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Abstract: Few studies have investigated how the reclamation of the desert to cropland affects soil
nitrous oxide (N2O) emissions. A study site was initiated in 2005 at the southern Taklimakan
Desert by establishing four fields along the desert−oasis ecotone. Three fields were reclaimed as
croplands for continuous cotton (Gossypium hirsutum L.) production and received (1) high, (2) low, and
(3) no fertilizer inputs and the fourth field remained as a native desert. Static-chamber monitoring
of N2O flux was conducted from April 2019 to March 2021. N2O emissions occurred in cropland
mainly after drip fertigation during the growing season. The two−year N2O emissions in the desert,
no fertilizer, low fertilizer, and high fertilizer were 248, 670, 2232, and 3615 g N ha−1, respectively.
The native desert was a weak source of N2O emissions, with the non−growing season emissions
accounting for 66% of the annual emissions. N2O emissions from farmland mainly occurred over the
growing season, accounting for 73−98% of the total annual emissions. The N2O flux was positively
related to soil NO3

−−N concentration and soil water−filled pore space (WFPS), highlighting the
importance of soil N availability and moisture in affecting N2O emissions in extremely arid areas. Our
results demonstrate that land reclamation from the desert to cropland significantly increased N2O
emissions due to high nutrient inputs. Thus, appropriate fertilizer management in the reclaimed land
is essential for maintaining yield, improving soil quality, and reducing N2O emissions for continuous
cotton production.

Keywords: desert; extremely arid land; land use change; nitrous oxide; non−growing season;
reclamation

1. Introduction

Nitrous oxide (N2O) is one of the three most common greenhouse gases, and its con-
centration in the atmosphere is increasing due to human activities. Applications of organic
and inorganic nitrogen (N) fertilizers in agriculture are the most important anthropogenic
source of N2O emissions [1,2]. Fertilizer application, land use and management, and cli-
mate change are the main controlling factors of N2O emission from agricultural land [3,4].
Accurately quantifying the impact of fertilizers on N2O emissions in response to the change
in land use is a crucial prerequisite for developing global warming mitigation strategies [5].

Soil N2O production is mainly determined by the biological nitrification and denitrifi-
cation processes, whereas other pathways such as anammox, nitrate−dependent ferrous
oxidation (NDFO), and chemical denitrification are generally insignificant in arable agri-
culture. Both nitrification and denitrification are influenced by the microbial community
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composition and soil environmental conditions (soil temperature, porosity, water content,
nutrient availability, etc.) [6–8]. It has also been recognized that changes in land use can
affect the composition and content of soil organic matter, thus affecting the mineralization
rate of organic N and further soil N2O emissions [9,10]. For example, several studies
reported that converting pristine ecosystems (e.g., forests or grassland) into agricultural
systems greatly increased N2O emissions [11–13], thus enhancing the surface temperature,
decreasing transpiration, and increasing N availability and C sequestration [14]. However,
it is not clear how the land reclamation of desert into farmland can affect soil N2O emissions.
Previous studies have reported that converting deserts to agricultural lands improved soil
quality and productivity, and increased microbial community diversity [8,15,16], which has
positive effects on accelerated soil evolution. Land use changes could profoundly affect
the production and emission of N2O by changing the abiotic and biotic features of the soil.
Therefore, further investigation is needed to understand how desert reclamation affects
soil N2O emissions by affecting soil properties in arid areas.

Taklimakan Desert, located in the south of Xinjiang, is the second−largest shifting sand
desert in the world [17]. Many desert areas have been reclaimed for irrigated agricultural
land on the southern margin of the Taklimakan Desert to meet the pressures brought by the
rising population since the 1980s [18]. Cotton production heavily relies on the continuous
and intensive inputs of water and fertilizer in extremely arid areas [19]. Substantial fertilizer
input could induce excessive residual N accumulation and soil acidification, which could
further influence soil N2O emissions [20,21]. Reclamation of the desert into farmland could
have resulted in significant changes in vegetation, soil properties, microbial community
composition, and activity [10,15]. For instance, compared to the desert, fertilizer appli-
cation had an effect on rhizosphere root exudates, which is beneficial to the growth and
reproduction of nitrifying and denitrifying microorganisms [22]. In addition, vegetation
cover could reduce soil temperature, which further affects the abundance and activity of
microorganisms [23]. Irrigation and film−mulching practices are essential for management
in cotton production, which can increase soil water content and further influence microbial
nitrification, denitrification processes, and potentially, N2O emissions [24].

Some studies have investigated the effect of fertilization sources and rates on soil N2O
emission in cotton fields in arid and semi−arid areas [25–28]. For example, Kuang et al. [27]
reported that the N2O emission from drip−irrigated cotton fields in the southern Xinjiang
region was 300–500 g N ha−1. These studies are, however, based on relative short−term
field trials over 2–3 years and few studies have reported on the N2O emission characteristics
of cotton fields under different intensities of long−term fertilizer inputs. Fertilizers exert
a long−term influence on the soil structure and microbial processes [14]. Several studies
have shown that long−term manure and mineral fertilizer application greatly impacted
the emission of soil N2O, due to changes in the available carbon and nitrogen sources for
soil microbes [29,30]. Understanding the impact of land reclamation, associated long−term
fertilization, and water management practices on N2O emissions is thus important for
developing the appropriate strategies for greenhouse gas mitigation.

Previous studies in arid and semi−arid regions mainly focused on N2O emissions
during the season with plant cover, whereas N2O emissions in the non−growing season
are not well understood [8,29]. Many studies have proposed that N2O emission may
be significant in the non−growing season [31–33]. For instance, Shang et al. [32] used a
meta−analysis to study the non−growing season N2O emissions at 23 sites and reported
that ignoring the non−growing season would underestimate annual N2O emissions by
30% for paddy fields. For arable land in northeast China, Chen et al. [34] found that N2O
emissions over the non−growing season contributed to 66% of the paddy rice and 18%
of the maize fields’ annual emissions, respectively. For the gray desert soil in northern
Xinjiang, Yin et al. [35] reported that during the non−growing season, N2O emission
in a cotton field accounted for 39% of the annual emissions. These studies highlight
the significance of N2O emissions over the non−growing season, which is important to
understand how land use management can affect seasonal changes in N2O fluxes.
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In this study, the emission of N2O and environmental conditions were analyzed from
2019 to 2021 and based on a long−term experiment initiated in 2005 in the desert−oasis
ecotone. The objectives of this study were to: (1) investigate the seasonal dynamics of N2O
flux after desert reclamation; (2) quantify the cumulative N2O emissions and seasonal pro-
portions; and (3) study the relationship between N2O flux and soil environmental factors.

2. Materials and Methods
2.1. Study Area and Soil Properties

The long−term field experiment was established in 2005 at Cele National Station
(37◦01′ N, 80◦43′ E) in Xinjiang province. The site is located in the extremely arid region of
the southern margin of the Taklimakan Desert. Precipitation is 42.5 mm, while potential
annual evapotranspiration is 2956 mm. The annual mean temperature is 12.7 ◦C. According
to the USDA ST classification system, the soil in this region is Aridisols (USDA, 1999). The
soil texture is fine sandy (sand 90%, silt 4%, and clay 6%), and has a CaCO3 content of
16.6%. The depth of groundwater is 14.0 m. The meteorological data were recorded using
an on−site weather station.

2.2. Experimental Design and Agronomic Management

The long−term study was initiated in 2005 by establishing four fields along the
desert−oasis ecotone, with each field having an area of 100 m × 100 m (1 ha). Three fields
were reclaimed as croplands and received (1) high, (2) low, and (3) no fertilizer inputs,
and the fourth field remained as a native desert. The croplands have been continuously
cropped to cotton and covered with plastic film over the growing season each year and
left fallow in the rest of the months. The non−fertilized field did not receive any fertilizer
input since reclamation. In contrast, the desert land remained native and had sparse
vegetation (mainly Karelinia caspia (Pall) Less and Alhagi sparsifolia Shap.). Before 2019,
the high fertilizer treatment input included urea 362 kg N ha−1, triple superphosphate
(TSP) 126 kg P2O5 ha−1, and manure 30,000 kg ha−1; the low fertilizer application used
urea 208 kg N ha−1, TSP 57 kg P2O5 ha−1, and manure 21,000 kg ha−1. Soil core samples
(0–20 cm) were collected in each field before sowing in 2019 for the determination of the
soil’s basic chemical properties (Table 1). The soil organic carbon (SOC), total nitrogen (TN),
and available phosphorus (AP) in fertilized fields were significantly higher than those in
no−fertilizer fields and deserts.

Table 1. Properties of 0–20 cm soil in each treatment before sowing in 2019. Values are the means
± 1 standard error, n = 3.

Total N
(g N kg−1 )

NO3−−N
(mg N
kg−1)

NH4
+−N

(mg N
kg−1)

Soil Organic
Carbon

(g C kg−1)

Available
P (mg P
kg−1)

Available K
(mg K
kg−1)

pH (H2O)
Electrical

Conductivity
(mS cm−1)

Bulk
Density
(g cm3)

Desert 0.1 ± 0.0 c 17.3 ± 0.2 a 1.7 ± 0.1 c 1.3 ± 0.0 c 1.0 ± 0.0 b 206.2 ± 4.2 a 7.6 ± 0.0 a 0.8 ± 0.2 a 1.6 ± 0.1 a
No

fertilizer 0.2 ± 0.0 b 2.4 ± 0.1 d 3.0 ± 0.3 b 2.3 ± 0.2 b,c 1.2 ± 0.1 b 129.5 ± 4.7 c 7.6 ± 0.1 a 0.2 ± 0.0 b 1.5 ± 0.0 a,b
Low

fertilizer 0.6 ± 0.1 a 4.8 ± 0.5 c 3.0 ± 0.1 b 3.7 ± 0.3 a,b 40.6 ± 1.4 a 161.0 ± 6.6 b 7.5 ± 0.0 a 0.2 ± 0.0 b 1.5 ± 0.0 b
High

fertilizer 0.7± 0.1 a 8.2 ± 1.2 b 4.0 ± 0.3 a 4.8 ± 0.4 a 47.6 ± 2.7 a 172.2 ± 8.0 b 7.8 ± 0.1 a 0.3 ± 0.0 b 1.4 ± 0.0 c

Mean within a column followed by the same letter are not significantly different at p < 0.05.

In 2019, the amount of high fertilizer application was N 644 kg N ha−1, phosphate (P)
297.9 kg P ha−1, and potassium (K) 105 kg K ha−1. The fertilizer application rate of low
fertilizer was 53% of high fertilizer. In 2020, due to the COVID-19 lockdown, there was no
fertilization from mid−July to August, and the application rate of high and low fertilizers
in 2020 was 70% of that in 2019. The N fertilizer applied above was the sum of the N content
of urea, diammonium phosphate (DAP), and manure. The P fertilizer was the sum of the
P content of DAP and potassium dihydrogen phosphate (KDP). The K fertilizer all came
from KDP. Before sowing, manure, DAP, and 20% urea were applied as base fertilizers
incorporated into the soil. KDP and the remaining 80% urea were dissolved in water and
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applied to the soil with drip irrigation during the growing season. For more details about
topdressing, see Table 2. In this study, manure was a mixture of sheep and cow dung with
a ratio of C/N 18.0, total N of 15.6 ± 0.6 g N kg−1, total K of 16.8 ± 0.3 g kg−1, and total
P of 2.0 ± 0.1g kg−1. In the year of application, 20% of the total N in manure was consid-
ered available by mineralization based on the ratio of C/N [36]. Thus, the manure was
19.5 Mg ha−1 and 30 Mg ha−1 applied in low and high fertilizer treatments, respectively.

Table 2. Fertilization schedules for the low and high fertilizer treatments in 2019 and 2020.

Basal Topdressing

N (Manure,
kg N ha−1)

N (Urea, kg N ha−1)/
N (DAP, kg N ha−1)/
P (DAP, kg P ha−1)

N (Urea, kg N ha−1)/P (KDP, kg P ha−1)/K (KDP, kg K ha−1)

2019 2 April 8 April 27 May 11 June 22 June 16 July 28 July 7
August

14
August

Low
fertilizer 60 35/27/69 21/8/5 14/4/3 23/8/5 35/12/8 35/23/15 28/12/8 69/23/8

High
fertilizer 90 103/54/138 35/16/11 21/8/5 41/12/8 69/23/15 69/39/26 55/23/15 104/39/26

2020 28 April 10 April 30 June 15 June 22 June 11 July − − −
Low

fertilizer 60 35/27/69 21/8/5 13/4/3 23/8/5 35/12/8 0 0 0

High
fertilizer 90 103/54/138 35/16/11 21/8/5 41/12/8 69/23/15 0 0 0

N, Nitrogen; DAP, Diammonium phosphate; KDP, Potassium dihydrogen phosphate.

Cotton (Zhongke 1) was sown in the middle of April in both years using a mechani-
cal seeding planter and grown with a plastic mulch drip−irrigation system. Briefly, the
plastic mulch drip−irrigation system consists of one film, two pipes, and four rows. Un-
derneath the two sides of the film, there are two drip−irrigation pipes. On both sides
of each pipe, two rows of cotton were distributed. The film was 110 cm wide, with
a 50 cm inter−film zone. Cotton was planted in a uniform distribution with a spac-
ing of 10 cm, the row spacing of cotton on both sides of the pipe and between the two
pipes was 30 cm and 50 cm, respectively [27]. All reclaimed fields received sufficient
irrigation derived from an underground well at Cele National Station. Irrigation was
performed 10 times in 2019 and 8 times in 2020, the amount of irrigation was 620 mm
and 580 mm in 2019 and 2020, respectively. The irrigation schedule was based on local
practices and implemented according to the growing need for cotton and farmers’ expe-
rience to enable a real characterization of N2O emissions from the experimental fields in
this region.

2.3. N2O Gas Sampling and Analysis

Soil surface gas emission was determined using a static chamber [26] that was 90 cm
(length) × 40 cm (wide) × 25 cm (high). After sowing, four pseudo−replicate plots were
set up in each treatment field, and three static chamber bases were installed in each plot
by inserting the chamber at 5 cm into the soil. Because the long−term trial began before
the N2O monitoring experiment, treatment was not necessarily randomized, but it was
the same method employed by Rothamsted Research [37]. For the reclaimed croplands,
the installation position covered half film−mulched and half not film−mulched soil to
represent the field average. During sampling, an appropriate amount of water was added
to a pre−installed groove at the base of the chamber, and a fitting lid was placed in the
groove to seal the chamber. Gas samples were collected from the chamber by a syringe
0, 15, 30, and 45 min after it was closed. At each sampling, 30 mL of gas was collected
and transferred to a pre−evacuated aluminum bag. Sampling was generally carried out
in the morning between 10:00 and 14:00 (GMT + 8) to minimize diurnal variation in flux
patterns. The sampling frequency was every two to three days following fertilization or



Atmosphere 2022, 13, 1897 5 of 16

irrigation, decreased to once a week in the late growth period, and once or twice a month in
the non−growing season. At each gas collection, the soil volumetric water content (VWC)
and temperature at the 5 cm depth in the chamber were measured using a portable soil
sensor (HH2−WET, Delta−T Devices, Cambridge, UK). Sampling was collected a total of
23 times from April 2019 to March 2020 and 26 times from April 2020 to March 2021. April
to October is the growing season, November to March is the non−growing season, and
April to March is a crop year.

The N2O concentration was measured by gas chromatography (Shimadzu GC−2014C,
Shimadzu Scientific, Kyoto, Japan). Standard gas (purity of 99.999%, Dalian Date Gas
Co., Ltd., Dalian, China) was used for instrument calibration. The HMR package in the
R program was used to calculate the daily N2O flux rate (g N2O−N ha−1 d−1) by fitting
the measured N2O concentrations into a linear or non−linear model [38]. The cumulative
emissions (ΣN2O, g N2O−N ha−1) in the crop year of each chamber were calculated by
summing the daily fluxes. The fluxes for the period between the two measurements were
gap−filled using linear interpolation. The crop year N2O emission factor (EF, %) from the
fertilized cropland was calculated as the percentage of N2O emission from the total applied
N, using the Equation:

EF =
EN − EC

Applied N
× 100 (1)

where, EN and EC are the ΣN2O (g N ha−1 yr−1) of the fertilization treatment and control,
respectively, and the Applied N is the rate of N applied in the fertilization treatment
(g N ha−1).

2.4. Soil Sampling and Analysis

Core soil samples (0−20 cm) were collected biweekly over the growing season and
monthly in the non−growing season. In each plot, four composited soil samples were
collected near the chambers. Each composite sample combined three cores from the cotton
row and three cores from the bare row (20 cm i.d.). Soil samples were measured for
concentrations of ammonium (NH4

+) and nitrate (NO3
−) using a continuous flow analyzer

(Auto analyzer 3 SEAL, Bran and Luebbe, Norderstedt, Germany) after being extracted
using 0.1 M CaCl2. The soil organic carbon (SOC), available phosphorus (Olsen−P), total
N, and available potassium (ammonium acetate extracted potassium) of soil samples after
harvest were also analyzed.

Soil nitrate intensity (g N kg−1 days) refers to the accumulation of soil NO3
− concen-

trations during the crop growing period [26,39] and is calculated in a similar manner as
ΣN2O, by gap−filling daily NO3

− concentrations using the linear interpolation and then
summing the daily values.

In addition to being measured using the portable sensor, soil temperature and VWC
at a depth of 5 cm in each field were continuously measured using the pre−installed soil
temperature and humidity sensors (Decagon Devices Inc., Pullman, WA, USA). Data were
recorded by a data logger (EM50G with GSM Module, Decagon Devices Inc., Pullman,
WA). Soil WFPS was calculated by the following Equation:

WFPS =
VWC

1−
(

BD
PD

) (2)

where BD is the bulk density of the soil (Mg m−3) and PD is the particle density (assuming
2.65 Mg m−3).

2.5. Plant Sample Collection and Analysis

Cotton was harvested at the end of September each year, and seed cotton yield
(Mg ha−1) was measured by hand−picking all cotton bolls and drying them at 80 °C.
For the reclaimed cropland, the emission intensity (EI) was calculated as ΣN2O emission
per Mg of seed cotton yield. A 1 m × 1 m quadrat was selected from each field to collect
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the plant’s above−ground biomass which was further separated into stems, leaves, shells,
fibers, and seeds. All samples were oven−dried at 105 °C for 30 min and then at 80 ◦C to a
constant weight, then the total N concentration of each part was measured. The nitrogen
uptake was calculated by multiplying plant N concentrations with the dry weight of each
individual organ and then summing for all organs. Nitrogen recovery efficiency (NRE) was
calculated as:

NRE =
NF −NC

Applied N
× 100 (3)

where NF and NC are the total above−ground N uptake in the fertilized fields and no
fertilizer field (kg N ha−1), respectively. Applied N is the N application (kg N ha−1).

2.6. Data Analysis

The PROC UNIVARIATE was used to determine the normality and homogeneity of
all data. Log transformations were used to transform the data that did not conform to
the normal distribution. A one−way ANOVA with the MIXED (SAS Institute, 9.3, Cary,
NC, USA) procedure was performed on the data to assess the effects of fertilizer treatment
on soil properties, ΣN2O, cotton yield, crop N uptake, NRE, and yield−scaled emission
intensity (EI) for each crop year, with the fertilizer treatments treated as fixed effects
and the pseudo−replicated plots at each treatment as a random effect. The relationship
between ΣN2O and nitrate intensity and the relationship between daily N2O flux and soil
temperature and WFPS and concentration of NH4

+, NO3
− were analyzed by regression

analyses. All differences were significant at p < 0.05.

3. Results
3.1. Weather Conditions

During the study period, the daily air temperature was lowest at −10.6 ◦C
(1 January 2019), highest at 30.6 ◦C (1 August 2019), and the annual mean was 12.3 ◦C
(Figure 1). The precipitation of the crop year (April to March) was 24.4 mm in 2019 and
36.2 mm in 2020. Soil temperature ranged from −6.9 ◦C in February 2021 to 30.9 ◦C in
August 2020 across the four fields (Figure 1). Soil WFPS at a 5 cm depth in cotton fields and
desert increased rapidly following the rainfall and irrigation events and then decreased
due to the poor water−holding capacity of sandy soil and high evapotranspiration. Soil
WFPS ranged from 7% to 54% (mean 24%) in the cotton fields and 4% to 25% (mean 8%) in
the desert.

3.2. Daily N2O Fluxes

The daily N2O flux rate of the desert, no fertilizer, low fertilizer, and high fertil-
izer fields over the study period varied from −2.6 to 3.9, −2.8 to 15.7, −1.4 to 19.1, and
−4.2 to 43.1 g N ha−1 d−1, respectively (Figure 2). The averages were 0.2, 1.3, 6.0, and
9.2 g N ha−1 d−1, respectively. Large pluses of N2O emission were observed in the low and
high fertilizer fields in both growing seasons. The N2O fluxes of the low and high fertilizer
fields peaked at 9.8 g N ha−1 d−1 and 35.2 g N ha−1 d−1 on 11 May 2019, and 15.8 g N ha−1 d−1

and 43.1 g N ha−1 d−1 after sowing on 20 April 2020, respectively. The high flux peaks
lasted for about 10 days and then rapidly decreased to a low emission level (below
10 g N ha−1 d−1). Small N2O emission peaks also occurred after drip fertigation. However,
N2O emissions did not increase in the no fertilizer field and desert treatments. The N2O
flux during the non−growing seasons was generally low, never exceeding 5.2 g N ha−1 d−1

in all treatments.
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3.3. Seasonal and Crop Year N2O Emissions and Emission Factors

Compared to the desert and no fertilizer fields, reclaimed farmland with fertilizer ap-
plication significantly increased ΣN2O over the growing season but not in the non−growing
season (Table 3). However, compared with the desert, the N2O emissions in the no fertilizer
fields did not increase significantly during the whole year. The two−year ΣN2O were 248,
670, 2232, and 3615 g N ha−1 for the desert, no fertilizer, low fertilizer, and high fertilizer
fields, respectively (Table 3). In the two crop years, the ΣN2O in fertilizer cotton fields was
2.3–4.4 times and 8.0–13.6 times greater than the no fertilizer field and desert, respectively.

Table 3. Cumulative N2O emissions, the proportion of N2O emissions from non−growing season to
total emission, and applied N scaled emission factor as affected by fertilizer treatments. Values are
the means ± 1 standard error, n = 4 for treatment.

Cumulative N2O Emissions (g N ha−1) Proportion
(%) Emission Factor (%)

2019 2020 2019–2020 2019–2020 2019 2020
Treatment Growing

Season
Non−Growing

Season
Growing
Season

Non−Growing
Season

Non−Growing
Season

Desert 125 ± 53 b 96 ± 69 a −40 ± 41 c 67 ± 44 a 248 ± 117 c 66 − −
No

fertilizer 296 ± 47 b 102 ± 63 a 192 ± 67 c 81 ± 39 a 670 ± 125 c 27 − −
Low

fertilizer 1357 ± 189 a 27 ± 39 a 842 ± 103 b 7 ± 73 a 2232 ± 222 b 2 0.29 ± 0.06 a 0.28 ± 0.04 a
High

fertilizer 1986 ± 171 a 179 ± 96 a 1440 ± 130 a 12 ± 39 a 3615 ± 244 a 5 0.27 ± 0.03 a 0.14 ± 0.05 a

Means within a column followed by the same letter are not significantly different at p < 0.05.

Across the two years, N2O emissions in the non−growing seasons ranged from
7–179 g N ha−1 and accounted for 66%, 27%, 2%, and 5% of crop year fluxes in the desert,
no fertilizer, low fertilizer, and high fertilizer fields, respectively (Table 3). There was no
difference in ΣN2O emissions over two non−growing seasons between all treatments.
The applied−N scaled N2O EF ranged from 0.14% to 0.29% and were not affected by the
fertilizer intensity in either year (Table 3).

3.4. Soil Inorganic N Concentrations

Soil NO3
− concentration varied between 15.74 and 85.71 mg N kg−1 and primarily

changed with fertilizer input in the cotton fields. In contrast, NO3 was relatively stable
in the non−fertilizer field (1.00–9.10 mg kg−1) and desert (7.47–24.27 mg kg−1) (Figure 3).
The annual mean concentration of NO3

− was 16.59, 4.56, 27.14, and 56.07 mg kg−1 in
the desert, no fertilizer, low fertilizer, and high fertilizer fields, respectively. After sow-
ing and fertilization, the NO3

− concentration increased significantly and maintained
a relatively high value for 4 weeks in July 2019 and from July to August 2020. On
the whole, the NO3

− concentration under different fields was as follows:
high fertilizer > low fertilizer > desert > no fertilizer. In contrast, the NH4

+ concentra-
tion was relatively low (0.40–5.82 mg kg−1) (Figure 3). In 2019, the NH4

+ concentration
increased rapidly after sowing, and then gradually decreased to a lower level. In 2020, the
NH4

+ concentration did not fluctuate greatly. The annual mean NH4
+ concentration in

the desert, no fertilizer, low fertilizer, and high fertilizer fields were 1.59, 1.61, 1.44, and
1.91 mg kg−1, respectively, and there was no significant difference in NH4

+ concentration
among all treatments.
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Figure 3. Dynamic changes of soil concentrations of NH4
+−N and NO3

−−N as affected by land
reclamation and fertilizer input treatments. Blue arrows indicate the date of planting and basal
fertilizer application and red arrows indicate the dates of drip fertigation. Bars indicate the +1
standard error of the mean, n = 4.

3.5. Relationship of N2O Flux with Environmental Factors and Nitrate Intensity

Over the two crop years studied, the daily N2O flux rate correlated positively and
significantly (p < 0.001) with the soil NO3

− and WFPS, whereas the coefficient of determi-
nation was as small as 0.10 for NO3

− and 0.27 for WFPS (Figure 4). In contrast, the N2O
flux did not correlate to soil NH4

+ and soil temperature and ΣN2O increased linearly with
soil nitrate intensity (p < 0.001), with greater values occurring in the high fertilizer field
while the non−fertilizer field had the lowest nitrate intensity (Figure 5).
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3.6. Crop Yield and Yield−Based Emission Intensity

In both years, the cotton yield in the fertilized treatments approximately tripled that
in the non−fertilizer treatment, and there was no apparent difference between the high
and low fertilizer treatments (Table 4). Similar to cotton yield, the crop N uptake under
fertilizer (low and high) fields in 2019 and 2020 was significantly (p < 0.001) greater than
the no fertilizer field. The N recovery efficiency was lower than 0.2 in fertilized fields and
was not affected by fertilizer intensity. The yield−scaled emission intensity (EI) in the high
fertilizer field was significantly higher than in the no fertilizer field in 2019, but there was
no difference in 2020.

Table 4. Cotton seed yield, crop N uptake, N recovery efficiency, and yield−scaled emission intensity
by study year and fertilizer. Values are the means ± 1 standard error, n = 4.

2019 2020

Treatment Yield
(Mg ha−1)

Crop N
Uptake

(kg N ha−1)

N recovery
Efficiency

Emission
Intensity

(kg N Mg−1)

Yield
(Mg ha−1)

Crop N
Uptake

(kg N ha−1)

N Recovery
Efficiency

Emission
Intensity

(g N Mg−1)

No
fertilizer 2.4 ± 0.1 b 64 ± 4 b − 166 ± 38 b 1.9 ± 0.7 b 23 ± 3 b − 184 ± 110 a

Low
fertilizer 6.8 ± 0.5 a 173 ± 34 a 0.17 ± 0.05 a 210 ± 37 a,b 5.6 ± 0.6 a 146 ± 9 a 0.19 ± 0.01 a 147 ± 33 a

High
fertilizer 7.0 ± 0.1 a 188 ± 19 a 0.19 ± 0.03 a 308 ± 45 a 6.2 ± 0.8 a 120 ± 4 a 0.15 ± 0.01 a 234 ± 17 a

Means within a column followed by the same letter are not significantly different at p < 0.05.

4. Discussion
4.1. Annual N2O Emissions

Over the experimental period, N2O emissions from the desert ranged from
27–221 g N ha−1 yr−1, similar to emissions in the Gurbantunggut Desert in northwest China
(130 g N ha−1 yr−1) [40], but lower than those in the Sonoran Desert in North America
(400 g N2O−N ha−1) [9,41]. The daily N2O flux rates from the desert in the current study
were also generally low, not exceeding 4.0 g N ha−1 h−1. The low flux and cumulative
N2O emissions in our study were mostly due to the extremely low WFPS (mean 9%) in
desert soils, which could have limited the activity of N2O−producing microorganisms,
despite the comparatively high mineral N concentrations (mean NO3

− 16.4 mg kg−1). The
emissions of N2O in the non−growing seasons accounted for 66% of annual emissions
and is consistent with other research (57%, [40]; 72%, [42]). Overall, in our study, the N2O
emission in the native desert was relatively small compared to other natural or intensively
managed ecosystems [10]. However, desert ecosystems account for 20% of the earth’s
land area [43] and ignoring their contribution to global greenhouse gas emissions could
potentially underestimate the N2O emission inventory.

In our long−term experiment, emissions of N2O in cotton fields varied from
273–2165 g N ha−1 yr−1, which was greater than our recent studies in the same area
(72–506 g N ha−1 yr−1, [27]; 460–1500 g N ha−1 yr−1, [28]). The greater N2O emissions
could be partly due to the higher amount of fertilizer inputs than those in previous stud-
ies (120–240 kg N ha−1). Many studies have reported a linear or non−linear increase in
N2O emissions in response to N fertilizer rates [44]. In addition, our study was based
on 16 years of fertilization experiments, which might be attributed to the long−term
effects of fertilizer on soil C and N [30]. It has been confirmed that long−time fertiliza-
tion has a cumulative effect on soil N2O emissions [45]. However, the N2O emissions in
our study were much lower than those from intensive agriculture soil in other regions
(i.e., 900–5500 g N ha−1, [29]). It was demonstrated that N2O emission was still low
based on long−term fertilization experiments in drip irrigation cotton in northwestern
China, which also verifies our previous short−term study results in the same area [27].
In the current study, the EF values (0.14−0.29%) were consistent with studies at the
same site (0.23−0.42%, [28]) and higher than other studies in Xinjiang (0.01–0.09%, [26];
0.06–0.15%, [27]). The relatively higher value in this site could be due to the fact that our
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study calculated EF based on the annual N2O emissions, while other studies were based
on emissions only occurring over the growing season. Shang et al. [32] reported that the
N2O−EF estimated over the whole year was significantly greater than the measurement
of only the growing season. In addition, the EF in our research was far lower than the
IPCC default value (1%, [46]). The results of our long−term experiment suggest that N2O
emissions from extremely arid regions could be significantly overestimated using the IPCC
default value.

Emissions of N2O from the cotton fields were 1.7–13.6 times greater than those from
the native desert, demonstrating that reclamation from desert to farmland increased N2O
emissions. Our results were consistent with previous studies that the cultivation of native
ecosystems to agroecosystems greatly enhanced soil N2O flux [12,14]. The increases in
N2O flux occurred mainly after drip fertigation. Lv et al. [29] also reported that the N2O
flux peaks of the cotton fields mainly appeared after basal and supplementary fertilizer
application in Xinjiang. The N2O emissions in the fertilized fields were significantly greater
than those from the no−fertilizer cotton field and desert during the growing season. In
contrast, there were no significant differences among the four fields in the non−growing
seasons, which was similar to the result of Yang et al. [12] who demonstrated that N2O
emissions were similar among different land use types in the winter. In addition, N2O
emissions in the non−growing seasons from cotton fields account for 2–27% of the annual
total. Therefore, the increases in N2O emissions in response to the land use change from
desert to cropland were mainly attributed to emissions in the growing season.

4.2. Effects of Reclamation on N2O Emissions

Water and fertilizer inputs were the main reasons for the increases in N2O emissions
in cropland soil [47]. In this study, N2O emissions from the fertilized fields were signifi-
cantly greater than in the non−fertilized field and the desert, but there was no significant
difference between the non−fertilized field and the desert. Manure and synthetic fertilizer
application increased the concentrations of mineral N in the cotton fields. Soil NO3

−

and NH4
+ in the high and low fertilizer fields achieved maximum values of 85.7 and

5.8 mg N kg−1 and 48.4 and 3.6 mg N kg−1, respectively. This assumption is also supported
by the positive relationship between the cumulative N2O emission and soil nitrate intensity.
In addition, the soil WFPS in farmland (mean 24%) was higher than that in the desert (mean
8%). It is generally believed that nitrification is the primary process of N2O release when
soil WFPS is less than 60% [48]. For the fertilized fields, increases in mineral N and soil
moisture in response to drip fertigation could promote the nitrification rate, thus enhancing
the release of N2O. Crop cover on the soil surface can limit soil water evaporation and
consequently promote N2O emission, especially in extremely arid regions. In addition,
the soil microbial biomass and activities increased dramatically after the desert was con-
verted to agricultural land due to the addition of nitrogen nutrients and water [16,49,50].
Furthermore, root exudates from cotton crops can increase the abundance and activities of
soil microorganisms [51,52]. Thus, changes in these environmental factors could provide
more favorable conditions for nitrification, resulting in an increase in N2O emissions in
agroecosystems after desert reclamation.

According to our long−term experiment, fertilizer application resulted in a consider-
able improvement in soil properties. The soil pH changed from weakly alkaline to neutral,
and SOC and available P also increased considerably. These results were consistent with
previous research that long−term cropping and fertilizer practices improved the soil struc-
ture and fertility of farmland reclaimed from deserts [8,53,54]. Long−term fertilization
also greatly increased cotton yield. Cotton yields in the fertilized fields was nearly triple
that of the no fertilizer in the current study. However, increasing fertilizer application
from low to high rates increased cotton yields by only 6% but resulted in a significant
increase in soil N2O emissions of 62%, indicating that the excessive application of fertilizer
will not only fail to yield improvement but also increase environmental hazards such as
N2O emissions. Lv et al. (2014) [29] also reported that excessive inputs of animal manure
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did not improve crop yields but resulted in high soil nitrate accumulation. In addition,
there was no difference in crop N uptake, N recovery efficiency, and yield−based emission
intensity between low and high fertilizer fields. These results further confirm that the low
fertilizer input level in the current study could meet crop nutrient needs while reducing
N2O emission.

4.3. Effects of Soil Mineral N and Moisture on N2O Emissions

Many studies have reported a positive relationship between soil mineral N and N2O
emission [55,56]. In the current experiment period, there was a significant linear correlation
between NO3

− concentration and N2O flux (R2 = 0.104, p < 0.001). It is worth noting
that NO3

− concentration only explained 10% of N2O emissions, indicating that other
environmental factors have a greater impact on N2O emissions in this study, such as
organic carbon or microorganisms, which can be further confirmed in future research.

It is widely established that the N2O flux is usually correlated with soil tempera-
ture [57]. However, soil temperature was not associated with N2O flux in our long−term
experiment. This is likely attributed to the seasonal fluctuation of soil temperature during
the two observation years, while the N2O flux rates were relatively stable under the no
fertilizer and desert treatments.

Soil moisture regulates the production, transport, and emission of N2O by influencing
the activity of nitrifying and denitrifying microorganisms and soil permeability [57,58].
In our long−term experiment, there was a significantly positive relationship between
N2O flux and soil WFPS (R2 = 0.269, p < 0.001), which was in line with the reports by
Meng et al. [53] and Yan et al. [59] who also reported a positive correlation between N2O
flux and soil moisture in arid regions. In our study, the poor water−holding capacity and
the high evaporation of reclaimed sandy soils generally maintained the WFPS around 20%
and did not exceed 55%, even after drip fertigation. This indicates that in our research site,
N2O production was mainly through nitrification, and soil moisture is an important factor
regulating N2O production and emission in arid regions.

5. Conclusions

In our study, the two−year cumulative N2O emissions ranged from 248–3615 g N ha−1

from reclaimed croplands and desert, and the applied−N−based emission factors were
0.14% to 0.29% in the fertilized cotton fields. Our study demonstrated that land reclamation
from desert to agricultural land effectively improved soil quality and cotton yield but
resulted in high N2O emissions over the growing seasons. The enhanced N2O emissions in
the reclaimed farmland were mainly attributed to the nutrient and water inputs through
fertilizer and irrigation practices. Increasing fertilizer rates from low to high did not
improve cotton yield but led to a significant increase in N2O emissions. These results reveal
that excessive fertilization failed to increase yield and resulted in more N2O emissions in
the reclaimed cropland. The results of this study can be a reference for developing fertilizer
management strategies and estimating N2O fluxes for land reclamation with a similar arid
oasis agriculture. Future studies should investigate the microbial−driven N2O production
processes in response to land reclamation.
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