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Abstract: Adequate CO2 is essential for vegetation, but industrial chimneys and land, space and
oceanic vehicles exert tons of excessive CO2 and are mostly responsible for the greenhouse effect,
global warming and climate change. Due to COVID-19, CO2 emission was in 2020 at its lowest level
compared to prior decades. However, it is unknown how long it will take to reduce CO2 emission
to a tolerable point. Furthermore, it is also unknown to what extent it can increase or change in
the future. Accurate forecasting of CO2 emissions has real significance for choosing the optimum
ways of reducing CO2 emissions. Although some existing models have noticeable CO2 emission
forecasting accuracy, the models implemented in this work have more efficacy in prediction due to
incorporating COVID-19’s effect on CO2 emission. This paper implements four prediction models
using SARIMA (SARIMAX) based on ARIMA. The four models are based on the time period of
the surge of the COVID-19 pandemic. The main objective of this work is to compare these four
models to suggest an effective model to predict the total CO2 emissions for the future. The study
forecasts global total CO2 emission from 2022 to 2027 for near future prediction, 2022 to 2054 for
future prediction and 2022 to 2072 for far future prediction. Among the various error measures, mean
absolute percentage error (MAPE) is chosen for accuracy comparison. The calculation yields different
accuracy for the four SARIMAX models. The MAPEs for the four methods are: pre-COV (MAPE:
0.32), start-COV (MAPE: 0.28), trans-COV (MAPE: 0.19), post-COV (MAPE: 0.09). The MAPE value
is relatively low for post-COV (MAPE: 0.09). Hence, it can be inferred that post-COV are suitable
models to forecast the global total CO2 emission for the future. The post-COV predictions for the
global total CO2 emission for the years 2022 to 2027 are: 36,218.59, 36,733.69, 37,238.29, 37,260.88,
37,674.01 and 37,921.47 million tons (MT). This study successfully predicts CO2 emission either for
the COVID-19 period or the post-COVID-19 normal periods. The Machine Learning (ML) method
used in this study has shown good agreement with the IPCC model in predicting the past emissions,
the current emissions due to COVID-19 and the emissions of the upcoming future. These prediction
results can be an asset for the decision support system to develop a suitable policy for global CO2

emission reduction. For future research, a number of other external influence variables responsible
for CO2 emission can be added for finer forecasts. This research is an original work in predicting
COVID-19-affected CO2 emission using AI through the ML methodology.

Keywords: Artificial Intelligence; machine learning; CO2 emission; global warming; atmosphere
monitoring; atmosphere maintenance

1. Introduction

A certain amount of CO2 is essential for the environment we live in. Excessive CO2
emissions have some impact on the environment. Industrialization and other human
activities are constantly putting a large amount of CO2 into the atmosphere. Prior to the
COVID-19 pandemic, the world had experienced the highest amount of CO2 emission
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ever seen. During and transmission (trans) time of COVID-19, the emission of CO2 has
descended to 34.4 million tons (MT), which is lower than the previous peak (36.1 MT) [1].
There are numerous works that estimate CO2 emission before the pandemic but there is no
suitable work showing how CO2 emissions will behave in the trans- and post-COVID-19
era, because most of the recent works either use data from before the pandemic, such as [2]
(up to 2018), [3] (up to 2018), [4] (up to 2015), or they use data from during pandemic
but with a local scope, such as [2] for India, [3] for Turkey, [4] for the UK, [5] for China
and [6] for indoor environments, or they use different approaches for only near future
(2 years) forecasting [7]. This research focuses on developing a Machine Learning (ML)-
based Artificial Intelligence (AI) model to predict CO2 emission in the near and far future
considering the reduced CO2 emissions due to the lockdowns for the COVID-19 pandemic.

1.1. Global CO2 Emission Crisis

It is well known that CO2 emission is a major issue for global warming due to the
greenhouse effect [8]. Although there is controversy over whether CO2 is responsible for
global warming or not [8], despite this controversy there is strong consensus, e.g., [9,10],
that CO2 emission is mainly responsible for global warming. As a result, assessment as well
as forecasting of the CO2 emission footprint are important for various aspects: Firstly, to
assess CO2 emission to identify major contributors to global warming, since CO2 emission
is considered as the main contributor to global warming [11] and climate change [12].
Secondly, to understand the CO2 emission footprint to develop a policy to fight against
it. Thirdly, to compensate for environmental or financial losses incurred by CO2 emission.
Fourthly, to assess the rational effect of CO2 emission on GDP reduction [13], stock market
casualty [14], new or old diseases upheaval [15], air quality disruption [16] and the effect
on building a greener and cleaner smart city. Most importantly, forecasting of CO2 emission
is essential to measure and defeat irreversible climate change [12].

1.2. Literature Review

To date, there exist some works that have modeled the global CO2 emission footprint,
including the COVID-19 transmission period, such as [7]. Most of the existing works
have either a partial to local context such as [17] in China, [18] in China, [19,20] in wheat
fields, [21] in Iran, [22] in the Middle East, or the modeling parameters and methodology are
not appropriate for global CO2 emission prediction, such as [3] for Indian paddy fields, [2]
for the Turkish transportation sector.

The strengths and limitations of existing local works are presented chronologically
below. Local CO2 emission was forecasted for the case of the Iranian domain using ML
and artificial neural network-based modeling in [21]. The CO2 emissions from fossil fuel
and cement production are presented in [23]. CO2 driver and emission forecasting was
conducted based on a local county named Changxing in China in [17]. Moreover, ref. [24]
analyzes and forecasts the emissions from CO2 using the dataset of the years 1995 to 2018
from the Indian region. CO2 emissions in the Arabian region are presented in [22]. The
synergistic effect of CO2 emissions on PM2.5 emission reduction in the Chinese region is
presented in [25]. Moreover, ref. [26] provides a decent overview of CO2 emission and its
related issues but is lacking concerning building a CO2 emission model for a global case. To
date, the most accurate forecasting of CO2 can be found with the model developed by the
IPCC [27]. It provides predictions of CO2 emissions such as 398 ppm (2019), 400 ppm (2020),
402 ppm (2021) and 405 ppm (2022). Here, ppm means parts per million, a unit for CO2
emission measurement. The forecasting results with the IPCC model are good enough for
the non-pandemic years, but the model shows degrading behavior in predicting emission
values for the period of pandemic surge. As a result, a more inclusive model needs to be
introduced.

A number of modeling approaches have been tried by various authors from different
perspectives to forecast CO2 emissions. Notably, ref. [28] provides insight into the CO2
emission prediction model using ML. CO2 emissions and environmental protection issues
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have brought pressure from the international community during China’s economic de-
velopment [29] era. A novel hybrid model using combined principal component analysis
(PCA) was build based on the data from 1978 to 2014 for China in [19]. Additionally,
ref. [30] bring out the trends in CO2 emission from fossil fuels in Zambia from 1964 to
2016. A prediction model for CO2 emissions based on multiple linear regression analysis
in the Chinese context was studied in [31]. Furthermore, two models have been devel-
oped for simulating CO2 emissions from wheat farms [20] in New Zealand. Moreover,
the SVM model was proposed to predict expenditure of carbon (CO2) emission in [32].
A data mining approach to find CO2 emission from vehicular data is presented by [33].
The back-propagation artificial neural networks (ANN) model was presented to predict
expenditure of carbon (CO2) emission in [34]. A quantitative study to evaluate the effect
of CO2 on temperature change in five regions was presented in [35]. It finds that CO2
is responsible for 50.2% of the global temperature rise during 1990–2010 [35]. A similar
finding was also true for the next decade (2010–2019) until the COVID-19 pandemic surges
across the world, as seen in Figure 1 [27]. The findings of the related literature review are
summarized in Table 1.

Table 1. Summery of Literature Review on CO2 Emission Forecast.

Article Method Accuracy Context Findings

[28] ML(Regression) RMSE 25.57% Global Achieve low RMSE
[29] SVM-ELM RMSE 12.34% China CO2 prediction up to 2030
[19] PCA RMSE 0.3% China CO2 prediction up to 2014
[30] WEKA - Zambia Forecast CO2 emission
[31] Regression Error 2.5% China Accuracy in prediction
[20] ANN MSE 11% New Zealand Better accuracy
[32] SVM MSE 0.04% Indonesia Effective decision making
[33] Data Mining - Vehicular data Accuracy in prediction
[34] ANN RMSE 5.5% Sugar Industry Accuracy in prediction
[35] Quantitative - Global 50.2% increase of temperature
[27] C4MIP model MSE (10–20)% Global Accuracy in prediction

Figure 1. CO2 Emission Forecasts by IPCC Model [27].

Previous studies had limitations in qualifying or quantifying measurements of CO2
emissions during and after the COVID-19 era. A more accurate CO2 emission model is
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required to estimate the temperature rise for the next decade, 2020–2030, as well as later
decades such as 2030–2040, 2040–2050 etc.

1.3. Research Objective

The objective of this work is to model accurate CO2 emission behavior for the past,
present and near future. This study can be considered the latest nexus of previous work,
as most of the previous works did not include the changes in CO2 emissions during the
COVID-19 pandemic. Although prior works revealed some similar modeling approaches,
this study is completely different in scope, accuracy, context and forecasting. Moreover,
this study contributes to the literature in a few notable points. First, contrary to previous
attempts, this study further uses current data with historical data to provide recent trends
for the data modeling process. As a result, the final model involves concurrent reduced CO2
emissions (to 5.2%) [1] during the COVID-19 pandemic. This paper divided COVID-19’s
effect on CO2 emissions into four periods (prior (pre), start, transmission (trans) and post)
and it also prepared four respective datasets. Second, this study uses extant time series-
based ML models to develop the CO2 emission forecasting model, but there is a difference
concerning the optimum model selection process. The model selection process is different
in the sense that it obtains the best model and related parameters. Based on the selected
parameters, the developed model become accurate (less error prone). As a result, near
and far future forecasting become accurate as compared to real CO2 emissions of that time.
Initially, the existing time series-based models were chosen; the authors developed the ML
model optimization algorithm that selects the best model for each CO2 dataset to obtain the
best possible forecast. Lastly, this study forecasts the CO2 emission footprint for the near
future, e.g., 6 years (from 2022 to 2027) or 32 years (from 2022 to 2054), and the far future,
e.g., 50 years (from 2022 to 2072), as an example.

2. Materials and Methods

This paper used all available annual data for global CO2 emissions. It used self-
developed algorithms to clean the data and select the best ML models from the data. It
then used the selected algorithm to develop forecasting models for the prediction of CO2
emission behavior. Afterward, validation and comparison were performed to evaluate our
forecasting models and model results. The complete modeling procedure is given in the
following subsections.

2.1. Data and Processing

This paper primarily used global annual CO2 emission data from 1751 to 2018. The
primary data were retrieved from this repository [36]. These data were then cleaned,
engineered and processed. As a result, four sets of data were prepared depending on the
occurrence of the COVID-19 pandemic (prior (pre), start, transmission (trans) and post).
The data up to December 2018 are called pre-COVID-19 data, the data up to December 2019
are named start-COVID-19 data, the data up to December 2020–2021 are called the trans-
COVID-19 dataset and periods after that (e.g., 2022–2023) are called the post-COVID-19
dataset. The time periods trans-COVID-19 and post-COVID-19 are relative periods. If the
COVID-19 pandemic globally disappeared in 2021, then post-COVID-19 periods could
include 2022; otherwise, we will consider later years for the post-COVID-19 periods. To
add phenomenal reality to the data, the time period of 2020 to 2021 is regarded as trans-
COVID-19 (since COVID-19 was severely present all over the world). The emissions
datasets are shown in Table 2.
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Table 2. CO2 Emission Datasets.

Dataset Name Time Period

pre-COVID-19 1751–2018
start-COVID-19 1751–2019
trans-COVID-19 1751–2021
post-COVID-19 1751–2023

2.2. Data Preparation and Augmentation

Once the data were available at hand, the next step was to understand the data.The
data taken from the source were in the range of 1750 to 2018. Since the COVID-19 pandemic
has surged over the globe since 2019, its effect on CO2 emissions must be included in the
forecasting model. For this reason, a number of data points have been included in the
recorded data. Yearly data for 2019–2023 are included in the recorded dataset.

2.3. Feature Selection

The dependent variable in this study was the amount of total CO2 emission measured
in MT, while the independent variable is the year. In this study, data were divided into
training data and testing data; the train–test split was maintained at an 8:2 ratio. Training
data were used in the CO2 emission estimation process of the model while testing data were
used to determine the accuracy of the prediction of CO2 emissions. Data from December
1751 to December 1994 were considered as training data and data from December 1995 to
December 2018 were used as testing data for the pre-COVID-19 model. A similar train–test
split was also effected for the three remaining datasets by stepping one year forward for
each of them.

To augment data for the years from 2020 to 2023, the authors used the data from the
source given here [1]. The respective changes in data for the other years were determined
by considering the similar rates that were found in 2020 to 2021. The data trend is visual-
ized in Figure 2. In Figure 1, actual and augmented data are clearly visible. Figure 2a,b
present data from before the COVID-19 period. From Figure 2c, it can be seen that CO2
emissions decreased radically during the pandemic. Similar behavior can also be observed
in Figure 2d for the remaining augmented cases such as 2021, 2022, etc. This data augmen-
tation process takes advantage of developing the actual CO2 emission model to trace future
emission behavior. Moreover, the data augmentation for near-term CO2 emissions will help
to reduce modeling errors; thus, it helps in building real and suitable models. The best
performing model can help in creating robust policies for the future to fight against CO2
emission problems across the world. For example, if one chooses to build a model based on
the data available in Figure 2a, the model could predict wrong values. The model may not
explain current or future emission behavior well during the changing environment of the
pandemic. Moreover, there is a large chance that a forecasting model only based on data
from 1751 to 2018 could be inaccurate. Seasonal data during COVID-19 should be included.
The varied data values for different datasets are presented in Table 3.

Table 3. Augmented Values of CO2 Emissions in Various Datasets.

Dataset Name Year Values

pre-COVID-19 2018 36,572.75
start-COVID-19 2019 36,441.45
trans-COVID-19 2020 34,226.18
trans-COVID-19 2021 36,190.82
post-COVID-19 2022 33,900.52
post-COVID-19 2023 34,164.68
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(a) Pre-COVID-19 Dataset (1751–2018)
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(b) Start-COVID-19 Dataset (1751–2019)
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(c) Trans-COVID-19 Dataset (1751–2021)
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(d) Post-COVID-19 Dataset (1751–2023)

Figure 2. CO2 Emission Dataset Visualization.

2.4. Data Modeling

To model CO2 emissions, the authors used a time series-based ML technique named
Autoregressive Integrated Moving Average (ARIMA) as well as Seasonal Autoregressive
Integrated Moving Average (SARIMA). SARIMA is similar to ARIMA but seasonality is
added to it. These two algorithms are regarded as the robust model and they are capable
of presenting both stationary and non-stationary time series data. To forecast time series,
three conditions need to be checked: (a) tentative identification, (b) parameter estimation
and (c) diagnostic checking. Auto-regressive models are adroit in modeling different
kinds of time series; (a) auto-regressive (AR), (b) moving average (MA), (c) auto-regressive
moving average (ARMA) and (d) ARIMA. The base for the ARIMA model is the Box–
Jenkin method [37]. ARIMA is written as ARIMA (p,d,q) where the seasonal parameter
is absent and SARIMA is written as SARIMA (p, d, q) (P, D, Q)S where S is the seasonal
parameter. During the ARIMA model optimization process S = 19 was found to be the
best seasonality parameter, thus the ARIMA model turns into a SARIMA model and is
presented as SARIMAX.

The SARIMA model can be written as:

ϕp(B)Φp(B)BS(1− B)d(1− BS)DYt = θq(B)ΘQ(BS)εt (1)

where:
ϕpB = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp

Φp(B)BS = 1−Φ1BS −Φ2B2S − . . .−ΦpBpS

θq(B) = 1− θ1B− θ2B2 − . . .− θqBq

ΘQ(BS) = 1−Θ1BS −Θ2B2S − . . .−ΘQBQS

In the equations above, t = 1, 2, 3. . .N; N is the number of observations up to time
t; B is the backshift operator defined by BαWt; ϕp(B) is called a regular (non-seasonal)
autoregressive operator of order p; ϕp(BS) is a seasonal autoregressive operator of order
p; θq(B) is a regular moving average operator of order q; ΘQ(BS) is a seasonal moving
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average operator of order Q; εt is identically and independently distributed as normal
random variables with mean zero, variance α2 and cov(εt), εt−k) = 0, ∀k 6= 0; p is the
auto-regressive term; q is the moving average order; P is the seasonal period length of
the model, S, of the auto-regressive term; Q represents the seasonal period length of the
model, S, of the moving average order; D represents the order of seasonal differencing; d
represents the order of ordinary differencing [38].

While fitting data to a SARIMA model, the values of d and D are estimated initially;
this gives good results during seasonality issues. The remaining values of p, q and Q
need to be chosen by the auto-correlation function (ACF) and the partial auto-correlation
function (PACF). AFC and PACF were automatically calculated by the program developed
for data modeling. To control overfilling in the models, hold-outs (test–train split), feature
selection and data augmentation techniques were used.

To evaluate the model, we use some prediction metrics, namely mean absolute percent-
age error (MAPE) [39], mean squared error (MSE) [40], root mean squared error (RMSE) [39]
and mean absolute deviation (MAD) [39]. For simplicity and integrity, MAPE scores were
finally presented in this paper for model accuracy comparison.

To build different models, the ARIMA algorithm was repeatedly executed using
the author-developed optimization algorithm. After checking efficiency issues, the most
efficient model was used. Models that were found to be efficient with regard to this work
were as follows; for the pre-COVID-19 period, the ARIMA (2,1,2)(0,1,1) [19] (SARIMAX(2,
1, 2)x(0, 1, 1, 19)) model with ACF = 0.88 and MAPE = 0.32; for the start-COVID-19 period,
the ARIMA(1,1,2)(0,1,1) [19] (SARIMAX(1, 1, 2)x(0, 1, 1, 19)) model with ACF 0.93 and
MAPE = 0.28; for the trans-COVID-19 period, the ARIMA(0,2,1)(1,1,1) [19] (SARIMAX(0, 2,
1)x(1, 1, 1, 19)) model with ACF 0.90 and MAPE = 0.19; and for the post-COVID-19 period,
the ARIMA(0,2,1)(1,1,1) [19] (SARIMAX(0, 2, 1)x(1, 1, 1, 19)) model with ACF 0.88 and
MAPE = 0.09.

Here, the authors introduced three metrics, namely ∆CS, ∆CT and ∆PC, to calculate
the forecasting value difference between different models to show the error propagation
among different models. These metrics can show us the forecasting error between different
models. This is the difference between the pre-COV (pre-COVID-19) model predicted
values and the respective models during the COVID-19 surge (e.g., start-COVID-19, trans-
COVID-19 and post-COVID-19). This means that if one chooses to forecast actual CO2
during and after the COVID-19 period, one needs to select any model other than pre-
COVID-19; otherwise, a substantial error will spread in the forecasting value over time.

MAPE =
∑n

t=1 |(yt − ŷt)/yt|
n

100 (2)

MSE =
∑n

t=1(yt − ŷt)2

n
(3)

RMSE =

√
∑n

t=1 |yt − ŷt|
n

(4)

MAD =
∑n

t=1 |yt − ŷt|
n

(5)

∆CS = preCovpred − startCovpred (6)

∆CT = preCovpred − transCovpred (7)

∆PC = preCovpred − postCovpred (8)

After the model is successfully developed, it is time to create visual representations
of the modeling outcomes. Figures 3 and 4 present the outcomes of the models that were
built beforehand. Figure 3 presents the internal forecasting results related to the time
period (either for 2018, 2019, 2020 or 2021) of the datasets and Figure 4 presents the external
or future (time periods beyond the datasets, that is, 2022, 2023, etc.) forecasting behavior.



Atmosphere 2022, 13, 1871 8 of 15

(a) Forecasting Behavior for Internal Historic Data

(b) Forecasting Behavior for External Future Data

Figure 3. CO2 Emission Forecasting Behavior for Internal and External Time.
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(b) Start-COVID-19
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(c) Trans-COVID-19
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(d) Post-COVID-19

Figure 4. CO2 Emission Forecasting Behavior for Different Cases of Data.
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During data modeling, four things can happen—one can build a model: (1) based on
the base data (pre-COVID-19 data as shown in Figure 2a) before the COVID-19 pandemic;
(2) based on the data (start-COVID-19 data as shown in Figure 2b) when the COVID-19
pandemic starts surging; (3) based on the data (trans-COVID-19 data as shown in Figure 2c)
while the COVID-19 pandemic is spreading globally; (4) based on the data (post-COVID-19
data as shown in Figure 2d) after the COVID-19 pandemic is over.

If one intended to build a CO2 emission model with option (1), forecasting results
will probably not represent the real situation concerning emissions observed due to the
COVID-19 pandemic. Option (2) would not be the justified option for the same reason,
with regard to the period of the COVID-19 pandemic just beginning to spread over China.
Option (3) would be the viable option for building a model to forecast CO2 emissions
because in this time period the COVID-19 pandemic spreads over the world and massive
lockdown processes have already shut down a huge number of CO2 emission sources
acriss the world. Option (4) would be a supplementary one if COVID-19 finishes its surge
over the globe in this period. The time span of 2022 to 2023 can be considered the period
when the COVID-19 pandemic will finish its surge; if it is not, then this period can be
considered as part of the extended transmission period. As seen from the global situation,
the COVID-19 surge ended in 2021. So, option (4) can only be a post-COVID-19 situation.

If one wants to forecast the exact behavior of CO2 emissions well, these authors suggest
building all four models (at least 3 models from 2 to 4), so that exact emission behavior can
be covered. No single model can forecast the exact CO2 emissions well. These authors in
the end chose a model the reflects the CO2 emissions in the near or far future.

2.5. Model Validation

To validate the models presented in this paper, Figure 3 is sufficient for the evidence.
Figure 3 shows the forecasting behavior of emissions for the current (1751–2021) and future
(2022 and beyond) years. The pink shadow in Figure 3 is the confidence interval (the
upper and lower bound of forecast). Furthermore, a number of performance parameters are
presented here to better understand the forecasting values. Table 4 presents the modeling
error and accuracy parameters as found during the model development.

Table 4. Performance Parameters for CO2 Emission Models.

Dataset Model MAPE Accuracy

pre-COVID-19 ARIMA(2,1,2)(0,1,1) [19] 0.32 Reasonable
start-COVID-19 ARIMA(1,1,2)(0,1,1) [19] 0.28 Reasonably Better
trans-COVID-19 ARIMA(0,2,1)(1,1,1) [19] 0.19 Accurate
post-COVID-19 ARIMA(0,2,1)(1,1,1) [19] 0.09 Highly Accurate

As seen from Table 5, the error scores for the models are 32%, 28%, 19% and 9% for the
respective models. In accordance with Table 4 [41], the accuracy intensities for the respective
models are named Reasonable, Reasonably Better, Accurate and Highly Accurate.

Table 5. Interpretation of Typical MAPE Value.

MAPE Interpretation

>50% Inaccurate Forecasting
20–50% Reasonably Forecasting
10–20% Accurate Forecasting

10% Highly Accurate Forecasting

Hence, the best models are the models that use data from during the COVID-19
pandemic surge. The outcomes of the models exactly resemble the reality of CO2 emissions
across the globe. As the COVID-19 pandemic reaches its mild stage across the globe and
lockdowns end, this situation can be treated as the post-COVID-19 period. As a result, to be
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in line with the real world situation, the post-COVID-19 model actually reflects the current
situation concerning CO2 emissions. We predicted some values of CO2 emissions for a
few years and compared them with real emission data [42] as well as a benchmark IPCC
model [27]. The comparison results shows the model performs well against real world and
benchmark IPCC models. All the results are measured in ppp and giga tons (GT). They are
presented in Table 6.

Table 6. Validation of CO2 Emission Forecast measured in (ppm-GT).

Year Current [42] IPCC [27] Our Model Authorś Remarks

2022 415.76 [43]–Yet to get 405–36.07 409–36.45 Accurate Forecast

2021 413.79 [43]–36.4 402–35.83 406–36.18 Highly Accurate
Forecast

2020 412.44 [43]–34.8 400–35.65 395–35.20 Accurate Forecast
2019 410.07 [43]–36.7 398–35.57 408.85–36.44 Accurate Forecast

As seen from Table 6, forecasting models are justified and accurate enough to rep-
resent real CO2 emission behavior for the current and near future. It is inferred that
far future predictions would be justified too. For purposes of further forecasting, in the
end the most accurate model (post-COVID-19 model) was chosen to present the different
forecasting scenarios.

3. Results

A number of interesting and insightful results were found upon forecasting near–far
future CO2 emissions using the accurate models. Near future results are used to validate
the model. Afterwards, far future CO2 emissions are predicted. Results are presented in
the following sections.

3.1. Near Future Emission Forecast

The selected Post-COVID-19 model was used to forecast the near future CO2 emission
values. The model yields some empirical forecasting for the years selected. The forecasting
results are shown in Table 7. These near future forecasting values will be the supportive
evidence for the far future forecasting by the model.

Table 7. Near Future CO2 Emission Forecast (MT).

Year CO2 Emission

2022 36,218.59
2023 36,733.69
2024 37,238.29
2025 37,260.88
2026 37,674.01
2027 37,921.47

3.2. Increasing Progression in CO2 Emission over Time

Forecast models show an increasing growth rate of CO2 emissions over time. This
phenomenon can be seen for all the time periods. As seen from Figure 5b,d, the same
progression rates were found for both the 32-year and the 50-year cases. The 24-year
case involved a similar situation.This is consistent with earlier forecasts. As seen from
Figure 5, in the case of historic data, the CO2 emission rate progressed after 1950 and
this rate continued until the COVID-19 phenomenon observed in 2019. A similar upward
progression will continue after the end of COVID-19 lockdowns. This progression rate
might be lower only if the COVID-19 lockdown continues for a few more consecutive years.
If that happens, then CO2 emissions could be similar as shown in Figure 5b,d.
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3.3. Effects Similar to COVID-19 Can Heal the Environment

As seen from the previous discussion, the COVID-19 effect can slow down the increas-
ing progression of CO2 emissions for a long time. In a low CO2 emission atmosphere, there
is much greater scope for the environment to heal its wounds. The most suitable case of
the healing process is shown in Figure 5a,c, where three years (2020–2023) assuming the
COVID-19 effect (lockdown) slow down the high progression rate of emissions. If this
(lockdown or similar) can occur a number of times in a year, the progression rate can be
lowered even more. A similar effect can be artificially induced by every nation so that
CO2 emissions decrease to a minimal level. Recently, Japan has been thinking of reducing
its working days to 4 days a week. Microsoft Japan already implemented this program
experimentally and found success [44].
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Figure 5. CO2 Emission Near–Far Forecasting Behavior for 32 and 50 Years.

3.4. Consecutive CO2 Emission Reduction Can Reduce Overall Emission Trend

Due to consecutive lockdowns across the world, a number of CO2 emission sources
have stopped emitting. As a result, the CO2 footprint is lower than before. This phe-
nomenon can be seen in Figure 5a,c. Here, only three years (2021, 2022, 2023) with reduced
CO2 emissions were involved. This little change in emissions has changed the overall
emission pattern for a long time. With this result, a policy can be created to introduce
artificial lockdown-like situations across nations to reduce CO2 emissions to a viable point.

3.5. COVID-19 Helps Noticeable CO2 Emission Reduction

As we have, COVID-19 has decreased CO2 emissions to a significant extent. Here,
we quantify the reduction footprint. As seen from Figure 6a, CO2 emissions for the post-
COVID-19 case (2022, 2023) are less than 3000 MT to 15,000 MT depending on the years
addressed in the forecasting. A similar event can be observed for the transition course
(2020, 2021) of COVID-19 (shown in blue). This different forecasting behavior is significant
with regard to making a decision concerning developing policies with respect to which
model to use for what kind of emission.
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Figure 6. CO2 Emission Forecast Value Difference for Different ML Models.

3.6. Long Lockdown Means Less CO2 Emission

An assumed lockdown for the case of the years 2020 to 2023 changed the forecasting
value dramatically. These reduced values have many rational effects on the earth—the
home of thousands of species. From Figure 6b, it is clearly visible that ∆PC is far bigger than
∆CS and ∆CT is in between the two. Here, ∆PC, ∆CS and ∆CT are the forecasting value
differences between post-COVID-19, start-COVID-19 and trans-COVID-19, respectively.
As seen from ∆PC in Figure 6b, 3000 MT to 15,000 MT CO2 less than the normal case ∆CS
is emitted. This lesser emission of CO2 can save a lot of resources across the world. This
reduced CO2 emission could be helpful concerning greenhouse effects, glacier ice melting,
unexpected climate change, desertification, saltification of fresh water and soils near coastal
areas and many more things which are harmful to the environment for the planet earth.

4. Discussion

All previous research presented in the literature had projected and modeled CO2
emissions using data collected prior to the COVID-19 pandemic. Without accounting
for the effects of COVID-19 on CO2 emissions, predictions might include inaccuracies.
This study accounted for COVID-19’s effect on CO2 emissions by including data from the
previous declining trend. This yields realistic CO2 emission predictions (up to 2000 MT
reduction). Failing to account for COVID-19’s effect on CO2 emissions might make the
prediction result more unrealistic (prediction difference is up to 15,000 MT). Mild prediction
accuracy can also be observed for the COVID-19 transition period (prediction values up to
7000 MT). All the scenarios can be seen in Figure 6b. Hence, accounting for COVID-19’s
effect on CO2 emissions yields realistic future CO2 emission values.

On the other hand, the method used in this paper maps the predicted CO2 emission
values accurately. The maximum accuracy of model was 91%. Thus, the models developed
are less error prone. Hence, the model-predicted CO2 emission data and the accuracy
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data converged. As a result, the method and predicted CO2 emissions can be considered
accurate and worth using. This claim is verified in Table 8.

Table 8. CO2 Emissions (GT), Current vs. Forecast.

Year Current Our Model

2022 – 36.45
2021 36.4 36.18
2020 34.8 35.20
2019 36.7 36.44

This paper is successful in terms of developing a robust and accurate CO2 emission
prediction model accounting for COVID-19-driven lockdown effects. It also delivered a
number of meaningful and interesting insights from the historic data. The model is more
accurate concerning CO2 emission prediction than previous models. The model can be
used to predict CO2 emissions, to create policies for CO2 emission reduction, and for CO2
emission tracing. This modeling approach and the solution yielded can be considered new
additions to the respective domains of knowledge.

In this paper, the authors focused on developing an optimized CO2 emission predic-
tion model. The work can be further extended by developing complete web or mobile
applications to trace CO2 emissions with the touch of finger tip. A comprehensive digital
twin could also be developed for CO2 emissions. All such works are options for future.

5. Conclusions

Carbon emissions, the greenhouse effect, climate change and catastrophic environ-
mental issues have become the most crucial issues in the contemporary world. Application
of AI and ML have a significant impact in terms of solving these issues. This work fo-
cuses on using AI to develop an ML model for global total CO2 emissions to forecast
CO2 emissions for the near or far future. Building ML models considering reduced CO2
emissions during the COVID-19 pandemic, we found some noticeable outcomes which
can help in understanding CO2 emissions across the world. The MAPEs for the four
methods are: pre-COV (MAPE: 0.32), start-COV (MAPE: 0.28), trans-COV (MAPE: 0.19),
post-COV (MAPE: 0.09), where the selected model to predict future CO2 emission behavior
has a MAPE of 9%. This is quite good accuracy with respect to the data available at hand.
The post-COV model predicted global total CO2 emissions for the years 2022 to 2027 are:
36,218.59, 36,733.69, 37,238.29, 37,260.88, 37,674.01 and 37,921.47 MT. By comparing our
forecasting output to current and previous benchmark work, one can validate the obtained
accuracy. Consequently, the forecasting of CO2 emissions for the far future years should be
accurate.

In this work, the post-COVID-19 model forecasts reasonable CO2 emission behavior.
Moreover, the trans-COVID-19 model shows some remarkable forecasts. Whatever the
forecast we obtained, it may not actually reflect the real CO2 emission practically. Moreover,
a number of external influencing features need to be considered in future developments.
Moreover, some other optimization methods or feature selections could be applied. All the
remaining issues could be further explored in future research.

Further observations of this study are given below:

• The AI-based ML method can help to forecast CO2 emission behavior during or after
the COVID-19 pandemic.

• Lockdown-like situations can reduce CO2 emissions in the present and in the far future.
• Artificial lockdowns or shorter (e.g., 4 days) working schedules can help to heal

the environment.
• A policy can be created to impose artificial lockdown-like events to reduce the overall

CO2 emission footprint.
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