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Abstract: In case of a release of hazardous radioactive matter to the atmosphere from e.g., a nuclear
power plant accident, atmospheric dispersion models are used to predict the spatial distribution
of radioactive particles and gasses. However, at the early stages of an accident, only limited in-
formation about the release may be available. Thus, there is a need for source term estimation
methods suitable for operational use shortly after an accident. We have developed a Bayesian inverse
method for estimating the multi-nuclide source term describing a radioactive release from a nuclear
power plant. The method provides a probabilistic source term estimate based on the early available
observations of air concentration and gamma dose rate by monitoring systems. The method is in-
tended for operational use in case of a nuclear accident, where no reliable source term estimate exists.
We demonstrate how the probabilistic formulation can be used to provide estimates of the released
amounts of each radionuclide as well as estimates of future gamma dose rates. The method is
applied to an artificial case of a radioactive release from the Loviisa nuclear power plant in southern
Finland, considering the most important dose-contributing nuclides. The case demonstrates that only
limited air concentration measurement data may be available shortly after the release, and that to
a large degree one will have to rely on gamma dose rate observations from a frequently reporting
denser monitoring network. Further, we demonstrate that information about the core inventory of
the nuclear power plant can be used to constrain the release rates of certain radionuclides, thereby
decreasing the number of free parameters of the source term.

Keywords: source characterization; atmospheric dispersion modelling; inverse modelling;
Bayesian inference

1. Introduction

In case of a nuclear accident, radioactive particles and gasses may be released to
the atmosphere. Consequently, an important part of emergency preparedness is to run
simulations with atmospheric dispersion models, thereby predicting the atmospheric
distribution as well as deposition of radioactive particles and gasses on the surface of
the Earth. However, such models are subject to a number of uncertainties, the most
important being the uncertainties of the meteorological predictions, inaccurate physics
parameterizations in the dispersion model, and uncertainties of the estimated source term.
Immediately after an accident in a nuclear power plant, only limited information about
the release may be available. Thus, at the early stages of the accident, the dominating
source of uncertainty is most likely the source term. If this is the case, inverse modelling
can be used to obtain a source term estimate, which in turn can be used for running the
atmospheric dispersion model. The aim of this study is to develop an inverse method for
source term estimation, which is suited for operational use for emergency preparedness at
the early stages of an accident, i.e., providing a source term estimate based on the limited
data available shortly after the accident.
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In the early phase of a nuclear power plant accident, a limited number of air concentra-
tion observations will be available, and these will typically have a low spatial and temporal
resolution, e.g., the filters in such measurement stations may be changed every 24 h or even
less frequently. In addition, there may exist gamma dose rate observations at much higher
resolution, both spatially and temporally. However, since such measurements are the sum
of contributions from all the different radionuclides, it is not clear a priori if they are useful
for source term estimation.

Previous studies have used inverse methods for source term estimation. Lately, the
still unaccounted for release of Ru-106 in the fall of 2017, was subject to several studies,
e.g., [1–4]. However, since the release location has still not been confirmed, the main focus
of these studies is localization of the source. The Fukushima Daiichi nuclear disaster in 2011,
on the other hand, demonstrated that in-plant monitoring systems may not be working
during a severe accident. Thus, different inverse methods have been applied in order to
assess the source term. Some studies have estimated the release of certain radionuclides
based solely on air concentration measurements [5,6], other include surface deposition
measurements [7,8], while other again also include gamma dose rates [9]. Saunier et al. [9]
demonstrate that information about ratios between the amounts of certain radionuclides
can be used to further constrain the release rates. They use a variational approach to assess
the source term, thereby providing a deterministic estimate. However, by using different
Bayesian approaches, Liu et al. [6] show that significant uncertainties are associated with
the estimated source term, indicating that probabilistic methods are better suited for this
type of problem.

Most previous studies in this field aim at estimating the source term associated with
accidents a long time after they occurred. However, for emergency preparedness, it is also
important to be able to estimate source terms during the early stages, where especially air
concentration measurement data are limited. This was addressed by Saunier et al. [9], who
further developed their method to be applicable in real-time in case of an accident [10].
Our method is inspired by Saunier et al. [9,10], but instead we use a Bayesian inference
method to be able to realistically account for uncertainties of the estimated source term,
similar to Liu et al. [6].

The method is applied to an idealized artificial release case from the Finnish Loviisa
nuclear power plant. A set of simulated air concentration measurements and gamma dose
rate measurements have been created as described in Section 2.1. The same meteorological
data and dispersion model have been used for data creation and for the source term
estimation. Thus, the study demonstrates the uncertainties of the estimated source term
arising only from the information loss due to the limited measurement capabilities. Due to
the idealized nature of our study, our results apply to a situation, where model errors are
negligible. In reality, meteorological uncertainties and model errors will further increase
the uncertainty of the estimated source term.

Section 2 describes the data and methodology; Section 2.1 describes the synthetic
measurement data set, Sections 2.2 and 2.3 describe the meteorological data and the dis-
persion model used, while Sections 2.4–2.7 describe the methodology. Next, the results
are presented and discussed in Section 3. Finally, Section 4 presents a summary and the
conclusions of the study.

2. Materials and Methods
2.1. Artificial Loviisa Release Case

For the artificial release from the Loviisa nuclear power plant in south Finland, the
selected source term describes a core melt event without functioning mitigation systems.
The initial event is a total loss of all power systems without battery back-up. The filtered
containment venting system is assumed disconnected, and instead comprises an exhaust
pathway from the reactor containment. It is postulated that the exhaust pathway was open
at the time of melt-through of the reactor vessel. The released activity was corrected for
decay and ingrowth for the time period between the emergency shutdown of the nuclear
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reactor (SCRAM) and the time of the release starting three hours later. It is assumed that
there was no significant heat release associated with the accident, and therefore all material
is released from a fixed height of 27 m above ground.

The time evolution is given in one-hour time steps starting at the onset of the accident
(time of the SCRAM) and the following 12 h, intended to represent the first part of the
release to undergo subsequent detection by the gamma monitoring stations and capture
by the air filter stations. The source term was developed for the research project SOurce
CHAracterizatiOn accounting for meTeorologIcal unCertainties (SOCHAOTIC), for further
details, see [11].

Figure 1 shows the gamma dose field at the end of the simulation, 63 h after the release
starts, as well as the locations of gamma dose rate stations and filter stations. The source
term is given in Section 3.

0.001

0.01

0.1

1.0

10.0

Figure 1. Total gamma dose in units of mSv at 63 h after the release start. Areas only influenced by
background radiation are left uncolored. The black diamond shows the release location, the yellow
circles show the locations of the gamma stations, and the red triangles show the locations of the
filter stations.

2.1.1. Simulated Gamma and Filter Station Measurements

The total dose rate at the gamma monitoring stations is the sum of the contributions
from cloud and ground since the stations are not shielded from activity deposited on
the ground. Over time, the contamination of the station itself will also contribute to
the measurements.
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A set of 11 nuclides was selected to represent the most important nuclides for human
doses: Kr-88∗, Xe-133∗, Xe-135∗, Xe-135m∗, Cs-134#, Cs-137, I-131#, I-132∗#, I-133#, I-135#

and Te-132. The list consists of the expected top five for the gamma monitoring stations
(denoted by ∗), and top five for the air filter stations (denoted by #), expected to represent
more than 90% of the dose rate contribution in the first 12 h of the postulated event.
Moreover, two nuclides from the top ten list, Cs-137 and Te-132, were included since they
represent key nuclides as seen from historical releases. For further details, see [11].

The artificial scenario consisting of simulated filter station and gamma station mea-
surements was derived by predicting the atmospheric dispersion of radionuclides from a
9-hour release at the Loviisa nuclear power plant starting at 08:00 UTC on 22 September
2021. The DERMA atmospheric dispersion model was applied to the release scenario
described above and using Harmonie data, cf. Sections 2.2 and 2.3, thereby providing
average concentration values at existing filter stations, and gamma dose rates at gamma
stations by using the ARGOS gamma dose model [12,13]. The filter concentration values
are computed as 24 h averages from 08:00 UTC to 08:00 UTC the next day. Further, the
filter measurement stations are assumed to have a detection limit of 0.1 mBq m−3. For the
gamma dose rates, we have assumed a background radiation of 0.1 µSv h−1, which has
been added to all modelled dose rates.

2.2. Meteorological Data

The simulations have been carried out using meteorological data derived by the
non-hydrostatic convection-permitting limited-area numerical weather prediction model
Harmonie [14]. The horizontal grid resolution is approximately 2.5 km, and the vertical
dimension is resolved by 65 levels with a terrain-influenced hybrid coordinate. The low-
est model level is about 12 m above ground, and the highest at approximately 10 hPa.
The model is configured with three-hourly data assimilation cycling. For the Loviisa
case, the model simulation starts on 22 September 2021, at 00:00 UTC and runs until
24 September 2021, at 23:00 UTC.

2.3. Dispersion Modelling

The atmospheric dispersion is modelled by using the Danish Emergency Response
Model of the Atmosphere (DERMA) [15,16]. DERMA is used operationally for a number
of Danish emergency preparedness purposes [17–21] including nuclear [13]. The three-
dimensional model is of Lagrangian type making use of a hybrid stochastic particle-puff
diffusion description [15,16]. The model uses aerosol size dependent dry and wet deposition
parameterizations as described by [22].

DERMA is interfaced with the nuclear decision-support system ARGOS (Accident
Reporting and Guidance Operational System) [12,13], where the integration is accom-
plished through automatic online exchange of data between ARGOS and the DMI High
Performance Computing (HPC) facility. The dose calculation modules are incorporated
in ARGOS.

2.4. Problem Description

The temporal release profiles of the radionuclides considered are estimated by using
observations of both air concentration and gamma dose rate combined with a series of
forward runs by the dispersion model DERMA. We assume an overall start time t0 and end
time tn of the release. We then separate the total release period into n time bins of duration
∆tbin and for each of these assume a unit release of each of the included radionuclides.
The releases are assumed to be point releases at ground level. As described in Section 2.1.1,
we assume that only a selection of all released radionuclides contributes significantly to the
gamma dose rates, while other radionuclides will be ignored. Let Co

ik be the k’th observed
average concentration of the i’th radionuclide, measured over a specified time period at a
specified filter station. Similarly, let Γo

κ be the κ’th observed gamma dose rate measured at
a specified time and gamma station.
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The atmospheric dispersion model DERMA is run forward in time for each of the unit
releases, and for the j’th release of the i’th radionuclide the average activity concentrations
cijk are calculated, where the k-index corresponds to the location and time of an existing
filter measurement. Further, instantaneous activity concentrations cijκ and deposition
values dijκ are calculated, where the κ-index corresponds to the location and time of an
existing gamma dose rate observation. By using the gamma dose model as described in
Section 2.3, the contributions to the gamma dose rates γijκ = γijκ(cijκ , dijκ) are calculated.
For a given set of non-negative coefficients, λij, the predicted average concentrations and
gamma dose rates corresponding to existing measurements are calculated:

Cm
ik = ∑

j
λijcijk

Γm
κ = ∑

i
∑

j
λijγijκ . (1)

2.5. Bayesian Inversion and Sampling Method

Given a set of observations, (Co, Γo) , the coefficients, λ can be determined by applying
Bayes’ theorem:

P(λ,θ|Co, Γo, I) =
P(λ,θ|I) P(Co, Γo|λ,θ, I)

P(Co, Γo|I) , (2)

where θ denotes any so-called nuisance parameters, i.e., unknown parameters, which are
not of direct interest. One way to account for these is to treat them just like the parameters
of interest and consider P(λ,θ|Co, Γo, I), which is the posterior probability distribution for
the combined set of parameters (λ,θ). P(λ,θ|I) is then the prior probability distribution
for (λ,θ), P(Co, Γo|λ,θ, I) is the likelihood, and P(Co, Γo|I) is the evidence; a statistical
constant independent of (λ,θ). I is any background information that may be available, e.g.,
amount of material present in the core at the time of the accident.

To evaluate Equation (2), the quantities P(λ,θ|I) and P(Co, Γo|λ,θ, I) must be es-
timated for a selection of realizations of (λ,θ), and the resulting posterior probabil-
ity distribution P(λ,θ|Co, Γo, I) can then be estimated by normalizing the distribution.
The posterior probability distribution for λ can then be determined by marginalizing:

P(λ|Co, Γo, I) =
∫
θ

P(λ,θ|Co, Γo, I)dθ. (3)

To get a good estimate of the probability distribution, the relevant parts of the parame-
ter space must be sampled. One option is to use random-walk based Markov Chain Monte
Carlo (MCMC) methods, such as Metropolis-Hastings or Gibbs [23,24]. However, these
methods generally require a large number of iterations, because the random-walk based
model proposals do not sample the parameter space of the posterior probability distribution
in the most efficient way. Further, parameters such as the step size of the random-walk
typically need to be tuned to the specific case. Instead, we use the Hamiltonian Monte
Carlo (HMC) method No U-Turn Sampling (NUTS) [25], implemented in the Python library
PyMC3 [26]. HMC methods generally have an advantage over random-walk based MCMC
methods, because the model proposals are not generated by a random-walk but instead
based on estimated gradients of the posterior distribution. Thus, much fewer iterations
are typically needed to sufficiently sample the probability distribution. However, the
efficiency of HMC algorithms strongly depends on the step size parameter. The NUTS al-
gorithm uses adaptive step sizing such that the step size does not need to be set by the user.
Further, as the name suggests, the algorithm is constructed such that trajectories in the
parameter space avoid making “U-turns”, i.e., retracing their own steps. Thus, it should
produce more independent samples in fewer iterations. When the aim is to use Bayesian
inverse modelling operationally, the NUTS algorithm is ideal, since very little parameter
tuning is necessary [25]. In addition, when using the PyMC3 implementation [26], Gelman-
Rubin convergence diagnostics [27] are automatically calculated, when sampling with two
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or more chains. This makes it easy to control that the sampler has converged. For further
details on the NUTS algorithm, see [25].

2.6. Prior Probability Distributions

Defining useful prior probability distributions for the release rates is challenging, since
the magnitude of the release is unknown. To allow for variation over several orders of mag-
nitude while ensuring non-negative values, we use log-normal prior distributions. Assum-
ing a normal distributed variable x ∼ N (µ, σ), then the variable z = ex ∼ Lognormal(µ, σ)
is log-normal distributed with parameters µ and σ. Thus, these denote the mean and stan-
dard deviation of x and not of the log-normal distributed variable z. The prior probability
distribution for the coefficients λij can be written as:

P(λij|I) = Lognormal(µi, σi), (4)

where µi and σi are parameters to be determined for the specific radionuclide. Given that
total amount of the i’th radionuclide in the core inventory is Si in units of Bq, the upper
limit for λij is Si/∆tbin, where ∆tbin is the duration in seconds of each assumed unit release.
To allow for release rates approaching the upper limit with reasonable probability, we set
µi + 2σi = log(Si/∆tbin), where log() denotes the natural logarithm. The lower limit must
be small compared the “typical” release rate, µi. Since the typical release rate is unknown,
we assume µi = log( f Si/∆tbin), where f is some (small) fraction. Assuming a sufficiently
low value for f will result in a conservative prior distribution, which allows for a broader
range than necessary. In this study, we use f = 10−3, which means that µi ± 2σi includes
six orders of magnitude for each release rate. Thus, the mean and standard deviations for
the prior probability distributions are given as:

µi = log(10−3Si/∆tbin) and σi =
1
2

log(103). (5)

Further, we can use information about the core inventory to reduce the parameter
space by imposing correlations between release rates of certain radionuclides, inspired by
the method by Saunier et al. [9,10]. For example, two different isotopes of the same element
will largely behave similarly during a release. Thus, if the half-lives of two such isotopes
are long compared to the duration of the release and if there is no significant ingrowth
from other processes, the ratio of the release rates between two isotopes can be assumed
constant and equal to the ratio of the amounts in the core inventory. For example, 134Cs
and 137Cs have half-lives of approximately 2 and 30 years, respectively, and thus, the ratio
of their activity concentrations in the core inventory can be considered constant during the
release. Accordingly, based on the amounts of the two isotopes in the core, we can assume
the ratio of their release rates to be constant.

For other isotope pairs, it is necessary to take into account the difference in half-lives
in order to set realistic constraints on the release rates. In this case, knowing the amount
of the two isotopes at the time of SCRAM gives one limit for the isotopic ratios, while
estimating the activity concentration n hours later will provide an estimate of the other
limit, assuming no significant ingrowth. An example is the isotope pair 131I and 133I, which
has half-lives of approximately 8 days and 20.8 h, respectively. Let the release rates of these
isotopes be q131I and q133I, respectively. Based on their activity concentrations in the core
at the time of the accident, we have

q133I
q131I

< 2.1. Assuming that the duration of the main
release is less than 24 h, we can determine the other limit. Due to radioactive decay during
these 24 h, the amount of 133I is decreased by a factor of 0.45, while we assume that the
amount of 131I is unchanged due to its relatively long half-life. Thus, a lower limit can be
determined

q133I
q131I

> 0.9. Following this approach, we determine the following constraints:

q134Cs
q137Cs

= 1.4, 0.001 <
q132I
q131I

< 1.5, 0.9 <
q133I
q131I

< 2.1 and 0.15 <
q135I
q131I

< 2.0. (6)
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For 134Cs and 137Cs, this effectively means that only one release rate needs to be
determined instead of two, and that the combined set of measurements of the two isotopes
can be used. For the other isotope pairs, the constraints allow us to define log-normal
distributions with upper and lower bounds, which depend on the release rate of one of the
other nuclides. Let λmj and λnj be the coefficients for two release rates, which are related by
the flexible constraints rlower < λnj/λmj < rupper. Then, the prior probability distribution
for λmj will be defined as in Equation (4), while the prior probability distribution for λnj
can be written as:

P(λnj|I, constraints) ∝

{
P(λnj|I) rlower <

λnj
λmj

< rupper

0 otherwise
. (7)

It might be possible to impose further constraints, i.e., across the type of element, such
that the release rates of the iodine isotopes can also be related to the release rates of the
caesium isotopes, Te-132 and the noble gasses. However, the underlying assumptions in
this case are less trivial.

2.7. Likelihood and Uncertainty Quantification

The likelihood is the probability of observing the set of measurements (Co, Γo), given
a proposed source term, λ. The likelihood is evaluated by assuming a probability distribu-
tion for the residuals Co

ik − Cm
ik (λij) and Γo

κ − Γm
κ (λij). In this study, we use a log-normal

likelihood, which is less sensitive to outliers than the Gaussian distribution and auto-
matically gives a higher weight to measurements/predictions of low values. This makes
it useful when dealing with measurement values over several orders of magnitude [6].
One practical challenge when dealing with log-normal distributions is that only positive
values are mathematically allowed, while the physical quantity may in principle be zero.
For the gamma dose rates, this is not an issue, since we add background radiation to
the modelled measurements, thereby ensuring that values are always positive. For the
air concentration measurements, on the other hand, modelled predictions may be zero,
while the measured predictions may be below the detection limit. Assume that for a
given measurement, Co

ik, the detection limit is εik. To avoid zero-values, we use these
altered observations and model predictions C̃o

ik = max
(
εik, Co

ik
)

and C̃m
ik = max

(
εik, Cm

ik
)
.

These altered forms have the additional benefit that they provide a theoretically sound way
of using non-detections, since these will only contribute to the likelihood, when the mod-
elled concentration is above the detection limit. Thus, there is no risk of falsely interpreting
a low value as a zero. The likelihood is given as:

P
(

C̃o, Γo|λ, I
)
= ∏

k
∏

i
Lognormal

(
C̃m

ik , σf

)
∏

κ

Lognormal
(
Γm

κ , σg
)
, (8)

where Cm
ik and Γm

κ are as defined in Equation (1). σf and σg are related to the uncertainty of
the measurements as well as the unknown model errors. In this study, both are negligible
as discussed in Section 1. However, in order to make the method as general as possible,
the uncertainty parameters are treated as nuisance parameters, i.e., they are kept as free
parameters and sampled by the Monte Carlo algorithm. In practice, a wide uniform
distribution has been used as prior distribution for the nuisance parameters σf, σg ∼
U(0, 10), which allows for a broad range of shapes of log-normal distributions.

3. Results and Discussions

As described in Section 2.5, the results are obtained by using the NUTS algorithm [25],
which is implemented in the PyMC3 python library [26]. The algorithm is constructed in
such a way that almost no parameter tuning is necessary. To ensure convergence, the target
acceptance rate was increased from the default 0.8 to 0.99. Aside from this, everything was
kept at PyMC3’s default values; two simultaneously running chains, each with 1000 tuning
steps and 1000 draws from the target distribution. This provides a total of 2000 realizations
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of the posterior probability distribution. For further details on the NUTS parameters,
see [25,26].

In our analysis, we include 10 of the 11 radionuclides described in Section 2.1.1,
excluding Xe-135m based on the rationale that its short half-life of approximately 15 min
makes it unimportant on longer temporal, and thus also spatial scales. This means that
there is not enough information in the measurement data to sufficiently constrain the
release rate of Xe-135m. The other three noble gasses are included, although there are no
filter measurements to help constrain their release rates. However, as long as their half-lives
are sufficiently different, we expect the gamma dose rate patterns to differ enough to be
able to distinguish between their contributions. The prior probability distributions for the
release rates of Kr-88, Xe-133, Xe-135, Cs-137, I-131 and Te-132 were defined as log-normal
distributions, Equation (4) with mean and standard deviations given by Equation (5).
The release rate for Cs-134 was defined as a deterministic variable, equal to the release rate
for Cs-137 multiplied by the fixed ratio 1.4. Finally, the prior distributions for the release
rates of I-132, I-133 and I-135 were defined as bound log-normal distributions Equation (7),
where the bounds are given by the flexible constraints, Equation (6).

We assume that the time of the emergency shutdown of the nuclear reactor (SCRAM),
22 September, 05:00 UTC, is known. We therefore consider this as the first possible time of
release. We then consider the release during the following 24 h by assuming twelve 2-h
constant releases, i.e., ∆tbin = 7200 s. The source term estimation is based on the simulated
measurements described in Section 2.1.1, but only measurements until 23 September,
08:00 UTC are used for the source term estimation, leaving the remaining measurements for
validation of model predictions based on the estimated source term. Thus, for all particles,
only two 24-h filter measurements from each of the five filter stations are available, i.e., ten
filter measurements per particle. However, first, all measurements without any information
are discarded; if a given measurement is not influenced by any of the time-binned unit
releases, it is removed from the data set. After this automatic removal of data, only one
filter measurement per particle from each of the two filter stations in southern Finland are
left. Thus, even when using the additional constraints described in Section 2.6, the amount
of filter measurement data is very limited.

The gamma dose rates, on the other hand, are measured every hour at 214 different
locations, see Figure 1. Thus, from 22 September, 05:00 UTC to 23 September, 08:00 UTC,
a total of 5778 measurements. After the automatic removal of data without information,
1918 measurements are left.

Given the high dimensionality of the parameter space, it is not possible to visu-
alize all elements of the actual posterior distribution. Instead the individual release
rates are shown in Figure 2. The plots show the median release rates as well as the
10th and 90th percentiles based on marginal distributions for each 2-h release period.
Further, Figure 3 shows histograms of the marginal distributions of time integrated releases
for all radionuclides. The only release rate, which is well determined for most time bins
is that of Xe-133. This makes sense, since it is the only relatively long-lived noble gas; the
half-life is approximately five days, while Xe-135 and Kr-88 have half-lives of roughly nine
and three hours, respectively. Further, since the noble gasses do not deposit, the gamma
dose rate pattern of Xe-133 will also be easy to distinguish from those of the long-lived
particles. For the particles, the estimated release rates clearly indicate the effects of the
constraints in Equation (6); the release rates of the four iodine isotopes, which are all
“tied together”, are better estimated than those of both the caesium isotopes and of Te-132.
Since the release rates of the two caesium isotopes are forced to differ only by a factor, we
also expect these to be better estimated than the release rate of Te-132. While it is not easy
to see that this is the case, it is clear from Figure 3 that the released amounts of the two
caesium isotopes are better estimated than Te-132.
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Figure 2. Release rates for each radionuclide in each 2-h time bin. The solid blue lines show the
medians of the marginal distributions, while the dashed blue lines show the 10th and 90th percentiles.
For comparison, the solid black lines show the true release profile. To focus on the release rates of
high magnitude, we have set the minimum value on the y-axis to 10% of the lowest true release rate.
Thus, predicted release rates below this limit are not shown in the plot, e.g., the predicted release rate
of Xe-135 only shows the 90th percentile, while both the 10th percentile and the median are below the
axis limit.
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Figure 3. Probability density for each radionuclide as a function of time-integrated release. The
vertical red lines show the actual released amounts.

The histograms in Figure 3 show that for some radionuclides, the amounts are quite
well constrained, e.g., the release of I-131, which varies from roughly 70 PBq to 180 PBq,
and Xe-133, which varies from roughly 3.6 EBq to 4.4 EBq. The latter, however, only
barely include the true released amount in the probability distribution. For the remaining
radionuclides, the released amounts are not very accurately estimated, especially not for Kr-
88 and Xe-135. Given the limited amount of measurement data, this result is not surprising.
Further, it is important to note that the log-normal prior distribution ensures release rates
of positive values. Hence, the estimated release will necessarily have the same duration as
the considered release period, 24 h in this case. However, we see from Figure 2 that most
release rates drop significantly in magnitude after 12 h from SCRAM.
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From Figures 2 and 3, it may seem that the source term is not sufficiently constrained
by the data. Clearly, release rates for some nuclides are poorly estimated, e.g., Kr-88
and Xe-135, and it may therefore be tempting to exclude these from the source term.
However, we found that when excluding these, the estimated release rates of the remaining
nuclides are less accurate. Thus, it seems that the release of some of the other nuclides com-
pensate for their lacking contribution. On the other hand, it is important to note that includ-
ing Kr-88 and Xe-135 in the source term does not seem to compromise the release rates of the
remaining nuclides. Thus, when it is not known a priori which nuclides constitute the best
possible source term, the safer choice seems to be to include more nuclides than necessary.
Further, the marginal distributions are obtained by integrating over the remaining parame-
ters of the multi-nuclide source term, and therefore all correlations between parameters
are ignored. As demonstrated below, though the marginal distributions of individual
releases might be uncertain, the gamma dose rate patterns of different realizations of the
multi-nuclide source term vary significantly less.

Figure 4 shows predicted air concentrations and gamma dose rates as function of
observations. The upper plots show filter measurements, and the lower plots show gamma
dose rates. The left plots show measurements before 23 September, 08:00 UTC, i.e., the
measurements that are used for the source term estimation. The right plots show mea-
surements after 23 September, 08:00 UTC and therefore show a prediction of future values
based on the estimated source term. The percentiles are estimated by first calculating the
concentrations and gamma dose rates from all source terms in the posterior distribution
and then finding the percentiles in the calculated values. The plots with the gamma dose
rates show a randomly selected subset of 300 observations, since more data in the plot
makes it impossible to distinguish the different data points. The figure shows that the
average activity concentrations at the filter stations are generally estimated to match the
observations within the uncertainties, although some allow for a wide variation. On the
other hand, the predicted gamma dose rates fit very well with the observed even for the
predicted values. Considering the fact that a total of 1918 gamma measurements and only
2 filter measurements for each nuclide are used for the inversion, it is not surprising that
the gamma dose rates are more accurately estimated.
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Figure 4. Cont.
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Figure 4. Model predictions with uncertainties (median and 10th and 90th percentile) on the y-axis,
and observations on the x-axis. The solid black lines indicate a perfect correlation, while the dashed
black lines indicate a factor of 5 between model and observation. (a) shows the filter measurements
until 23 September, 08:00 UTC, i.e., the measurements that are used for the source term estimation,
whereas (b) shows the filter measurements after 23 September, 08:00 UTC, i.e., predicted future air
concentrations. (c) similarly shows the gamma dose rates until 23 September, 08:00 UTC, and (d)
shows the gamma dose rates after 23 September, 08:00 UTC.

Figure 5 shows the predicted gamma dose rates at the locations of six selected gamma
stations, viz. the six stations that measured the highest values. The plots show that there
is good agreement between modelled observed gamma dose rates and that even the time
evolution is captured very well.
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Figure 5. Cont.
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Figure 5. Gamma dose rates at locations of gamma stations during the first 24 h after the accident.
Model predictions with uncertainties (median and 10th and 90th percentile) are shown by the blue
dots and error bars, while the true gamma dose rates are shown by the black solid line. The selected
gamma stations are all close to release locations, viz. the six stations that measured the highest values
during the first 24 h.

Finally, Figure 6 shows the probability distributions of the two uncertainty parameters
σf and σg; both parameter distributions indicate relatively narrow log-normal distributions,
which is expected given that model errors are negligible.
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Figure 6. Marginal probability distributions of the uncertainty parameters, (a) σf and (b) σg.

3.1. Including All Data

For comparison, we show the estimated source term when including all measurements.
Figure 7 shows the release rates and probability densities of released amounts for three
selected nuclides, Cs-134, I-131 and Xe-133. Interestingly, the release rates are all better
defined than the previous result, i.e., the distributions are narrower. However, the release
rate estimates are not necessarily more accurate. On the other hand, comparison with
Figure 2 shows that the use of later measurements allows for a better estimate of the
duration, as all release rates are very low after 16 h from the SCRAM.

As discussed previously, there are not many filter measurements available, and there-
fore the gamma dose rates are dominant; thus, the estimated source term is more likely
to match the gamma dose rates than the filter measurements. This is apparent from
Figure 8, which shows the modelled air concentrations and gamma dose rates as function
of observations, similar to Figure 4. There is a very good agreement for gamma dose rates,
while for air concentrations, the discrepancy is somewhat larger.
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Figure 7. Release rates and probability densities for selected nuclides. For further description of the
plots, see captions of Figures 2 and 3.
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Figure 8. Model predictions with uncertainties (median and 10th and 90th percentile) on the y-axis,
and observations on the x-axis. The solid black lines indicate a perfect correlation, while the dashed
black lines indicate a factor of 5 between model and observation. (a) shows the filter measurements,
whereas (b) shows the gamma dose rates.
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3.2. Efficiency

Regarding efficiency, we only have rough estimates of the computation time. However,
we see that the time depend strongly on the amount of data included. The computation
time for the first result, using data from only the first 24 h, was approximately half an hour.
When including all data, the computation time was approximately 3.5 h. These estimates
are the wall times of the runs of the NUTS algorithm, when running the algorithm in
parallel on two CPUs on a standard modern laptop. In addition, some time is of course
required for running the dispersion model and restructuring the data.

When operationalized, the code should be adapted to run on an HPC facility to
further decrease computation time. In addition, the total set of gamma dose rate obser-
vations constitute 8953 measurements from a relatively dense network sampling at every
hour. We suspect that there is a lot of redundant information in this data set, so instead
using a subsample of this data set might be sufficient and would reduce computation
time significantly.

4. Summary and Conclusions

We have developed a Bayesian inverse method for probabilistic source term estimation
to be used for accidental nuclear releases to the atmosphere. The source term probability
distribution is sampled using the Hamiltonian Monte Carlo algorithm NUTS, which is
robust and needs only limited parameter tuning. In theory, this makes it directly applicable
to other cases without making significant changes to the method.

The method is applied to a synthetic data set derived by running an atmospheric
dispersion model for a realistic accident at a nuclear power plant. The data set consists of air
concentration measurements at existing filter stations as well as gamma dose rates at gamma
stations. We have shown that even with a limited set of air concentration measurements,
realistic source term estimation is possible based on early observations of gamma dose
rates. Further, the results indicate that additional constraints on the release rates based
on information on the nuclear reactor core inventory can be used to improve the accuracy
of the predictions. The estimated released amounts of most individual radionuclides are
described by relatively wide probability distributions. However, the gamma dose rates
predicted using the probabilistic source term correspond well with observations.

Of course, when applied to a real-world case, we expect that model errors will reduce
the accuracy of the predictions to some extent. However, if the models used are unbiased,
we anticipate that the predicted gamma dose rates will still be more accurately estimated
than the release rates of the individual radionuclides. Further, to make the method as
generally applicable as possible, we treat the uncertainty parameters as nuisance parame-
ters. Hence, no assumptions about the magnitude of the uncertainties are made; the only
assumption is that the residuals are log-normal distributed.

In conclusion, we have developed a method that performs well applied to the sim-
ulated release case, and the results indicate that even with limited measurement data
available, it is possible to construct a probabilistic source term that provides accurate pre-
dictions of gamma dose rates and reasonable estimates of the released amounts of most of
the radionuclides considered. Due to the few assumptions made and the robust theoretical
foundation, we expect the method to generalize well. However, in order to fully examine
the performance of the method, future application to real-world cases is necessary.
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