrological and environmental processes using remotely sensed data.

3. Results and Discussion
3.1. Descriptive Statistics

A vast difference between a minimum value of 69.8 mm and a maximum value of
150.9 mm was revealed, indicating spatial variability in the actual evapotranspiration
distribution in the study area, as shown in Table 2 and Figure 3. Moreover, the normality
test demonstrated that the AET estimates were normally distributed, with a slight nega-
tive skewness of –0.24, which was further proved by the disparity between the mean of
115.8 mm/month and the median of 117 mm/month.
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Table 2. Descriptive statistical estimates of actual evapotranspiration in Busia County for September
2020.

Actual Evapotranspiration (mm/month) Unitless

Mean Median Minimum Maximum Skewness

115.8 117 69.8 150.9 −0.24
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3.1.1. Sentinel-1 and Sentinel-3 Used Variables

The data derived from Sentinel-1 and Sentinel-3 are shown in Figure 4 below. The
NDVI varied from 0.26 to 0.70, while the FVC varied from 0.45 to 0.72. Overall, these
variables showed a non-homogenous distribution pattern across Busia County, which
agrees with [88], who revealed the remarkable influences of the NDVI and FVC on AET,
in addition to topographical characteristics. This can be explained by the significant
contribution of vegetation to the increase in the actual evapotranspiration due to the
increased available energy absorbed by the canopy, as identified by Zhao et al. [89]. To
further support this finding, Klisch and Atzberger [90] demonstrated the applicability of
the NDVI derived from MODIS data for drought monitoring, since low estimated NDVI
values indicate stressed-out vegetation, which is an indicator of drought occurrence in
most scenarios [91]. Therefore, NDVI assessment constitutes the basis for early drought
warnings [92]. In addition, the land surface temperature (LST) values ranged from 29.7 ◦C
to 38.9 ◦C, while the TCWV estimates ranged from 33.6 kg/m2 to 37.2 kg/m2. The LST
and TCWV values were relatively high, directly contributing to high energy availability,
indicating higher AET estimates, as suggested by [93]. Lower values indicate that the
AET and LST negatively relate to air surface temperature changes [94]. The AET was
found to be proportionally increased in regions with a high net solar radiation and air
surface temperature, greatly influenced by the increase in evapotranspiration intensity,
coupled with increased atmospheric evaporative demands, thus further increasing the
frequency of droughts [58]. Nonetheless, compared to the tropics, the AET and LST
have a positive relationship in high-altitude regions [95]. Although LST variation can
be fundamental in selecting the wettest and driest pixels, as stated by Wang et al. [96],
this may also introduce uncertainties and increase prediction errors. The authors of [97]
found that Sentinel-1 and Sentinel-3 sensors can provide estimate values of the NDVI and
LST to ascertain spatiotemporal vegetation dynamics, droughts, and water availability in
water stress conditions, respectively, which are essential factors influencing, and significant
driving forces of, the AET distribution. This is consistent with Arast et al. [39], who
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demonstrated that the NDVI, net solar radiation, and other meteorological parameters
influence AET. The data from the two sensors are efficiently sufficient to derive the variables
under investigation and explore their associations with AET.
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The radar variables, i.e., the VH, VV, the ratio (VH/VV), the difference (VV−VH),
and RVI, derived from the Sentinel-1 SAR data, are presented in Figure 5. Since an elec-
tromagnetic signal received by radar sensors is highly influenced by the surface [98],
the backscatter intensity of VH polarization ranged from −26.2 dB to 15.8 dB, while the
backscatter intensity of VV polarization was slightly more robust, ranging from −21.2 dB
to 18.6 dB. Thus, this shows a more substantial variation compared to the VV backscatter
values since the more robust the co-polarization (HH or VV) reflection is, the brighter the
SAR image will be [99]. As former studies indicate, a decrease in the backscatter intensity is
chiefly attributed to vegetation growth, causing volume scattering [45,100]. The difference
(VV−VH) values ranged from−27.9 dB to 7.7 dB, while the backscatter estimated values for
the ratio (VH/VV) ranged from −27,107 to 9666. Moreover, the ratio (VH/VV) decreased
with a change in the land cover to scarce vegetation and non-vegetated rocky terrains, e.g.,
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the Kavirondo Rock series in Busia. According to many studies, the value increases during
the vegetation growth season [70,99], leading to the more significant influence of vegetation
biomass [45]. Further analysis showed that the RVI estimated values ranged from −265.38
to 163.0 dB. In general, the reflected energy drastically varied in Busia County according to
the vegetation vigor and density, which are proportionally associated with the soil moisture
content and canopy physiology in various growth stages [70]. Based on Figure 5, the bright
features can probably be attributed to riparian vegetation [99] along the water bodies, such
as the River Mososkoto and River Sio, and swampy areas, such as the Yala swamp, one of
Kenya’s most extensive freshwater wetlands.
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3.1.2. Model Training Using a Random Search

Hyperparameter optimization enables decision making concerning the most important
hyperparameters and tuning spaces. Therefore, we used the random grid search method
to calibrate the model and optimize its hyperparameters by defining the search space
as a bounded domain of hyperparameter values and randomly sampling points in that
domain [101]. The authors of [102] indicated that a random search could tremendously
improve the model accuracy by successfully probing a larger configuration space. When
the random search is compared with the grid search, according to Larochelle et al. [103], al-
though the grid search is one of the most extensively utilized hyperparameter optimization
algorithms [102], the random search, over the same domain, effectively identifies accurate
models with minimal processing. The authors of [104] also indicated that hyperparameters
must be established before starting the process.
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For GBM calibration, three hyperparameters are supposed to be optimized, including
the number of trees, learning rate, and depth of each tree. The number of trees represents
the total number of trees in the sequence or ensemble. The averaging of separately growing
trees in bagged and random forests renders overfitting with too many trees exceedingly
tricky. GBMs, on the other hand, work differently since each tree is built in sequence so as
to correct the flaws of the previous tree. The learning rate determines the extent to which
each tree contributes to the final output and affects how rapidly the algorithm descends the
gradient descent. Typical values vary from 3 to 8, yet a tree depth of 1 is not uncommon [78].
A detailed explanation of the method used to calibrate a GBM is presented in [105]. In
this study, the best hyperparameters determined using a random search were the ntree
(Number of trees) of 800, shrinkage or learning rate of 0.01, and interaction depth (depth of
each tree) of 3.

3.1.3. Relative Influences of the Variables on the Model

The calibrated model was statistically significant in estimating the AET over the study
area based on the existing reference’s physical background and AET values estimated by
the FAO in Busia County. A split criterion was applied so as to better understand and
visualize the explanatory variable’s influence on the model prediction of AET. In Figure 6, a
demonstration of the most to least influential variables affecting the AET prediction model
is shown. The more substantial the influence of the response and explanatory variable is,
the larger the value is. Figure 6b illustrates that the FVC is the most influential explanatory
variable, with the most significant impact on the modeling and estimation of the AET
in Busia. This variable is consistent with the drought patterns in the same area since
low values indicate insufficient amounts of precipitation. The total column water vapor
and land surface temperature influenced the AET on various scales, including daily and
monthly, according to Rocha et al. [96] and Wu et al. [106], revealing their great potential for
application in many agronomy-based studies [96,107,108]. These variables are imperative
for estimating regional AET, provided that soil moisture content and related variables are
available in the remote sensing area [109].
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Similarly, Probst et al. [94] found that LST variation is strongly associated with vegeta-
tion evapotranspiration and energy balance in the case of wet soil and plants. Furthermore,
the LST enhances evapotranspiration in cold air and unlimited soil water in inadequate
precipitation conditions. In addition, droughts, high temperatures, and stronger radiative
forcing lead to the drying propensity of the surface due to high evapotranspiration rates
and low soil moisture, inducing an increase in the heat flux and high temperatures [58].

Furthermore, Yang et al. [69] demonstrated that NDVI patterns are usually consistent
with the AET spatial distribution, while [45] demonstrated that the SAR backscatter and
NDVI can be used in various physical environmental conditions because they have suitable
optical plant properties. The least influential variables were the radar vegetation index
(RVI), which measures the randomness of the scattering [110], and the ratio VH/VV, both
associated with vegetation conditions. A study by Szigarski et al. [111] indicated that the
correlation between the RVI and other indices depends on the other indices’ independence
from the surface roughness and soil moisture.

Furthermore, as stated by Rosenqvist et al. [99], surface roughness and hilly terrain
may cause strong reflection, and VH polarization demonstrates multiple scattering and,
hence, a low influence on AET. From Figure 6a, the correlation matrix demonstrates varia-
tions between the AET and remotely sensed data, indicating estimated positive correlations
between the AET and FVC, NDVI, VH, and VH-VV. The findings agree with Yan et al. [112],
who used cloud-free MODIS images from 2000 to 2014 with the ETWatch system and found
that the NDVI positively correlated with the AET. Ma et al. [113] also demonstrated the
significance of the FVC as a driving parameter that affected the AET and influenced its
variation. In addition, there was an estimated weak negative correlation between the AET,
VH/VV, and RVI, while there appeared to be no correlation between the AET and VV, LST,
and TCWV. In agreement with our finding, Yan et al. [112] found that AET and LST are
negatively correlated in water-scarce areas at various spatiotemporal extents.

After identifying the most to least influential variables (Figure 6b), partial dependence
plots (PDPs) were created to visualize and understand the response variable changes, as
presented in Figure 7. Evidently, they demonstrated the change in the average predicted
AET (y) values. As demonstrated by the PDPs, the AET estimated values increased as
the majority of the variables used in the model increased. For instance, the predicted
AET estimated values increased with the increase in the NDVI (Figure 7a), which agrees
with [95,114–116], who found that this variable has a significant correlation with the AET
and is closely linked to green-leaf-area- and vegetation-based indices. A varying trend
in the AET, with the NDVI, cover varying between 55% and 62.5%, occurred, which
does not necessarily demonstrate water availability but the greenery characteristic of
vegetation [116]. The results further concur with Arast et al. [39], who found that larger
NDVI values usually indicate increased AET estimates over different spatial and temporal
timescales. The NDVI pattern did not entirely harmonize with the FVC (Figure 7b) response
change characterization. For instance, the AET estimates were the highest for a vegetation
density of 55% to 60%. In addition, the LST (Figure 7c) demonstrated varying trends in
its response change, with the highest AET estimates recorded for temperatures ranging
between 32 ◦C and 33 ◦C, whereas the highest response change in the TCWV variable
(7d) demonstrated the highest predicted AET estimates (Figure 7d). The smaller the VH
−VV (Figure 7e) index response was, the higher the predicted AET estimates for the
radar variables were. Specifically, the PDPs satisfactorily demonstrated the change in the
predicted average AET estimates as the variables varied in their distribution.
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3.2. Accuracy Assessment Using Correlation Coefficient (R) and Root-Mean-Squared Error
(RMSE)

The spatial distribution of the AET can be estimated using the GBM final model,
which contributes to the improvement and development of the proper utilization of water
systems [117]. The correlation coefficient R and root-mean-squared error (RMSE) were
used to evaluate the model’s statistical performance. The two-assessment metrics can be
determined using Equations (1) and (2):

RMSE =

√
n

∑
1
(ŷI − yi)

2/n (4)

where ŷi is the predicted value for the ith observation, yi is the observed value, and n is the
total number of observations:

R = ∑(xi − x)(yi − y)/
√

∑(xi − x)2 (yi − y)2 (5)

where xi is the x-variable in a sample, x is the mean of the x-variable values, yi is the
y-variable in a sample, and y is the mean of the y-variable values.

The model established a relationship between the remotely sensed data retrieved from
Sentinel-1 and Sentinel-3 and the AET reference data. The calibrated model yielded a
correlation coefficient r of 0.81 and an RMSE value of 10.7 mm, indicating its efficiency
in predicting the AET. Figure 8a illustrates the relationship between the measured and
estimated AET values (in mm) using the calibrated GBM model based on only two satellite
images. The model established a statistical significance, yet an overestimation occurred
in a few cases. The reason for this is that the model was semi-automatically calibrated.
However, it was satisfying, and future work will entail the application of more processed
sensor data for further investigations regarding climatological and ecological dynamics,
as evidenced in a study by the authors of [118]. Based on Figure 8b, the GBM testing
results showed a reasonably moderate association between the measured and predicted
AET values (in mm), with a correlation R coefficient of 0.47 and an RMSE of 14.1 mm. This
revealed the applied approach’s potential statistical significance, which can be used as a
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timeless basis for future studies aiming to model and map the AET spatial distribution in
similar environmental and climatic conditions.
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4. Conclusions

This research aimed to estimate the monthly mean actual evapotranspiration using
Sentinel-1 SAR ground-range-detected (GRD) and Sentinel-3 SLSTR Level 2 data in a typical
tropical climate in Busia County. The gradient boosting machine was trained and tested
using reference data acquired from the WaPOR. The model showed a strong correlation
(r = 0.81) between the observed and estimated AET data for the training and a moderate
correlation (r = 0.47) for the testing, revealing the superiority of the applied method. The
FVC was a highly influential explanatory variable, with the most significant impact on
the prediction model for AET estimation, while the ratio VV/VH was the least influential
variable regarding the AET estimation model. Although the remotely sensed data and GBM
application undoubtfully yielded promising results, further examination is highly recom-
mended using other machine learning algorithms to optimize the approach’s efficiency and
explore the nature of the statistical relationships between the AET and applied variables.
This could enable the timely and consistent monitoring of actual evapotranspiration, water
deficiencies, and agricultural sustainability, as well as ensure food security. This research
further enhances our understanding of AET assessment and the potential of using Sentinel-
1 and Sentinel-3 data for regional drought monitoring and natural resources management.
With a relatively successful estimation of the AET, drought events can easily be predicted
in future studies since the AET is one of the primary factors of drought magnitude and
occurrence. Further research will be carried out on larger scales and in different climatic
regions to validate the applicability of the proposed methodology.
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retrieve land surface temperature from the Landsat-8 thermal band. Remote Sens. 2018, 10, 431. [CrossRef]

109. García-Santos, V.; Sánchez, J.M.; Cuxart, J. Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A
State-of-the-Art Review. Remote Sens. 2022, 14, 3440. [CrossRef]

110. Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar vegetation index for estimating the vegetation water content of rice and
soybean. IEEE Geosci. Remote Sens. Lett. 2011, 9, 564–568. [CrossRef]

111. Szigarski, C.; Jagdhuber, T.; Baur, M.; Thiel, C.; Urbazaev, M.; Parrens, M.; Entekhabi, D. Analysis of the radar vegetation index
and assessment of potential for improvement. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and
Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8143–8146. [CrossRef]

112. Yan, N.; Tian, F.; Wu, B.; Zhu, W.; Yu, M. Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai Basin.
Remote Sens. 2018, 10, 332. [CrossRef]

113. Ma, Z.; Yan, N.; Wu, B.; Stein, A.; Zhu, W.; Zeng, H. Variation in actual evapotranspiration following changes in climate and
vegetation cover during an ecological restoration period (2000–2015) in the Loess Plateau, China. Sci. Total Environ. 2019, 689,
534–545. [CrossRef] [PubMed]

114. Suzuki, R.; Masuda, K. Interannual co-variability found in evapotranspiration and satellite-derived vegetation indices over
northern Asia. J. Meteorol. Soc. Jpn. 2004, 82, 1233–1241. [CrossRef]

115. Li, S.-G.; Eugster, W.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D.; Sugita, M. Energy partitioning and its biophysical
controls above a grazing steppe in central Mongolia. Agric. For. Meteorol. 2006, 137, 89–106. [CrossRef]

116. Nzioka, J.M.; Njeri, J.K.; Karanja, F.K.; Manene, M.M. On the Relationship between Satellite-based Evapotranspiration and
Normalized Difference Vegetation Index, Case Study: Narok County of Kenya. Afr. J. Phys. Sci. 2014, 1, 2313–3317. Available
online: https://core.ac.uk/download/pdf/236173325.pdf (accessed on 2 October 2022).

117. Glen, A.S.; Dickman, C.R.; Soule, M.E.; Mackey, B.G. Evaluating the role of the dingo as a trophic regulator in Australian
ecosystems. Austral Ecol. 2007, 32, 492–501. [CrossRef]

118. Muir, C.; Southworth, J.; Khatami, R.; Herrero, H.; Akyapı, B. Vegetation Dynamics and Climatological Drivers in Ethiopia at the
Turn of the Century. Remote Sens. 2021, 13, 3267. [CrossRef]

https://ceos.org/ard/files/Laymans_SAR_Interpretation_Guide_2.0.pdf
https://ceos.org/ard/files/Laymans_SAR_Interpretation_Guide_2.0.pdf
http://doi.org/10.3390/rs10091396
https://www.researchgate.net/journal/Journal-of-Machine-Learning-Research-1532-4435
http://doi.org/10.1145/1273496.1273556
https://jmlr.org/papers/volume20/18-444/18-444.pdf
http://doi.org/10.1201/9780367816377
http://doi.org/10.3390/rs12020332
http://doi.org/10.1007/s10795-005-5186-0
http://doi.org/10.3390/rs10030431
http://doi.org/10.3390/rs14143440
http://doi.org/10.1109/LGRS.2011.2174772
http://doi.org/10.1109/IGARSS.2018.8518832
http://doi.org/10.3390/rs10020332
http://doi.org/10.1016/j.scitotenv.2019.06.155
http://www.ncbi.nlm.nih.gov/pubmed/31279200
http://doi.org/10.2151/jmsj.2004.1233
http://doi.org/10.1016/j.agrformet.2006.03.010
https://core.ac.uk/download/pdf/236173325.pdf
http://doi.org/10.1111/j.1442-9993.2007.01721.x
http://doi.org/10.3390/rs13163267

	Introduction 
	Materials and Methods 
	Study Area 
	Used Data and Processing 
	Gradient Boosting Machine (GBM) 
	Limitations of the Applied Datasets and Methodology 

	Results and Discussion 
	Descriptive Statistics 
	Sentinel-1 and Sentinel-3 Used Variables 
	Model Training Using a Random Search 
	Relative Influences of the Variables on the Model 

	Accuracy Assessment Using Correlation Coefficient (R) and Root-Mean-Squared Error (RMSE) 

	Conclusions 
	References

