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Abstract: Kenya is dominated by a rainfed agricultural economy. Recurrent droughts influence food 
security. Remotely sensed data can provide high-resolution results when coupled with a suitable 
machine learning algorithm. Sentinel-1 SAR and Sentinel-3 SLSTR sensors can provide the funda-
mental characteristics for actual evapotranspiration (AET) estimation. This study aimed to estimate 
the actual monthly evapotranspiration in Busia County in Western Kenya using sentinel-1 SAR and 
Sentinel-3 SLSTR data with the application of the gradient boosting machine (GBM) model. The 
descriptive analysis provided by the model showed that the estimated mean, minimum, and maxi-
mum AET values were 116, 70, and 151 mm/month, respectively. The model performance was as-
sessed using the correlation coefficient (𝑟𝑟) and root mean square error (RMSE). The results revealed 
a correlation coefficient of 0.81 and an RMSE of 10.7 mm for the training dataset (80%), and a corre-
lation coefficient of 0.47 and an RMSE of 14.1 mm for the testing data (20%). The results are of great 
importance scientifically, as they are a conduit for exploring alternative methodologies in areas with 
scarce meteorological data. The study proves the efficiency of high-resolution data retrieved from 
Sentinel sensors coupled with machine learning algorithms, focusing on GBM as an alternative to 
accurately estimate AET. However, the optimal solution would be to obtain direct evapotranspira-
tion measurements. 

Keywords: actual evapotranspiration; Busia County; gradient boosting machine; Kenya; estimation 
modeling; Sentinel-1 SAR; Sentinel-3 SLST 
 

1. Introduction 
Water fluxes are fundamental for many theoretical, practical, and applied disciplines 

of climatology, hydrometeorology, and agriculture. Thus, the estimation and quantifica-
tion of actual evapotranspiration (AET) are equally indispensable in realizing the global, 
regional, and country-specific 2030 17 sustainable development goals of the common 
agenda of the UN. The sustainable development goals (SDG) include SDG1—no poverty, 
SDG6—clean water and sanitation, SDG13—climate action, and SDG2—zero hunger [1]. 
Moreover, the Food and Agriculture Organization (FAO) SDG indicator 6.4.1—the change 
in water use [2] efficiency, as well as 6.4.2—the level of water stress [3] over time, is es-
sential for several sectors related to the global economy, such as agriculture, industry, 
mining, and power production. In this context, agriculture services represent the most 
significant share of water consumption [4], with a higher percentage in the semiarid and 
Mediterranean climatic regions [5]. In this regard, AET estimation is crucial for adequately 
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implementing sustainable agricultural systems and achieving food security in developing 
countries. 

The importance of actual evapotranspiration cannot be undervalued, particularly in 
light of the current global challenges such as food insecurity and climate change. It is a 
major hydrological cycle component [6], along with precipitation, depicting the primary 
constituents of the surface energy budget [7]. Moreover, it is a crucial component of re-
gional and global environmental phenomena associated with meteorological, agricultural, 
and hydrological applications [8–10]. Not only do its changes influence precipitation, 
streamflow, and surface temperature, among other hydro-climatological variables [11,12], 
but it also plays a vital role in the climate system, coupled with water, carbon, and energy 
cycles [13]. Despite the creation of global initiatives aiming to directly measure AET, such 
as the FLUXNET project [14], short and inconsistent field surveys exist. In view of this, 
previous studies on machine learning applications have progressively been used in vari-
ous environment-related fields. A study by Malik et al. [15] demonstrated the potential of 
the gradient boosting machine (GBM) model for pan-evaporation process prediction in 
Iran and India. In addition, Shrivastav and Jha [16] successfully used the GBM to explore 
the effects of temperature and humidity on COVID transmission. Furthermore, Frey [17] 
demonstrated that the GBM has a significant predictive performance in natural resource 
management aiming to enhance ecological sustainability. Hailstorm prediction and fore-
casting and severe weather forecasting have been performed efficiently, proving the suit-
ability of the GBM and other machine learning models [18,19]. An accurate estimation of 
AET remains a challenging scientific problem [20–23] due to the associated prediction un-
certainty when quantifying the actual evapotranspiration [14,24]. Although the gradient 
boosting machine has been used extensively in this field, limited research has been con-
ducted to investigate its efficiency for AET estimation, which is the aim of the present 
study. 

It is also significant that studies have extensively explored these differences, revealing 
significant uncertainties in AET estimations using various modeling techniques and ap-
proaches [25–28]. The authors of [29] provided insight regarding the vast disparities in evap-
otranspiration assessment using multiple theoretical methods compared to other global var-
iable uncertainties, many of which are retrieved using satellite remote sensing systems [30–
32]. Nevertheless, [33] found that AET products show the lowest uncertainties in the case of 
the LSM (land surface model) and moderate uncertainties when using a moderate resolution 
imaging spectroradiometer (MODIS), with the highest uncertainties observed when using 
the water budget approach. However, in recent years, remote sensing has made significant 
progress in estimating and assessing AET variation over time and space. Studies have em-
ployed remote-sensing-based models in AET-related studies. Using the surface energy bal-
ance index (SEBI), two-source model (TSM), surface energy balance algorithm for land (SE-
BAL), surface energy balance system (SEBS), Eta mapping algorithm (ETMA), and atmos-
phere–land exchange inverse model (ALEXI), many researchers have successfully assessed 
and predicted AET spatiotemporal variation in different regions across the globe [34–40]. In 
the same context, [41] suggested a more sophisticated analysis aiming to reduce the range 
of uncertainty in observation-based AET estimations based on a combination of the remote 
sensing and machine learning tools discussed in the present study. 

In practice, combining remote sensing data and machine learning models can effi-
ciently improve water flux balance modeling and management strategies to create a more 
sustainable future. This can be explained by the spatiotemporal variability in water fluxes, 
which is highly influenced by the heterogeneity of the land surface, topography, lithology 
climate, meteorological conditions, soil moisture content characteristics, and vegetation 
vigor and density [42,43]. As evapotranspiration represents a vital component of the hy-
drosphere and atmosphere, this induces complex land–atmosphere feedback processes 
and drivers. Recent developments achieved by the European Space Agency (ESA), such 
as the Sentinel-1 SAR (synthetic aperture radar) and Sentinel-3 sea and land surface tem-
perature radiometer (SLSTR), are revolutionary in terms of their provision of free data 
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access to the public. It is worth noting that SLSTR involves the acquisition of TIR (thermal 
infrared) data [44] and its comparison with the NDVI (normalized difference vegetation 
index) temporal variation [45], which is an objective of this present research study. Re-
motely sensed data retrieved from Sentinel sensors are the prerequisites for the potential 
application of spectral and spatial-temporal characteristics [46] in agriculture [45,47]. 

Studies on AET estimation and quantification have gained momentum in recent 
years. For instance, [48] found that Sentinel-2 and Sentinel-3 data offer the most essential 
and suitable spectral information required for AET estimation, despite the remarkable 
differences in the spatial resolution from 10 m to 1 km. Furthermore, various projects, such 
as the Sen-ET project (https://www.esa-sen4et.org/, accessed on 5 July 2022), have demon-
strated that the high-spatial-resolution remotely sensed data (10–60 m) retrieved from 
Sentinel-2 and medium-spatial-resolution (1 km) thermal data captured by Sentinel-3 pro-
duce reliable AET estimates with great accuracy. Similarly, [10] successfully estimated 
AET using multispectral data, proving the potential of remote sensing for drought moni-
toring studies. Although remotely sensed data have been widely and extensively used for 
earth observation, limited research has been conducted in Kenya through the combination 
of machine learning and remotely sensed data and the investigation of its efficiency in 
AET estimation and prediction. In this context, to ensure the continuous monitoring of 
water resource consumption and balance, a combination of variables, especially VH, VV, 
VV−VH, and VH/VV, are of interest since they have rarely been used in previous studies 
[45]. These variables, combined with Sentinel-3 data such as the NDVI and land surface 
temperature (LST), therefore, can provide valuable spectral information associated with 
AET, unlike other processes, such as conventional pan-evaporation and lysimetric and 
eddy covariance, which require enormous datasets acquired from field campaigns [49]. 
The scarcity of meteorological data has led to an urgent need to explore alternative ap-
proaches for estimating AET in regions. Therefore, this study is of critical scientific benefit 
because it provides the basis for utilizing up-to-date alternative approaches and method-
ologies and integrating them with a machine learning model GBM for AET prediction in 
local and regional areas with insufficient meteorological data. Furthermore, the study 
demonstrates the potential of remote sensing to estimate actual evapotranspiration. The 
proposed approach provides a foundation for future local and regional research applica-
tions. This is because evapotranspiration estimates are fundamental parameters for water 
balance modeling, an essential aspect of Kenya’s dominated rainfed agriculture, which is 
its economic mainstay [50,51]. 

In Kenya, remote sensing for the estimation of AET is critical for drought monitoring 
[52] since the high evapotranspiration potential leads to hydric stress and, consequently, 
lower crop yields [50]. Our study establishes a basis for research in other regions in Kenya, 
because around 89% of its total landmass (29 out of 47 counties) is influenced by arid and 
semiarid climates [53]. These areas are prone to water scarcity, a global challenge recog-
nized by the UN that has led to calls for action to manage water [54,55], as well as food 
insecurity due to low agricultural production, the low adaptive capacity of households, 
and high vulnerability to climate extremes, which have strong negative socio-economic 
impacts [56]. For instance, Sorre [57] indicated that the increased frequency and amount 
of temperature and precipitation anomalies have led to recurring droughts in Busia 
County. Deficiencies in precipitation and fluctuations in evapotranspiration influence wa-
ter availability [58]. In this regard, our study aims to investigate the efficiency of the ma-
chine learning model, i.e., the GBM, combined with remotely sensed data retrieved from 
Sentinel-1SAR and Sentinel-3 SLSTR sensors in AET estimation and to determine the main 
variables influencing its spatial distribution over Busia County in Western Kenya. 
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2. Materials and Methods 
2.1. Study Area 

Kenya lies between the latitudes of 4.5° N and 4.5° S and longitudes 34° E and 42° E 
in Eastern Africa, covering 582,646 km2 of the land surface, with a population of 47,564,296 
million [59]. As Kenya is administratively divided into forty-seven counties, it has a di-
verse climate and is a prosperous country with geographical features such as the famous 
Great Rift Valley and iconic Mount Kenya, with a height of 5199 m above sea level, and 
Lake Victoria. Busia County, presented in Figure 1, is in the west and divided into seven 
administrative sub-counties: Funyula, Budalangi, Butula, Matayos, Nambale, Teso North, 
and Teso South, lying on latitudes of 0°27’ to 38.7684” north and longitudes of 34°6’ to 
41.2632” east. It borders Bungoma to the north, Kakamega to the east, and Siaya to the 
southwest. The study area has a tropical climate with an average temperature of 22 °C and 
an average rainfall of 1691 mm annually [60]. It has an annual mean maximum tempera-
ture range of 26 °C to 30 °C [61] and a mean minimum temperature range of 14 °C to 22 
°C [57,62]. Busia County experiences a bimodal rainfall distribution with an extended 
rainy season in April–May and a short rainy season in October [63]. It is also prone to 
flooding, specifically in the Budalangi Constituency, Teso North Sub-County, situated in 
the low-lying swampy zone [64,65]. The altitude varies from 1130 m on the shores of Lake 
Victoria to approximately 1500 m in Funyula and the North Teso Hills. Overall, the study 
area has a complex terrain along the Samia Hills, with the Kavirondo Rocks, granitic hills 
in Amukura, and Chelelemuk representing a conspicuous topographic stretch. Busia is 
characterized by sandy loam soils with dark clay domination in the northern and central 
parts, making it agriculturally prosperous [66], with diverse food and cash crops, includ-
ing tobacco, cotton, maize, robusta coffee, sugarcane cultivation, and various horticultural 
crops [62]. 
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Figure 1. Busia County in western Kenya: The geographic location of the sampling points. The AET 
raster map was retrieved from the WaPOR official website. 

2.2. Used Data and Processing 
Sentinel-1 SAR ground-range-detected (GRD) data, acquired on 24 September 2021, 

and Sentinel-3 SLSTR Level 2 data, acquired on 29 September 2021, were downloaded 
from the Copernicus Open Access Hub Portal (https://scihub.copernicus.eu/dhus/#/home, 
accessed on 8 September 2022). Detailed information about Sentinel products is available 
online in the user guides [67]. A 30 m raster map of the actual evapotranspiration (mm) in 
Busia County in September 2021 was retrieved from the WaPOR (the FAO portal to mon-
itor Water Productivity through Open access of Remotely sensed derived data) 
(https://wapor.apps.fao.org/, accessed on 8 September 2022). More details about the refer-
ence data can be found in the metadata file available on the WaPOR 2.1 official website. 
SLSTR, referring to the sea and land surface temperature radiometer, is a dual-scan tem-
perature radiometer selected for the ESA Sentinel-3 mission in low Earth orbit as a part of 
the Copernicus Programme [67]. It provides a full range of applications related to earth 
observation, the most prominent of which are the sea surface temperature (SST) assess-
ment and land monitoring [68,69]. SLSTR products offer highly accurate global and re-
gional sea and land surface temperatures (SST and LST) for climatological and meteoro-
logical applications. The Sentinel-3 mission provides images of a high frequency and res-
olution [70]. It has sufficient complexity to interpret data due to its dependence on many 
factors, such as moisture content, surface heterogeneity, and vegetation cover monitoring, 
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among others. SAR comprises high-resolution returns of radar frequency energy from ter-
rain illuminated by a sensor-generated directed beam of pulses. It monitors both geophys-
ical and biophysical components [71]. The physical characteristics of the surface features 
include surface roughness, geometric structure, and digital elevation models [72]. 

Sentinel-1 ground-range-detected (GRD) data were co-registered, radiometrically 
calibrated, and then geometrically corrected using range Doppler terrain correction and 
filtered through the speckle effect using a three-by-three Lee filter [73]. Once the data were 
converted to a decibel scale, the ratio (VH/VV), the difference (VH-VV), and the radar 
vegetation index (RVI) were derived using the band math tool on the Sentinel Application 
Platform (SNAP). Once the Sentinel-3 SLSTR Level 2 data were co-registered, they were 
geometrically corrected. Then, the LST, TCWV, NDVI, and FVC features were extracted. 
After the LST values were converted from Kelvin to degrees Celsius (°C), the products 
were resampled to 30 m, stacked, and clipped using ArcMap 10.3. The derived covariates 
are presented in Table 1. For the reference map, random sampling was conducted using 
the “create random points” function in ArcMap 10.3 manufactured by ESRI in San Diego, 
USA. As a result, 250 sampling points were created (Figure 1). Then, we extracted the 
corresponding multiple values from the Sentinel-1 and Sentinel-3 derivative variables. 
Once the database had been created in ArcMap 10.3, it was imported to RStudio to train, 
calibrate, and test the gradient boosting model (GBM) [74]. Only 80% of the data were 
used for the training, while the remaining 20% were used for the testing. Figure 2 de-
scribes the flow chart of the study, the variables from the satellite image, and the gradient 
boosting machine estimation model. 

 
Figure 2. Flow chart of the study. 

Table 1. Variables used in the study and their descriptions. 

Variable Description 
VH Sigma naught (σ°) backscatter intensity in decibels (dB) 
VV Sigma naught (σ°) backscatter intensity in decibels (dB) 
Diff The difference between VH and VV (dB) 
ratio The ratio between VH and VV (dB) 
RVI Radar vegetation index in (dB), 4×𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉
 [75] 

LST Land surface temperature in degrees Celsius (°C) 
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FVC Fractional vegetation cover 
TCWV Total column of water vapor (kg/m2) 
NDVI Normalized difference vegetation index 

2.3. Gradient Boosting Machine (GBM) 
The ‘gbm’ R package was used to train and calibrate the model (RDocumentation). 

The gbm R package implements extensions to [76] the AdaBoost algorithm and Fried-
man’s gradient boosting machine [77]. The AdaBoost algorithm trains a decision tree, 
whereby each observation is assigned an equal variable weight. After that, the weight of 
the difficult-to-classify observations aims to improve the prediction, so that the final en-
semble represents the weighted sum of the previous tree models. GBM is a predictive 
modeling algorithm that leads to the decision making of tree-like structures to reduce re-
sidual errors from the previous iteration [78]. Hence, it is highly competitive with random 
forest algorithms. In addition, boosting improves the trees’ accuracy [79]. This machine 
learning algorithm was used because of its robust characteristics that produce better pre-
dictions than the simpler ones [80,81]. Several studies have used this model for applica-
tions such as sentiment classification [82], where GBM performed better than random for-
est. GBM has been used for predictive functions [83] in related clinical research and pro-
duces better results in cases of complex relationships. Khoi et al. [84] also demonstrated 
its good performance in predicting the water quality index. The model has further shown 
an exclusive potential to predict the impact of air quality on urban areas and an impressive 
performance in predicting pollution caused by human activities [85]. 

Furthermore, GBM is an ensemble-based model that can be used for regression and 
classification purposes for decision making [86] and builds on weak successive trees to 
improve the previous tree. It is reliable when fitting new models to produce accurate es-
timates [87]. GBM portrays superior results when combined with other techniques to min-
imize the prediction error. Its basic concept is presented as follows: 

Inputs: 
The input data are (x, y)𝑵𝑵𝒊𝒊=𝟏𝟏, where 𝑵𝑵𝒊𝒊=𝟏𝟏 is the sampling dataset. 𝒙𝒙 =  (𝒙𝒙𝟏𝟏, … , ) re-

fers to the input variables, and 𝒚𝒚 refers to the response variable. 
Number of iterations 𝑴𝑴. 
The choice of loss of functions is 𝜳𝜳(𝒚𝒚,𝒇𝒇), where 𝜳𝜳 is the loss function, 𝒚𝒚 is the re-

sponse variable, and f is the function expressed as follows: 

 𝒇𝒇�(𝒙𝒙) = 𝒚𝒚, 𝒇𝒇�(𝒙𝒙) = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚[𝒇𝒇(𝒙𝒙)𝜳𝜳�𝒚𝒚,𝒇𝒇(𝒙𝒙)�]. (1) 

where 𝒇𝒇�(𝒙𝒙) is the estimate or approximation function (predictive learning) of 𝒙𝒙, 𝒇𝒇(𝒙𝒙) is 
the functional dependence and 𝒇𝒇�(𝒙𝒙) is the function estimate (predictive learning), and 
𝜳𝜳(𝒚𝒚,𝒇𝒇) is the loss function. 

The choice of base learner model is 𝒉𝒉 (𝒙𝒙,𝜽𝜽), a custom base learner function, which 
implies a node regression tree induced in a best-first manner. 

Algorithm: 
Initialize 𝒇𝒇�(𝟎𝟎), where 𝒇𝒇�  is a function and (𝟎𝟎) is a constant, the initial constant 

value prediction. 
For t = 1 to 𝑴𝑴, do: 
Compute the negative gradient 𝒈𝒈𝒈𝒈(𝒙𝒙), where 𝒈𝒈𝒈𝒈(𝒙𝒙) is the negative gradient of the 

loss function associated with the whole ensemble. 
Fit a new base-learner function 𝒉𝒉(𝒙𝒙,𝜽𝜽𝜽𝜽), which is a simple parameterized function 

of the input variables 𝒙𝒙, and 𝒉𝒉 is a regression tree. 
Find the best gradient descent step size 𝝆𝝆𝝆𝝆: 

 𝝆𝝆𝝆𝝆 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝝆𝝆∑𝒊𝒊 = 𝟏𝟏𝟏𝟏𝟏𝟏[𝒚𝒚𝒚𝒚,𝒇𝒇ˆ𝒕𝒕 − 𝟏𝟏(𝒙𝒙𝒙𝒙)  +  𝝆𝝆𝝆𝝆(𝒙𝒙𝒙𝒙,𝜽𝜽𝜽𝜽)]  (2) 

Where 𝝆𝝆𝝆𝝆 is the gradient descent. 
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Update the function estimate. For the function estimate at the tth iteration, the opti-
mization rule is, therefore, defined as: 

𝒇𝒇ˆ𝒕𝒕 ← 𝒇𝒇ˆ𝒕𝒕 − 𝟏𝟏 +  𝝆𝝆𝒕𝒕𝒕𝒕(𝒙𝒙,𝜽𝜽𝒕𝒕)  (3) 

An updated model ensures framework overfitting, which is restrained by the end 
number of gradient boosting repetitions number. 

Source: Friedman’s gradient boost algorithm [76,77]. 

2.4. Limitations of the Applied Datasets and Methodology 
Data derived from different sensors with different properties, e.g., radiometric, spa-

tial, and spectral resolutions, might lead to uncertainties during modeling, mainly because 
some preprocessing steps might lead to the loss of spectral characterization and infor-
mation in the pixels. In addition, the machine learning model applied is predictive; there-
fore, it cannot generalize and outline the exact relationship between AET and the spectral 
information retrieved from Sentinel-1 SAR and Sentinel-3 SLSTR Level 2. These issues can 
only be resolved when a more extensive database size is accessible and additional varia-
bles are integrated into the model. Moreover, the machine learning model was semi-auto-
matically calibrated. Future research will focus on the optimization algorithms for the 
model hyperparameters, which will reduce the estimation errors and further improve its 
accuracy. However, the present work satisfactorily demonstrates the applicability of the 
methodology used and elucidates the importance of machine learning in modeling hy-
drological and environmental processes using remotely sensed data. 

3. Results and Discussion 
3.1. Descriptive Statistics 

A vast difference between a minimum value of 69.8 mm and a maximum value of 150.9 
mm was revealed, indicating spatial variability in the actual evapotranspiration distribution 
in the study area, as shown in Table 2 and Figure 3. Moreover, the normality test demon-
strated that the AET estimates were normally distributed, with a slight negative skewness 
of –0.24, which was further proved by the disparity between the mean of 115.8 mm/month 
and the median of 117 mm/month. 

Table 2. Descriptive statistical estimates of actual evapotranspiration in Busia County for September 
2020. 

Actual Evapotranspiration (mm/month) Unitless 
Mean Median Minimum Maximum Skewness 
115.8 117 69.8 150.9 −0.24 
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Figure 3. Histogram of the data distribution with the normality curve. 

3.1.1. Sentinel-1 and Sentinel-3 Used Variables 
The data derived from Sentinel-1 and Sentinel-3 are shown in Figure 4 below. The 

NDVI varied from 0.26 to 0.70, while the FVC varied from 0.45 to 0.72. Overall, these var-
iables showed a non-homogenous distribution pattern across Busia County, which agrees 
with [88], who revealed the remarkable influences of the NDVI and FVC on AET, in ad-
dition to topographical characteristics. This can be explained by the significant contribu-
tion of vegetation to the increase in the actual evapotranspiration due to the increased 
available energy absorbed by the canopy, as identified by Zhao et al. [89]. To further sup-
port this finding, Klisch and Atzberger [90] demonstrated the applicability of the NDVI 
derived from MODIS data for drought monitoring, since low estimated NDVI values in-
dicate stressed-out vegetation, which is an indicator of drought occurrence in most sce-
narios [91]. Therefore, NDVI assessment constitutes the basis for early drought warnings 
[92]. In addition, the land surface temperature (LST) values ranged from 29.7 °C to 38.9 
°C, while the TCWV estimates ranged from 33.6 kg/m2 to 37.2 kg/m2. The LST and TCWV 
values were relatively high, directly contributing to high energy availability, indicating 
higher AET estimates, as suggested by [93]. Lower values indicate that the AET and LST 
negatively relate to air surface temperature changes [94]. The AET was found to be pro-
portionally increased in regions with a high net solar radiation and air surface tempera-
ture, greatly influenced by the increase in evapotranspiration intensity, coupled with in-
creased atmospheric evaporative demands, thus further increasing the frequency of 
droughts [58]. Nonetheless, compared to the tropics, the AET and LST have a positive 
relationship in high-altitude regions [95]. Although LST variation can be fundamental in 
selecting the wettest and driest pixels, as stated by Wang et al. [96], this may also introduce 
uncertainties and increase prediction errors. The authors of [97] found that Sentinel-1 and 
Sentinel-3 sensors can provide estimate values of the NDVI and LST to ascertain spatio-
temporal vegetation dynamics, droughts, and water availability in water stress condi-
tions, respectively, which are essential factors influencing, and significant driving forces 
of, the AET distribution. This is consistent with Arast et al. [39], who demonstrated that 
the NDVI, net solar radiation, and other meteorological parameters influence AET. The 
data from the two sensors are efficiently sufficient to derive the variables under investi-
gation and explore their associations with AET. 



Atmosphere 2022, 13, 1927 10 of 21 
 

 

 
Figure 4. Variables derived from Sentinel-3 SLSTR data: (a) NDVI, (b) FVC, (c) LST, and (d) TCWV. 

The radar variables, i.e., the VH, VV, the ratio (VH/VV), the difference (VV−VH), and 
RVI, derived from the Sentinel-1 SAR data, are presented in Figure 5. Since an electromag-
netic signal received by radar sensors is highly influenced by the surface [98], the backscat-
ter intensity of VH polarization ranged from −26.2 dB to 15.8 dB, while the backscatter 
intensity of VV polarization was slightly more robust, ranging from −21.2 dB to 18.6 dB. 
Thus, this shows a more substantial variation compared to the VV backscatter values since 
the more robust the co-polarization (HH or VV) reflection is, the brighter the SAR image 
will be [99]. As former studies indicate, a decrease in the backscatter intensity is chiefly 
attributed to vegetation growth, causing volume scattering [45,100]. The difference 
(VV−VH) values ranged from −27.9 dB to 7.7 dB, while the backscatter estimated values 
for the ratio (VH/VV) ranged from −27,107 to 9666. Moreover, the ratio (VH/VV) decreased 
with a change in the land cover to scarce vegetation and non-vegetated rocky terrains, 
e.g., the Kavirondo Rock series in Busia. According to many studies, the value increases 
during the vegetation growth season [70,99], leading to the more significant influence of 
vegetation biomass [45]. Further analysis showed that the RVI estimated values ranged 



Atmosphere 2022, 13, 1927 11 of 21 
 

 

from −265.38 to 163.0 dB. In general, the reflected energy drastically varied in Busia 
County according to the vegetation vigor and density, which are proportionally associ-
ated with the soil moisture content and canopy physiology in various growth stages [70]. 
Based on Figure 5, the bright features can probably be attributed to riparian vegetation 
[99] along the water bodies, such as the River Mososkoto and River Sio, and swampy ar-
eas, such as the Yala swamp, one of Kenya’s most extensive freshwater wetlands. 

 
Figure 5. Remotely sensed variables derived from Sentinel-1 SAR data: (a) VH, (b) VV, (c) difference 
(VH−VV), (d) ratio, and (e) RVI. 

3.1.2. Model Training Using a Random Search 
Hyperparameter optimization enables decision making concerning the most im-

portant hyperparameters and tuning spaces. Therefore, we used the random grid search 
method to calibrate the model and optimize its hyperparameters by defining the search 
space as a bounded domain of hyperparameter values and randomly sampling points in 
that domain [101]. The authors of [102] indicated that a random search could tremen-
dously improve the model accuracy by successfully probing a larger configuration space. 
When the random search is compared with the grid search, according to Larochelle et al. 
[103], although the grid search is one of the most extensively utilized hyperparameter op-
timization algorithms [102], the random search, over the same domain, effectively identi-
fies accurate models with minimal processing. The authors of [104] also indicated that 
hyperparameters must be established before starting the process. 

For GBM calibration, three hyperparameters are supposed to be optimized, including 
the number of trees, learning rate, and depth of each tree. The number of trees represents 
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the total number of trees in the sequence or ensemble. The averaging of separately grow-
ing trees in bagged and random forests renders overfitting with too many trees exceed-
ingly tricky. GBMs, on the other hand, work differently since each tree is built in sequence 
so as to correct the flaws of the previous tree. The learning rate determines the extent to 
which each tree contributes to the final output and affects how rapidly the algorithm de-
scends the gradient descent. . Typical values vary from 3 to 8, yet a tree depth of 1 is not 
uncommon [78]. A detailed explanation of the method used to calibrate a GBM is pre-
sented in [105]. In this study, the best hyperparameters determined using a random search 
were the ntree (Number of trees) of 800, shrinkage or learning rate of 0.01, and interaction 
depth (depth of each tree) of 3. 

3.1.3. Relative Influences of the Variables on the Model 
The calibrated model was statistically significant in estimating the AET over the 

study area based on the existing reference’s physical background and AET values esti-
mated by the FAO in Busia County. A split criterion was applied so as to better under-
stand and visualize the explanatory variable’s influence on the model prediction of AET. 
In Figure 6, a demonstration of the most to least influential variables affecting the AET 
prediction model is shown. The more substantial the influence of the response and ex-
planatory variable is, the larger the value is. Figure 6b illustrates that the FVC is the most 
influential explanatory variable, with the most significant impact on the modeling and 
estimation of the AET in Busia. This variable is consistent with the drought patterns in the 
same area since low values indicate insufficient amounts of precipitation. The total col-
umn water vapor and land surface temperature influenced the AET on various scales, 
including daily and monthly, according to Rocha et al. [96] and Wu et al. [106], revealing 
their great potential for application in many agronomy-based studies [96,107,108]. These 
variables are imperative for estimating regional AET, provided that soil moisture content 
and related variables are available in the remote sensing area [109]. 

 
Figure 6. (a) Pearson’s correlation between the AET and remotely sensed data and (b) variables’ 
importance based on the GBM model. 

Similarly, Probst et al. [94] found that LST variation is strongly associated with veg-
etation evapotranspiration and energy balance in the case of wet soil and plants. Further-
more, the LST enhances evapotranspiration in cold air and unlimited soil water in inade-
quate precipitation conditions. In addition, droughts, high temperatures, and stronger ra-
diative forcing lead to the drying propensity of the surface due to high evapotranspiration 
rates and low soil moisture, inducing an increase in the heat flux and high temperatures 
[58]. 
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Furthermore, Yang et al. [69] demonstrated that NDVI patterns are usually consistent 
with the AET spatial distribution, while [45] demonstrated that the SAR backscatter and 
NDVI can be used in various physical environmental conditions because they have suita-
ble optical plant properties. The least influential variables were the radar vegetation index 
(RVI), which measures the randomness of the scattering [110], and the ratio VH/VV, both 
associated with vegetation conditions. A study by Szigarski et al. [111] indicated that the 
correlation between the RVI and other indices depends on the other indices’ independ-
ence from the surface roughness and soil moisture. 

Furthermore, as stated by Rosenqvist et al. [99], surface roughness and hilly terrain 
may cause strong reflection, and VH polarization demonstrates multiple scattering and, 
hence, a low influence on AET. From Figure 6a, the correlation matrix demonstrates vari-
ations between the AET and remotely sensed data, indicating estimated positive correla-
tions between the AET and FVC, NDVI, VH, and VH-VV. The findings agree with Yan et 
al. [112], who used cloud-free MODIS images from 2000 to 2014 with the ETWatch system 
and found that the NDVI positively correlated with the AET. Ma et al. [113] also demon-
strated the significance of the FVC as a driving parameter that affected the AET and influ-
enced its variation. In addition, there was an estimated weak negative correlation between 
the AET, VH/VV, and RVI, while there appeared to be no correlation between the AET 
and VV, LST, and TCWV. In agreement with our finding, Yan et al. [112] found that AET 
and LST are negatively correlated in water-scarce areas at various spatiotemporal extents. 

After identifying the most to least influential variables (Figure 6b), partial depend-
ence plots (PDPs) were created to visualize and understand the response variable changes, 
as presented in Figure 7. Evidently, they demonstrated the change in the average pre-
dicted AET (y) values. As demonstrated by the PDPs, the AET estimated values increased 
as the majority of the variables used in the model increased. For instance, the predicted 
AET estimated values increased with the increase in the NDVI (Figure 7a), which agrees 
with [95,114–116], who found that this variable has a significant correlation with the AET 
and is closely linked to green-leaf-area- and vegetation-based indices. A varying trend in 
the AET, with the NDVI, cover varying between 55% and 62.5%, occurred, which does not 
necessarily demonstrate water availability but the greenery characteristic of vegetation 
[116]. The results further concur with Arast et al. [39], who found that larger NDVI values 
usually indicate increased AET estimates over different spatial and temporal timescales. 
The NDVI pattern did not entirely harmonize with the FVC (Figure 7b) response change 
characterization. For instance, the AET estimates were the highest for a vegetation density 
of 55% to 60%. In addition, the LST (Figure 7c) demonstrated varying trends in its re-
sponse change, with the highest AET estimates recorded for temperatures ranging be-
tween 32 °C and 33 °C, whereas the highest response change in the TCWV variable (7d) 
demonstrated the highest predicted AET estimates (Figure 7d). The smaller the VH −VV 
(Figure 7e) index response was, the higher the predicted AET estimates for the radar var-
iables were. Specifically, the PDPs satisfactorily demonstrated the change in the predicted 
average AET estimates as the variables varied in their distribution. 
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Figure 7. Variation in the AET(y) with the most significant covariates in Busia County: (a) NDVI, 
(b) FVC, (c) LST, (d) TCWV, and (e) VH −VV. 

3.2. Accuracy Assessment Using Correlation Coefficient (R) and Root-Mean-Squared Error (RMSE) 
The spatial distribution of the AET can be estimated using the GBM final model, 

which contributes to the improvement and development of the proper utilization of water 
systems [117]. The correlation coefficient R and root-mean-squared error (RMSE) were 
used to evaluate the model’s statistical performance. The two-assessment metrics can be 
determined using Equations (1) and (2): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (ŷ𝐼𝐼  −  𝑦𝑦𝑖𝑖)²/𝑛𝑛𝑛𝑛
1   (4) 

Where ŷi is the predicted value for the ith observation, yi is the observed value, and n is 
the total number of observations: 

𝑅𝑅 =  ∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�) �∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2⁄   (5) 

Where xi is the x-variable in a sample, 𝑥̅𝑥 is the mean of the x-variable values, yi is the y-
variable in a sample, and 𝑦𝑦� is the mean of the y-variable values. 

The model established a relationship between the remotely sensed data retrieved from 
Sentinel-1 and Sentinel-3 and the AET reference data. The calibrated model yielded a corre-
lation coefficient 𝑟𝑟 of 0.81 and an RMSE value of 10.7 mm, indicating its efficiency in pre-
dicting the AET. Figure 8a illustrates the relationship between the measured and estimated 
AET values (in mm) using the calibrated GBM model based on only two satellite images. 
The model established a statistical significance, yet an overestimation occurred in a few 
cases. The reason for this is that the model was semi-automatically calibrated. However, it 
was satisfying, and future work will entail the application of more processed sensor data for 
further investigations regarding climatological and ecological dynamics, as evidenced in a 
study by the authors of [118]. Based on Figure 8b, the GBM testing results showed a reason-
ably moderate association between the measured and predicted AET values (in mm), with 
a correlation R coefficient of 0.47 and an RMSE of 14.1 mm. This revealed the applied ap-
proach's potential statistical significance, which can be used as a timeless basis for future 
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studies aiming to model and map the AET spatial distribution in similar environmental and 
climatic conditions. 

 
Figure 8. Relationship between the observed and predicted AET values for (a) the training set (80%) 
and (b) the testing set (20%). 

4. Conclusions 
This research aimed to estimate the monthly mean actual evapotranspiration using 

Sentinel-1 SAR ground-range-detected (GRD) and Sentinel-3 SLSTR Level 2 data in a typ-
ical tropical climate in Busia County. The gradient boosting machine was trained and 
tested using reference data acquired from the WaPOR. The model showed a strong corre-
lation (r = 0.81) between the observed and estimated AET data for the training and a mod-
erate correlation (r= 0.47) for the testing, revealing the superiority of the applied method. 
The FVC was a highly influential explanatory variable, with the most significant impact 
on the prediction model for AET estimation, while the ratio VV/VH was the least influen-
tial variable regarding the AET estimation model. Although the remotely sensed data and 
GBM application undoubtfully yielded promising results, further examination is highly 
recommended using other machine learning algorithms to optimize the approach’s effi-
ciency and explore the nature of the statistical relationships between the AET and applied 
variables. This could enable the timely and consistent monitoring of actual evapotranspi-
ration, water deficiencies, and agricultural sustainability, as well as ensure food security. 
This research further enhances our understanding of AET assessment and the potential of 
using Sentinel- 1 and Sentinel-3 data for regional drought monitoring and natural re-
sources management. With a relatively successful estimation of the AET, drought events 
can easily be predicted in future studies since the AET is one of the primary factors of 
drought magnitude and occurrence. Further research will be carried out on larger scales 
and in different climatic regions to validate the applicability of the proposed methodol-
ogy. 

Author Contributions: Conceptualization: P.K.M. and G.S.; data processing and code writing, G.S.; 
writing—original draft preparation P.K.M.; writing—review and editing, P.K.M. and G.S., data in-
terpretation, manuscript revision, G.T., T.W., and B.S. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: The research was supported by OTKA No. K-138176, GINOP-2.3.2-15-2016-00007, 
GINOP-2.3.2-15-2016-0005. The Stipendium Hungaricum doctoral research scholarship of the Hun-
garian government is financially supporting Peter K. Musyimi and Ghada Sahbeni’s research.  



Atmosphere 2022, 13, 1927 16 of 21 
 

 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data that supported this research can be found on the Copernicus 
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) and the FAO WaPOR 
(https://wapor.apps.fao.org/). R code used in this study can be shared upon request. 

Acknowledgments: The authors would like to thank the Editors, Assistant Editors, and anonymous 
reviewers for their support and constructive comments that helped improve the quality of this sci-
entific article. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. UN. The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean 

(LC/G.2681-P/Rev.3), Santiago. 2018. Available online: https://www.cepal.org/sites/de-
fault/files/events/files/2030_agenda_and_the_sdgs_an_opportunity_for_latin_america_and_the_caribbean.pdf (accessed on 18 
September 2022 ). 

2. UN-Water. Step-by-Step Methodology for Monitoring Water Use Efficiency (6.4.1); Annual Technical Report; UN-Water: Geneva, 
Switzerland 2019. Available online: https://www.unwater.org/publications/step-step-methodology-monitoring-water-use-effi-
ciency-641/.(Accessed on 18 September 2022) 

3. UN-Water. Step-by-Step Methodology for Monitoring Water Stress (6.4.2); Annual Technical Report; UN-Water: Geneva, Switzer-
land 2019 Available online: https://www.unwater.org/publications/step-step-methodology-monitoring-water-stress-64-2/ (ac-
cessed on  18 September 2022). 

4. ET4FAO 2022. Increasing Crop Water Use Efficiency at Multiple Scales Using Sentinel Evapotranspiration (ET4FAO). Available 
online: https://eo4society.esa.int/projects/et4fao/ (accessed on 10 September 2022 ). 

5. Food and Agriculture Organization of the United Nations. AQUASTAT-FAO. FAO's Information System on Water and Agri-
culture. 2018. Available online: http://www.fao.org/aquastat/en/ (accessed on 18 September 2022 ). 

6. Budagovskyi, A.I.; Novák, V. Theory of evapotranspiration:  Transpiration and its quantitative description. J. Hydrol. Hydro-
mech. 2011, 59, 3–23. https://doi.org/10.2478/v10098-011-0001-0. 

7. Baldocchi, D.D.; Falge, E.; Wilson, K. A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological 
variables across hour to multi-year time scales. Agric. For. Meteorol. 2001, 107, 1–27. https://doi.org/10.1016/S0168-192300228-8. 

8. Trenberth, K.E.; Smith, L.; T. Qian, T.; Dai, A.; Fasullo, J. Estimates of the global water budget and its annual cycle using obser-
vational and model data. J. Hydrometeorol. 2007, 8, 758–769. https://doi.org/10.1175/JHM600.1. 

9. El-Shirbeny, M.A.; Abutaleb, K.A. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data. Earth 
Syst. Environ. 2018, 2, 367–375. https://doi.org/10.1007/s41748-018-0053-y. 

10. El-Shirbeny, M.A.; Saleh, S.M. Actual evapotranspiration evaluation based on multi-sensed data. J. Arid. Agric. 2021, 7, 95–102. 
https://doi.org/10.25081/jaa.2021.v7.7087. 

11. El-Shirbeny, M.A.; Ali, A.M.; Khdery, G.A.; Saleh, N.H.; Afify, N.M.; Badr, M.A.; Bauomy, E.M. Monitoring agricultural water 
in the desert environment of New Valley Governorate for sustainable agricultural development: A case study of Kharga. Euro-
Mediterranean J. Environ. Integr. 2021, 6, 1–15. http://doi.org/10.1007/s41207-021-00256-5. 

12. Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. 
Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. https://doi.org/10.1126/sci-
ence.1100217. 

13. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil mois-
ture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. https://doi.org/10.1016/j. earsci-
rev.2010.02.004. 

14. Jung, M., Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. 
Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. 
https://doi.org/10.1038/nature09396. 

15. Malik, A.; Saggi, M.K.; Rehman, S.; Sajjad, H.; Inyurt, S.; Bhatia, A.S.; Farooque, A.A.; Oudah, A.Y.; Yaseen, Z.M. Deep learning 
versus gradient boosting machine for pan evaporation prediction. Eng. Appl. Comput. Fluid Mech. 2022, 16, 570–587. 
https://doi.org/10.1080/19942060.2022.2027273. 

16. Shrivastav, L.K.; Jha, S.K. A gradient boosting machine learning approach in modeling the impact of temperature and humidity 
on the transmission rate of COVID-19 in India. Appl. Intell. 2021, 51, 2727–2739. https://doi.org/10.1007/s10489-020-01997-6. 

17. Frey, U.J. Putting machine learning to use in natural resource management-improving model performance. Ecol. Soc. 2020, 
25(4),45. https://doi.org/10.5751/ES-12124-250445. 

18. Gagne, D.J.; Haupt, S.E.; Nychka, D.W.; Thompson, G. Interpretable deep learning for spatial analysis of severe hailstorms. 
Mon. Weather. Rev. 2019, 147, 2827–2845. https://doi.org/10.1175/MWR-D-18-0316.1. 



Atmosphere 2022, 13, 1927 17 of 21 
 

 

19. McGovern, A.; Elmore, K.L.; Gagne II, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using artificial 
intelligence to improve real-time decision-making for high-impact weather. Bull. Amer. Meteor. Soc. 2017, 98 2073–2090. 
https://doi.org/10.1175/BAMS-D-16-0123.1. 

20. Castellvi, F.; Snyder, R.L. A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal 
analysis. J. Hydrol. 2010, 381, 213–220. https://doi.org/10.1016/j.jhydrol.2009.11.043. 

21. Faharani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration; Progress in measurement and modeling in 
agriculture. Trans. ASABE 2007, 50, 1627–1638. https://doi.org/10.13031/2013.23965. 

22. Loos, C.; Gayler, S.; Priesack, S. Assessment of water balance simulations for large-scale weighing lysimeters. J. Hydrol. 2007, 
335, 259–270. https://doi.org/10.1016/j.jhydrol.2006.11.017. 

23. Wohlfahrt, G.; Ischick, C.; Thalinger, B.; Hörtnagl, L.; Obojes, N.; Hammerle, A. Insights from independent evapotranspiration 
estimates for closing the energy balance: A grassland case study. Vadose Zone J. 2010, 9, 1025–1033. 
https://doi.org/10.2136/vzj2009.0158. 

24. Wegehenkel, M.; Gerke, H. Comparison of real evapotranspiration measured by weighing lysimeters with simulations based 
on the Penman formula and a crop growth model. J. Hydrol. Hydromech. 2013, 61, 161–172. https://doi.org/10.2478/johh-2013-
0021. 

25. Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; Li, X.; Liu, S.; Ma, Z.; Miyata, A.; et al. Comparison of satellite-based 
evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014, 140, 279–293. 
https://doi.org/10.1016/j.rse.2013.08.045. 

26. Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; 
Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos. 2011, 116, D02102. 
https://doi.org/10.1029/2010JD014545. 

27. Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation 
estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. https://doi.org/10.5194/hess-15-453-2011. 

28. Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z.; et al. 
Evaluation of global observation-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38, 
L06402. https://doi.org/10.1029/ 2010GL046230. 

29. McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evapo-
ration using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. 
https://doi.org/10.5194/hess-17-1331-2013. 

30. Kim, S.; Sharma, A. The role of floodplain topography in deriving basin discharge using passive microwave remote sensing. 
Water Resour. Res. 2019, 55, 1707–1716. https://doi.org/10.1029/2018WR023627. 

31. Libertino, A.; Sharma, A.; Lakshmi, V.; Claps, P. A global assessment of the timing of extreme rainfall from TRMM and GPM 
for improving the hydrologic design. Environ. Res. Lett. 2016, 11, 54003. https://doi.org/10.1088/1748-9326/11/5/054003. 

32. Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground 
measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. 
https://doi.org/10.1016/j.rse.2019.01.015. 

33. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and 
GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. https://doi.org/10.1002/2013WR014581. 

34. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land 
(SEBAL), Part 1: Formulation. J. Hydrol. 1998, 212–213, 198–212. https://doi.org/10.1016/S0022-169400254-6. 

35. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. 
https://doi.org/10.5194/hess-6-85-2002. 

36. Loheide, S.P.; Gorelick, S.M. A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecologi-
cal applications at riparian meadow restoration sites. Remote Sens. Environ. 2005, 98, 182–200. 
https://doi.org/10.1016/j.rse.2005.07.003. 

37. Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and 
moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation J. Geophys. Res. 
Atmos. 2007, 112, 1–17. https://doi.org/10.1029/2006jd007506. 

38. Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration 
products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 
2013, 139, 35–49. https://doi.org/10.1016/j.rse.2013.07.01. 

39. Arast, M.; Ranjbar, A.; Mousavi, S.H.; Abdollahi, K. Assessment of the Relationship between NDVI-Based actual evapotranspi-
ration by SEBS. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1051–1062. https://doi.org/10.1007/s40995-020-00895-3. 

40. Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating riparian and agricultural actual evapotranspiration by 
reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens. 2013, 5, 384913871. 
https://doi.org/10.3390/rs5083849. 

41. McCabe, M.F.; Wood, E.F.; Wójcik, R.; Pan, M.; Sheffield, J.; Gao, H.; Su, H. Hydrological consistency using multi-sensor remote 
sensing data for water and energy cycle studies. Remote Sens. Environ. 2008, 112, 430–444. https://doi.org10.1016/j.rse.2007.03.027. 



Atmosphere 2022, 13, 1927 18 of 21 
 

 

42. Conroy, J.W.; WU. J.; Elliot, W. Modification of the evapotranspiration routines in the WEPP model: Part, I. In Proceedings of 
the ASAE Annual International Meeting, 27–30 July 2003, Las Vegas, NV, USA; 1–16. Available online: 
http://www.pubs.asce.org/WWWdisplay.cgi?8801815 (accessed on 1 October 2022). 

43. Builes, VH.R.; Porch, T.G.; Harmsen. E.W. Genotypic differences in water use efficiency of common bean under drought stress. 
Agron. J. 2011, 103, 1206–1215. https://doi.org/10.2134/agronj2010.0370. 

44. Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, 
C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–
57. https://doi.org/10.1016/j.rse.2011.07.024. 

45. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of 
crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. 
https://doi.org/10.1016/j.rse.2017.07.01. 

46. Guzinski, R.; Nieto, H. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspi-
ration estimations. Remote Sens. Environ. 2019, 221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019. 

47. Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning com-
munity approach. Remote Sens. Environ. 2003, 88, 157–169. https://doi.org/10.1016/j.rse.2003.04.007. 

48. Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modeling High-Resolution Actual Evapotranspiration through Sentinel-2 
and Sentinel-3 Data Fusion. Remote Sens. 2020, 12, 1433. https://doi.org/10.3390/rs12091433. 

49. Nsiah, J.J.; Gyamfi, C.; Anornu, G.K.; Odai, S.N. Estimating the spatial distribution of evapotranspiration within the Pra River 
Basin of Ghana. Heliyon 2021, 7, e06828. https://doi.org/10.1016/j.heliyon.2021.e06828. 

50. Shilenje, Z.W.; Murage, P.; Ongoma, V. Estimation of Potential Evaporation Based on Penman Equation under Varying Climate, 
for Murang’a County, Kenya. Pak. J. Meteorol. 2015, 12, 33‒42. Available online: https://www.researchgate.net/publica-
tion/297917775 (accessed on 1 September 2022 ). 

51. Ogallo, L. The mainstreaming of climate change and variability information into planning and policy development for Africa. 
Procedia Environ. Sci. 2010, 1, 405–410. https://doi.org/10.1016/j.proenv.2010.09.028. 

52. Marshall, M.T.; Funk, C.; Michaelsen, J. Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from 
Remote Sensing and Reanalysis Data. USGS Staff. Publ. Res. 2012, 978,1–30. Available online: http://digitalcom-
mons.unl.edu/usgsstaffpub/978 (accessed on 1 September 2022). 

53. Akuja, T.E.; Kandagor, J. A review of policies and agricultural productivity in the arid and semiarid lands (ASALS), Kenya: The 
case of Turkana County. J. Appl. Biosci. 2019, 140, 14304–14315. https://doi.org/10.4314/jab.v140i1.9. 

54. UN-Water and Sanitation. Water Action Decade 2018–2028. Available online: https://www.un.org/sustainabledevelopment/wa-
ter-and-sanitation/ (accessed on 5 July 2022 ). 

55. Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, 
S.; et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 2016, 4, 64. 
https://doi.org/10.3389/fenvs.2016.00064. 

56. Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. https://doi.org/10.1126/sci-
ence.aad9837. 

57. Sorre, A.M. Effects of climate change on rural livelihoods in Busia County, Kenya. Int. J. Agric. Sci. 2017, 3, 75–89. Available 
online: https://www.iiardjournals.org/ (accessed on 5 July 2022 ). 

58. Masson-Delmotte, V.P.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et 
al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change; IPCC: Cambridge University Press, Cambridge, UK; New York, NY, USA, 2021 
https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf(accessed on 5 July 2022).  

59. KNBS 2019. 2019 Kenya Population and Housing Census. Volume IV: Distribution of Population by Socio-Economic Charac-
teristics. December 2019. Available online: https://www.knbs.or.ke/?wpdmpro=2019-kenya-population-and-housing-cen-
susvolume-iv-distribution-of-population-by-socio-economic-characteristics (accessed on 5 July 2022). 

60. Juma, G.S.; Kituni, N.; Makokha, J.W. Advection, and its applications: Trajectories over Busia County in Kenya. Clim. Change 
2020, 6, 186–190. Available online: http://www.discoveryjournals.org/climate_change/current_issue/v6/n22/A3.pdf (accessed 
on 5 July 2022). 

61. Makori, A.J.; Abuom, P.O.; Kapiyo, R.; Anyona, O.D.; Dida, O.G. Effects of water Physico-chemical parameters on tilapia (Ore-
ochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fish. Aquat. Sci. 2017, 20, 30. 
https://doi.org/10.1186/s41240-017-0075-7. 

62. Sorre, A.M.; Kurgat, A.; Musebe, R.; Sorre, B. Adaptive capacity to climate change among smallholder farmers in Busia County, 
Kenya. J. Agric. Vet. Sci. 2017, 10, 40–48. Available online: https://www.iosrjournals.org/iosr-javs/papers/Vol10-issue11/Version-
1/H1011014048.pdf (accessed on 5 July 2022 ). 

63. Kebeney, S.J.; Msanya, B.M.; Ng'etich, W.K.; Semoka, J.M.R.; Serrem, C.K. Pedological Characterization of Some Typical Soils 
of Busia County, Western Kenya: Soil Morphology, Physico-chemical Properties, Classification, and Fertility Trends. Int. J. Plant 
Soil Sci. 2014, 4, 29–44. https://doi.org/10.9734/IJPSS/2015/11880. 

64. Okeyo, B.; Wamugi, S.M. Climate Change Effects and the Resulting Adaptation Strategies of Smallholder Farmers in Three 
Different Ecological Zones (Kilifi, Embu, and Budalangi) in Kenya. J. Environ. Earth Sci. 2018, 8, 40–70. Available online: 
https://www.iiste.org/Journals/index.php/JEES/article/view/43354/44682 (accessed on 5 July 2022 ). 



Atmosphere 2022, 13, 1927 19 of 21 
 

 

65. Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder 
production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. https://doi.org/10.1186/s40066-018-0230-0. 

66. Government of Kenya. Busia County Integrated Development Plan; Government Printers: Nairobi, Kenya, 2013. 
67. ESA. User Guides. 2022. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides (accessed on 5 July 2022 ). 
68. Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; 

et al. SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt. 
2010, 57, 1815–1830. https://doi.org/10.1080/09500340.2010.503010. 

69. Yang, L.; Li, J.; Sun, Z.; Liu, J.; Yang, Y.; Li, T. Daily actual evapotranspiration estimation of different land use types based on 
SEBAL model in the agro-pastoral ecotone of northwest China. PLoS ONE 2022, 17, e0265138. https://doi.org/10.1371/jour-
nal.pone.0265138. 

70. Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Senti-
nel-1 Backscatter Data. Remote Sens. 2019, 11, 1569. https://doi.org/10.3390/rs11131569. 

71. Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Surface Change of the Soil Liquefaction Caused by the 2011 Great East Japan Earthquake 
Derived from SAR Data. In Proceedings of International Symposium on Engineering Lessons Learned from the 2011 Great East 
Japan Earthquake, Tokyo, Japan, 1–4 March 2012. Available online: https://www.jaee.gr.jp/event/seminar2012/eqsympo/pdf/pa-
pers/26.pdf (accessed on 5 July 2022). 

72. Henderson, F.M.; Lewis, A.J. Principles and Applications of Imaging Radar. Manual of Remote Sensing. 3rd Edition, John Wiley 
and Sons, New York, USA, 1998. https://www.osti.gov/biblio/293027 ). 

73. Filipponi, F. Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy 
Wildfires. Remote Sens. 2019, 11, 622. https://doi.org/10.3390/rs11060622. 

74. Hosen, M.S.; Amin, R. Significant of Gradient Boosting Algorithm in Data Management System. Eng. Int. 2021, 9, 85–100. 
https://doi.org/10.18034/ei.v9i2.559. 

75. Saatchi, S. SAR methods for mapping and monitoring forest biomass. In SAR Handbook: Comprehensive Methodologies for Forest 
Monitoring and Biomass Estimation; Flore, A., Herndon, K., Thapa, R., Cherrington, E., Eds.; Servir Global: Huntsville, AL, USA, 
2019, pp. 207–246. https://doi.org/10.25966/nr2c-s697. 

76. Freund, Y.; Schapire, R. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. 
Sci. 1997, 55, 119–139. https://doi.org/10.1006/jcss.1997.1504. 

77. Friedman, J. Greedy boosting approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. 
https://doi.org/10.1214/aos/1013203451. 

78. Bhagat, S.K.; Tiyasha, T.; Tung, T.M.; Mostafa, R.R.; Yaseen, Z.M. Manganese (Mn) removal prediction using extreme gradient 
model. Ecotoxicol. Environ. Saf. 2020, 204, 111059. https://doi.org/10.1016/j.ecoenv.2020.111059. 

79. Naganna, S.R.; Beyaztas, B.H.; Bokde, N.; Armanuos, A.M. On the evaluation of the gradient tree boosting model for ground-
water level forecasting. Knowl. Based Eng. Sci. 2020, 1, 48–57. https://doi.org/10.51526/kbes.2020.1.01.48-57. 

80. Landry, M.; Bartz, A. Machine Learning with R and H2O; H2O.ai: Mountain View, CA, USA, 2022. Available online: 
https://h2o.ai/resources/booklet/machine-learning-with-r-and-h2o/ (accessed on 5 August 2022). 

81. Landry, M.; Erlinger, P.T.; Patschke, D.; Varrichio, C. Probabilistic gradient boosting machines for GEFCom2014 wind forecast-
ing. Int. J. Forecast. 2016, 32, 1061–1066. https://doi.org/10.1016/j.ijforecast.2016.02.002. 

82. Sridharan, K.; Komarasamy, G. Sentiment classification using harmony random forest and harmony gradient boosting machine. 
Soft Comput. 2020, 24, 7451–7458. https://doi.org/10.1007/s00500-019-04370-z. 

83. Zhang, Z.; Zhao, Y.; Canes, A.; Steinberg, D.; Lyashevska, O. written on behalf of AME Big-Data Clinical Trial Collaborative 
Group. Predictive analytics with gradient boosting in clinical medicine. Ann. Transl. Med. 2019, 7, 152. 
https://doi.org/10.21037/atm.2019.03.29. PMID: 31157273; PMCID: PMC6511546. 

84. Khoi, D.N.; Quan, N.T.; Linh, D.Q.; Nhi, P.T.T.; Thuy, N.T.D. Using Machine Learning Models for Predicting the Water Quality 
Index in the La Buong River, Vietnam. Water 2022, 14, 1552. https://doi.org/10.3390/w14101552. 

85. Zalakeviciute, R.; Rybarczyk, Y.; Alexandrino, K.; Bonilla-Bedoya, S.; Mejia, D.; Bastidas, M.; Diaz, V. Gradient Boosting Ma-
chine to Assess the Public Protest Impact on Urban Air Quality. Appl. Sci. 2021, 11, 12083. https://doi.org/10.3390/ app112412083. 

86. Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedi-
mentation, Australia. J. Hazard. Mater. 2021, 403, 123492. https://doi.org/10.1016/j.jhazmat.2020.123492. 

87. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. 
https://doi.org/10.3389/fnbot.2013.00021. 

88. Gibson, L.A.; Münch, Z.; Engelbrecht, J. Particular uncertainties encountered in using a pre-packaged SEBS model to derive 
evapotranspiration in a heterogeneous study area in South Africa. Hydrol. Earth Syst. Sci. 2011, 15, 295–310. 
http://doi.org/10.5194/hess-15-295-2011. 

89. Zhao, F.; Ma, S.; Wu, Y.; Qiu, L.; Wang, W.; Lian, Y.; Chen, J.; Sivakumar, B. The role of climate change and vegetation greening 
on evapotranspiration variation in the Yellow River basin, China. Agric. For. Meteorol. 2022, 316, 108842. 
https://doi.org/10.1016/j.agrformet.2022.108842. 

90. Klisch, A.; Atzberger, C. Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series. Remote Sens. 2016; 8, 267. 
https://doi.org/10.3390/rs8040267. 

91. Javadnia, E.; Mobasheri, M.R.; Kamali, G.A. MODIS NDVI quality enhancement using ASTER images. J. Agr. Sci. Tech. 2009, 2, 
549–558. Available online: https://www.researchgate.net/publication/228947571 (accessed on 5 July 2022). 



Atmosphere 2022, 13, 1927 20 of 21 
 

 

92. Barrett, A.B.; Duivenvoorden, S.; Salakpi, E.E.; Muthoka, J.M.; Mwangi, J.; Oliver, S.; Rowhani, P. Forecasting vegetation condi-
tion for drought early warning systems in pastoral communities in Kenya. Remote Sens. Environ. 2020, 248, 111886. 
https://doi.org/10.1016/j.rse.2020.111886. 

93. Schirmbeck, J.; Fontana, D.C.; Roberti, D.R. Evaluation of OSEB and SEBAL models for energy balance of a crop area in a humid 
subtropical climate. Bragantia 2018, 77, 609–621. https://doi.org/10.1590/1678-4499.2017208. 

94. Sun, Z.; Wang, Q.; Batkhishig, O.; Ouyang, Z. Relationship between Evapotranspiration and Land Surface Temperature under 
Energy- and Water-Limited Conditions in Dry and Cold Climates. Adv. Meteorol. 2016, 2016, 1–9. 
https://doi.org/10.1155/2016/1835487. 

95. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic 
variability. Rev. Geophys. 2012, 50, 2. https://doi.org/10.1029/2011RG000373. 

96. Rocha, N.S.d.; Käfer, P.S.; Skokovic, D.; Veeck, G.; Diaz, L.R.; Kaiser, E.A.; Carvalho, C.M.; Cruz, R.C.; Sobrino, J.A.; Roberti, 
D.R.; et al. The Influence of Land Surface Temperature in Evapotranspiration Estimated by the S-SEBI Model. Atmosphere 2020, 
11, 1059. https://doi.org/10.3390/atmos11101059. 

97. Saadi, S.; Boulet, G.; Bahir, M., Brut, A.; Delogu, É.; Fanise, P.; Mougenot, B.; Simonneaux, V.; Lili Chabaane, Z. Assessment of 
actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data 
with an energy balance model: Comparison to extra-large aperture scintillometer measurements. Hydrol. Earth Syst. Sci. 2018, 
22, 2187–2209. https://doi.org/10.5194/hess-22-2187-2018. 

98. Brown, C.E.; Fingas, M.F.; Hawkins, R. Synthetic aperture radar sensors: Viable for marine oil spill response? In Proceedings of 
the Arctic and Marine OIL SPILL Program Technical Seminar, Otawa, Canada, January 2003; Volume 1,  299–310. 
https://www.researchgate.net/publication/228745599 Environment Canada; 1999.  
Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:34059651 (accessed on  5 July 2022). 

99. Rosenqvist, A.; Perez, A.; Olfindo, N. A Layman's Interpretation Guide to L-Band and C-Band Synthetic Aperture Radar Data; Com-
mittee on Earth Observation Satellites: Washington, DC, USA, 2018. Available online: https://ceos.org/ard/files/Lay-
mans_SAR_Interpretation_Guide_2.0.pdf (accessed on 5 July 2022 ). 

100. Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 
backscatter to vegetation dynamics: An Austrian case study. Remote Sens. 2018, 10, 1396. https://doi.org/10.3390/rs10091396. 

101. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv Preprint 
2019, arXiv:1912.06059. 

102. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. Available online: 
https://www.researchgate.net/journal/Journal-of-Machine-Learning-Research-1532-4435 (accessed on 2 August 2022 ). 

103. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An empirical evaluation of deep architectures on problems with 
many factors of variation. In Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML’07), Cor-
vallis, OR, USA, 20–24 June 2007; Ghahramani, Z., Ed.; pp. 473–480.ACM. https://doi.org/10.1145/1273496.1273556. 

104. Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. 
Res. 2019, 20, 1934–1965. Available online: https://jmlr.org/papers/volume20/18-444/18-444.pdf (accessed on 1 September 2022 
). 

105. Boehmke, B.; Greenwell, B.M. Chapter 12: Gradient Boosting, Hands-On Machine Learning with R, 1st ed.; Chapman and Hall/CRC: 
London, UK, 2019. https://doi.org/10.1201/9780367816377. 

106. Wu, B., Zhu, W., Yan, N., Xing, Q., Xu, J., Ma, Z.; Wang, L. Regional actual evapotranspiration estimation with land and mete-
orological variables derived from multi-source satellite data. Remote Sens. 2020, 12, 332. https://doi.org/10.3390/rs12020332. 

107. Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to 
numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. https://doi.org/10.1007/s10795-005-5186-0. 

108. Cristóbal, J.; Jiménez-Muñoz, J.C.; Prakash, A.; Mattar, C.; Skokovi'c, D.; Sobrino, J.A. An improved single-channel method to 
retrieve land surface temperature from the Landsat-8 thermal band. Remote Sens. 2018, 10, 431. 
https://doi.org/10.3390/rs10030431. 

109. García-Santos, V.; Sánchez, J.M.; Cuxart, J. Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A 
State-of-the-Art Review. Remote Sens. 2022, 14, 3440. https://doi.org/10.3390/rs14143440. 

110. Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar vegetation index for estimating the vegetation water content of rice 
and soybean. IEEE Geosci. Remote Sens. Lett. 2011, 9, 564–568. https://doi.org/10.1109/LGRS.2011.2174772. 

111. Szigarski, C.; Jagdhuber, T.; Baur, M.; Thiel, C.; Urbazaev, M.; Parrens, M.; Entekhabi, D. Analysis of the radar vegetation index 
and assessment of potential for improvement. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and 
Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8143–8146. https://doi.org/10.1109/IGARSS.2018.8518832. 

112. Yan, N.; Tian, F.; Wu, B.; Zhu, W.; Yu, M. Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai Basin. 
Remote Sens. 2018, 10, 332. https://doi.org/10.3390/rs10020332. 

113. Ma, Z.; Yan, N.; Wu, B.; Stein, A.; Zhu, W.; Zeng, H. Variation in actual evapotranspiration following changes in climate and 
vegetation cover during an ecological restoration period (2000–2015) in the Loess Plateau, China. Sci. Total Environ. 2019, 689, 
534–545. https:// doi.org/10.1016/j.scitotenv.2019.06.155. 

114. Suzuki, R.; Masuda, K. Interannual co-variability found in evapotranspiration and satellite-derived vegetation indices over 
northern Asia. J. Meteorol. Soc. Jpn. 2004, 82, 1233–1241. http://doi.org/10.2151/jmsj.2004.1233. 



Atmosphere 2022, 13, 1927 21 of 21 
 

 

115. Li, S.-G.; Eugster, W.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D.; Sugita, M. Energy partitioning and its biophysical 
controls above a grazing steppe in central Mongolia. Agric. For. Meteorol. 2006, 137, 89–106. 
https://doi.org/10.1016/j.agrformet.2006.03.010. 

116. Nzioka, J.M.; Njeri, J.K.; Karanja, F.K.; Manene, M.M. On the Relationship between Satellite-based Evapotranspiration and Nor-
malized Difference Vegetation Index, Case Study: Narok County of Kenya. Afr. J. Phys. Sci. 2014, 1, 2313–3317. 
https://core.ac.uk/download/pdf/236173325.pdf. 

117. Glen, A.S.; Dickman, C.R.; Soule, M.E.; Mackey, B.G. Evaluating the role of the dingo as a trophic regulator in Australian eco-
systems. Austral Ecol. 2007, 32, 492–501. https://doi.org/10.1111/j.1442-9993.2007.01721.x. 

118. Muir, C.; Southworth, J.; Khatami, R.; Herrero, H.; Akyapı, B. Vegetation Dynamics and Climatological Drivers in Ethiopia at 
the Turn of the Century. Remote Sens. 2021, 13, 3267. https://doi.org/10.3390/rs13163267. 


	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Used Data and Processing
	2.3. Gradient Boosting Machine (GBM)
	2.4. Limitations of the Applied Datasets and Methodology

	3. Results and Discussion
	3.1. Descriptive Statistics
	3.1.1. Sentinel-1 and Sentinel-3 Used Variables
	3.1.2. Model Training Using a Random Search
	3.1.3. Relative Influences of the Variables on the Model

	3.2. Accuracy Assessment Using Correlation Coefficient (R) and Root-Mean-Squared Error (RMSE)

	4. Conclusions
	References

