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Abstract: PM2.5 samples were collected for 15 consecutive days in a rural area in Shandong from
January to February 2022. The carbon components and water-soluble ions in PM2.5 were measured,
and the distribution characteristics and sources of the carbonaceous aerosols were analysed. It
was found that the concentrations of PM2.5 in the region were high in winter (55.79–236.11 µg/m3).
Organic carbon (OC) and elemental carbon (EC) accounted for 11.61% and 4.57% of PM2.5, respectively.
The average concentrations of OC (19.01 µg/m3) and EC (7.49 µg/m3) in PM2.5 were high. The mean
value of secondary organic carbon (SOC), estimated by the minimum R squared (MRS) method, was
14.76 µg/m3, accounting for a high proportion of OC (79.41%). Four OC fractions (OC1, OC2, OC3,
and OC4) were significantly correlated with SOC, indicating that the OC components contained a
large amount of SOC. OC3, OC4, EC1, and OC2 dominated (accounting for 80% of TC) among the eight
carbon fractions. Water-soluble organic carbon (WSOC, 12.82 µg/m3) and methanol-soluble organic
carbon (MSOC) (16.28 µg/m3) accounted for 67.47% and 84.99% of OC, respectively, indicating that
SOC accounted for a high proportion of OC. The proportion of eight water-soluble ions in PM2.5 was
47.48%. NH4

+ can neutralise most of the SO4
2− and NO3

−, forming (NH4)2SO4 and NH4NO3, while
Cl− mainly exists in the form of KCl and MgCl2. The ratios of some typical components showed that
PM2.5 was not only affected by local combustion sources, but also by mobile sources. The cluster
analysis results of the backward trajectory model showed that primary and secondary sources in
Shandong Province had a great impact on PM2.5 (64%). The analysis results of the positive matrix
factorisation (PMF) model showed that the sources of PM2.5 in the region included mobile sources,
primary combustion sources, secondary sources, and dust sources, among which secondary sources
contributed the most (60.46%).

Keywords: carbonaceous aerosol; chemical components; source apportionment

1. Introduction

In the rural areas of North China, coal and biomass are the main energy sources for
heating and cooking in winter. They are used by families and are consumed in large quantities.
The emission sources are scattered and the carbonaceous aerosol emission is large [1].

The main components of carbonaceous aerosols include organic carbon (OC), elemen-
tal carbon (EC), and water-soluble ions [2,3]. In recent years, many achievements have
been made in the study of the distribution characteristics of carbonaceous aerosols and
their chemical components in urban areas of China [4–6], but less attention has been paid
to those in rural areas. In winter, fuels such as coal and biomass are widely used in rural
areas of North China, which can easily lead to atmospheric pollution. The studies on the
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distribution and sources of carbonaceous aerosols and their chemical components in rural
areas are still limited and they are not thorough enough. There would be a large deviation
if the research results in urban areas were analogised to those in rural areas.

In this study, the carbon components and water-soluble ions of fine particulate aerosol
(PM2.5) in a rural area in Shandong, China, were measured, and the distribution characteris-
tics and influencing factors of carbonaceous aerosols and their components were analysed
and discussed. The characteristic component ratio method, backward trajectory model,
and positive matrix factorisation (PMF) model were used to analyse the sources of PM2.5.
Under the background of many coal- and biomass-burning primary emission sources in
rural winter, the distribution characteristics of carbonaceous aerosols in rural areas far from
urban areas in winter were studied, and the sources of regional PM2.5 (primary source and
secondary source) were quantitatively analysed. This provides basic data and a scientific
basis for the study of carbonaceous aerosols and pollution control in rural areas, and con-
tributes to the scientific formulation of regional air pollution prevention and control and
air quality optimisation policies.

2. Material and Methods
2.1. Sampling Site

The sampling site was located in a village in Shandong Province, China (34◦37′12” N,
117◦43′48” E), which is a 400 × 500 m2 area surrounded by farmland. Other villages are
distributed in different directions outside the farmland around the village; the distance from
this sampling village is different, the nearest of which is about 500 m. The village is about
4 km away from the nearest city boundary. The village has a population of about 700 people.
In winter, villagers mainly use coal or biomass such as corn stalks and firewood as fuel for
heating and cooking. There is a biomass-burning power plant about 7 km away to the east
of the village and a coal-fired power plant about 8 km away to the south of the village.

2.2. Sample Collection

Quartz filters (Whatman, UK, 47 mm) were used as the sampling filter, which was
pre-treated at 900 ◦C for 3 h in a muffle furnace [4]. After 24 h of constant temperature and
humidity, it was weighed with an electronic balance (Mettler Toledo, Switzerland, 0.01 mg
accuracy) and then stored in the refrigerator until sampling.

The sampler was a portable aerosol sampler (Minivol, Airmetrics, Springfield, OR,
USA) with a sampling flow rate of 5 L/min. The sampling height of the sample in this
study was 1.5 m above the ground, taking into account the human respiratory height. Each
sample was continuously sampled for 24 h. After the sampling filter was weighted, it was
stored at 4 ◦C until the chemical composition determination.

Meteorological data (air pressure, air temperature, relative humidity, and wind speed)
during the sampling period were quoted from the official website of the Central Meteoro-
logical Observatory [7].

2.3. The Determination of Chemical Components in PM2.5
2.3.1. Determination of Carbon Fractions

The carbon components in the PM2.5 samples were measured using a multi-wavelength
thermal/optical carbon analyser (DRI-2015, Desert Research Institute, USA) with the IM-
PROVE_A TOR protocol. Four OC fractions (OC1, OC2, OC3, and OC4) were measured
at 140 ◦C, 280 ◦C, 480 ◦C, and 580 ◦C in a pure He environment. Three EC components
(EC1, EC2, and EC3) were measured at 580 ◦C, 740 ◦C, and 850 ◦C under 2% O2 and 98% He
atmospheres. In the process of measuring OC, a part of OC may be cracked to form optical
pyrolyzed carbon (OPC), which may make the filter black in the absence of oxygen. The
change in the filter blackening was detected by the reflection signal of the 635 nm laser. When
oxygen was introduced, the combustion of OPC and EC increased the laser reflection signal.
When the 635 nm laser reflection signal returned to its initial value, the corresponding carbon
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content was defined as OPC, which was deducted from the measured EC1 [8]. Therefore, the
calculation equations of OC and EC were taken from Equations (1) and (2).

OC = OC1+OC2+OC3+OC4+OPC (1)

EC = EC1 − OPC + EC2+EC3 (2)

Han et al. [9] further divided the EC into char and soot.

char = EC1−OPC (3)

soot = EC2+EC3 (4)

2.3.2. Determination of WSOC and MSOC

Two small circular filters (0.495 cm2) were punched from the loaded filter. The
two small circle filters were extracted by ultrapure water and ultrasonic methanol, re-
spectively. After extraction, the small circle filters were dried by vacuum freeze-drying.
The residual OC on the small circle filter extracted was measured using a DRI-2015 carbon
analyser. Then, the OC that was not extracted from the same sampling filter was subtracted
by the OC after extraction using ultrapure water and by the OC after extraction using
methanol, to obtain WSOC and MSOC, respectively.

2.3.3. Determination of Water-Soluble Ions

Three anions (SO4
2−, NO3

−, and Cl−) and five cations (Na+, NH4
+, Mg2+, K+, and

Ca2+) were measured. A quarter of the loaded filter was cut and extracted by ultrapure
water for ultrasonic extraction for 1 h. Ion chromatography (DIONEX ISC-1100, Thermo,
Waltham, MA, USA) was used to measure the cations and another ion chromatography
(DIONEX ICS-5000 + DC, Thermo Fisher, Waltham, MA, USA) was used to measure the
anions in the extraction.

2.4. Minimum R Squared (MRS) Method

The MRS method was introduced by Wu et al. [10] to calculate the SOC, and its
accuracy for SOC estimation was higher than the traditional OC/EC minimum method.
In principle, the EC is a tracer of a primary source, OC is a mixture of primary source and
secondary source, and SOC and EC are independent of each other. The equations used to
calculate the POC and SOC were Equations (5) and (6), respectively.

POC =

(
OC
EC

)
pri
× EC (5)

SOC = OCmix −
(

OC
EC

)
pri
× EC (6)

2.5. Backward Trajectory Model (HYSPLIT)

The analysis of the air mass trajectories during sampling was performed using hybrid
single-particle Lagrangian integrated trajectory (HYSPLIT) [11]. This study used the
5.2.0 computer client version released in January 2022. The meteorological data used in
the simulation were GDAS1◦ meteorological data provided by the National Centres for
Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). In this study,
the initial height of the trajectory was 100 m [12], and the backward trajectory simulation
period was UTC from 15:00 on 26 January 2022 to 15:00 on 10 February 2022, and the airflow
trajectory arriving at the sampling site in the backward direction for 48 h was tracked. The
airflow trajectory was calculated for every hour, and the trajectory results were clustered
and analysed.
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2.6. Positive Matrix Factorisation (PMF)

Receptor-based source apportionment techniques have become significant tools for
estimating the sources of atmospheric particulate matter (PM). The U.S. Environmental
Protection Agency (US-EPA) PMF 5.0 software was used in the current study to achieve the
PM source apportionment. Details of this model have been previously documented [13].

3. Results and Discussion
3.1. Distribution Characteristics of PM2.5

Figure 1 shows the distribution of PM2.5 concentrations and meteorological factors
during sampling. The daily PM2.5 concentrations during the sampling period ranged from
55.79 to 236.11 µg/m3, with an average of 163.70 ± 41.53 µg/m3. Compared with the daily
average PM2.5 concentration limit of the China Ambient Air Quality Standards (GB3095-
2012) (75 µg/m3) [14], the exceedance rate was 93.33% and the maximum exceedance
amount was 3.15 times, indicating that fine particulate pollution was serious during the
sampling period. Compared with the PM2.5 concentration in other regions in winter, the
PM2.5 concentration in this sampling site was higher than those in some urban areas and
significantly higher than that in Hong Kong (33–69 µg/m3) [15], Beijing (93.9 µg/m3) [16],
and Fuzhou (59.81 µg/m3) [17], slightly higher than that in Tianjin (140.59 µg/m3) [18] and
Czech Ostrava-Radvanice (159.00 µg/m3) [19]. The comparison results showed that the
pollution of fine particulate matter in winter at the rural sampling sites in this study was
more serious than those in some urban areas.
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PM2.5 was negatively correlated with air pressure and wind speed (<4 m/s), indicating
that it contributed to the diffusion of PM2.5 when the ground was controlled by a high
pressure or when the wind speed was large [20]. PM2.5 was positively correlated with
relative humidity, reflecting that the high-humidity conditions in winter contributed to the
accumulation of PM2.5 [21].
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3.2. Distribution Characteristics of Carbon Components in PM2.5
3.2.1. OC and EC

During the sampling period, the concentrations of OC in PM2.5 ranged from 9.94 to
28.15 µg/m3, with an average of 19.01 ± 5.15 µg/m3 (See Figure 2). The EC concentrations
in PM2.5 ranged from 3.27 to 8.03 µg/m3, with an average of 7.49 ± 4.76 µg/m3. The
average values of OC/PM2.5 and EC/PM2.5 were 11.6% and 4.6%, respectively, while the
average value of TC/PM2.5 was 16.2%. Compared with the research results in other places,
the average concentrations of OC and EC in this study were lower than those in Baoding
(70.2 and 13.5 µg/m3) and Wangdu (57.2 and 11.4 µg/m3), similar to those in Beijing
(28.6 and 5.5 µg/m3) [5] and higher than those in Chengdu (14.50 and 2.19 µg/m3) [6]. The
comparison with OC and EC concentrations in other regions in the literature showed that
the pollution status of PM2.5 was related to the distribution of the carbon components.
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3.2.2. SOC

The results of (OC/EC)pri simulated by the MRS method are shown in Figure 3.
According to the value or (OC/EC)pri fitted by the MRS method, the SOC concentrations
were calculated using Equation (6). The average SOC concentration was 14.76 µg/m3,
and the proportion of SOC to OC was 79.41%. The SOC/OC estimated by the MRS
method in this study was greater than that estimated by the MRS method in other regions,
such as the suburbs of Guangzhou (41%) [22], rural Guangzhou (47%) [23], and Shanghai
(48%) [24]. The above comparison results showed that the formation of secondary organic
carbonaceous aerosols was significant in rural areas of Shandong in winter.
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3.2.3. Eight Carbon Fractions

The proportions of the eight carbon fractions in TC are shown in Figure 4. The
four carbon fractions with high proportions were OC4, OC3, EC1, and OC2, accounting
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for 23.76, 22.48, 18.97, and 14.74% of TC, respectively. The average concentrations were
5.96, 6.30, 5.47, and 3.91 µg/m3, respectively. One part of OC2, OC3, and OC4 originated
from the secondary generation, and the other part was from the primary emission of the
coal combustion. EC1 was mainly from incomplete combustion of the coal and biomass.
Therefore, it was considered that the carbonaceous aerosol in the sampling area was affected
by the secondary sources and primary sources of the coal and biomass combustion.
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3.2.4. WSOC and MSOC 
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Figure 5 shows the correlation between the different carbon fractions. There was a
strong correlation between the four OC fractions and SOC (p < 0.01), indicating that the four
OC fractions were significantly affected by the secondary sources. In addition, the strong
correlation between char, EC1, and the four OC fractions also indicated that local primary
emission sources have an impact on char, EC1, and the four OC fractions in carbonaceous
aerosols. The results of the correlation between the eight carbon components in this study
were similar to the high correlations between char and OC in rural winters in the Ganges
Plain, India, which were related to the burning of raw coal and biomass [25].
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3.2.4. WSOC and MSOC

Table 1 shows the correlation between MSOC, WSOC, SOC, and POC. The correlation
between WSOC and MSOC was strong (r = 0.911, p < 0.01), reflecting that most of the
substances in MSOC and WSOC were the same, and the organic matter extracted by
methanol included both water-soluble OC and water-insoluble OC [26,27]. In addition,
the correlation between SOC and MSOC (r = 0.896, p < 0.01) and the correlation between



Atmosphere 2022, 13, 1858 7 of 16

SOC and WSOC (r = 0.807, p < 0.01) were significant, while the correlation between POC
and MSOC (r = 0.418) and the correlation between POC and WSOC (r = 0.527) was weak,
indicating that WSOC and MSOC could represent SOC.

Table 1. Correlation between MSOC, WSOC, SOC, and POC.

MSOC WSOC SOC POC

MSOC 1
WSOC 0.911 ** 1

SOC 0.896 ** 0.807 ** 1
POC 0.418 0.527 * 0.075 1

* significant correlation at 0.05 level (two-tailed), ** significant correlation at 0.01 level (two-tailed).

Figure 6 shows the concentrations of WSOC and MSOC in PM2.5 and their proportions
in OC during the sampling period. On most sampling days, the MSOC concentrations were
markedly higher than the WSOC concentrations, except for the three sampling days of
27 January 2022, 30 January 2022, and 5 February 2022, when the MSOC concentrations
were slightly higher than WSOC concentrations. During the sampling period, the concentra-
tions of WSOC were from 6.39 to 19.54 µg/m3, with an average of 12.82 µg/m3, accounting
for 60.15–77.89% of OC, and the average WSOC/OC was 67.47%. The concentrations of
MSOC were from 7.95 to 23.89 µg/m3, with an average of 16.28 µg/m3, accounting for
70.02–93.21% of OC, and the average MSOC/OC was 84.99%. The proportions of WSOC/OC
and MSOC/OC (64.47%, 84.9%) were high, which is consistent with the results of the high
proportion of SOC/OC in Section 3.2.3.
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Table 2 shows the WSOC and MSOC concentrations and their proportions in OC in
other studies. The average concentrations and proportions of WSOC and MSOC in this
study were similar to those of other studies.
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Table 2. The concentrations and proportions of WSOC and MSOC in other studies.

Location Sampling Time Component Concentration (µg·m−3) Proportion (%) Reference

Beijing 7 December 2011–
31 December 2011

WSOC 8.15 40%
[28]MSOC 17.54 85%

Kathmandu 12 April 2012–20 May 2014 WSOC 1.66 55% [29]

Indo-Gangetic Plains 8 November 2017–
24 January 2018 WSOC 22.7 66% [25]

Kathmandu Valley April 2013–January 2018 WSOC 17.4 50% [30]

Xi’an 15 November 2018–
15 December 2018

WSOC 8.9 58%
[31]MSOC 14.4 79%

3.3. Distribution Characteristics of Water-Soluble Ions in PM2.5
3.3.1. Concentrations and Proportions of Cations and Anions

In this study, the proportion of water-soluble ions in PM2.5 was 47.48%, indicating that
water-soluble ions were important chemical components in PM2.5. The highest average
concentration of cations was Na+ (12.88 µg/m3), followed by NH4

+ (11.03 µg/m3). The
average concentrations of Ca2+, K+, and Mg2+ were 5.62, 4.09, and 0.94 µg/m3, respectively.
The highest average concentration of anions was NO3

− (22.29 µg/m3), followed by SO4
2−

(15.64 µg/m3). The average concentration of Cl− was 5.45 µg/m3. Table 3 shows the
proportion of water-soluble ions in PM2.5 in some urban and rural areas of China. The
proportion of water-soluble ions in PM2.5 in this study was slightly higher than that in
Taiyuan (46.09%) and slightly less than that in Beijing (51%) and Shenzhen (53.10%).

Table 3. The proportion of water-soluble ions in PM2.5 in some urban and rural areas of China.

Location Sampling Site Type Sampling Time Season Proportion (%) Reference

A village in Shandong rural 27 January 2022–10 February 2022 Winter 47.48% This study

Beijing urban area 4 December 2006–
27 December 2006 Winter 51% [32]

Taiyuan urban area 2009–2010 Winter 46.09% [33]
Shenzhen suburban November 2009–December 2010 Winter 53.10% [34]

3.3.2. Analysis of the Combination Form of Anion and Cation

The equivalent relationship between anions and cations can reflect the combina-
tion form of ions in PM2.5. The combination of NO3

− and NH4
+ is only in the form of

NH4NO3, while the combination of SO4
2− and NH4

+ may be in the form of NH4HSO4
or (NH4)2SO4 [33]. SO4

2− in the atmosphere reacts preferentially with NH4
+, forming

(NH4)2SO4 in excess of NH4
+ and NH4HSO4 in deficiency of NH4

+ [35,36].
Figure 7 shows that the scatter points (purple dots) of the equivalent concentration of

NH4
+ and SO4

2− were distributed above the 1:1 line, indicating that NH4
+ was sufficient

to neutralise SO4
2−, and both mainly existed in the form of (NH4)2SO4. The equivalent

concentration scatter points (blue dots) of NH4
+ and SO4

2− + NO3
− were partly distributed

above the 1:1 line and the other part were below the 1:1 line, so NH4
+ was not enough to

neutralise all NO3
−.

Figure 8 shows the fitting relationship between the equivalent concentration of three
cations and the equivalent concentration of some anions. When the cation was
NH4

+ + K+, the scatter points were distributed far below the 1:1 line and were far away
from the 1:1 line. The slope of the fitting line was 0.92 and the correlation was strong
(R2 = 0.94). When the cation was NH4

+ + K+ + Ca2+, most of the scatter points were
distributed above the 1:1 line and the slope of the fitted line was 0.91, but the correlation
coefficient (R2 = 0.65) was smaller. When the cation was NH4

+ + K+ + Mg2+, the slope of
the fitted straight line of the equivalent concentration of the three anions and the three
cations was closest to 1:1 (R2 = 0.96), showing that the equivalent of the anions and the
cations was almost balanced. Therefore, the combination of anions and cations was likely
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to result in NH4
+ being able to neutralise most of SO4

2− and NO3
− to form (NH4)2SO4

and NH4NO3, while K+ and Mg2+ existed in the form of KCl and MgCl2.
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3.3.3. Analysis of the Formation of Secondary Ions

SO4
2−, NO3

−, and NH4
+ are called secondary inorganic aerosols (SIA). The ratio of SIA

to the total ions measured in this study was 55.55%. The formation pathways of secondary
inorganic ions mainly include homogeneous reactions and heterogeneous reactions. On the
one hand, SO4

2− can be formed by a homogeneous reaction of SO2 in the gas phase, such as
SO2, oxide O3, and hydroxyl radical (·OH) in the atmosphere. On the other hand, SO4

2−

can be formed by a heterogeneous reaction of SO2 at the interface between the gas phase
and liquid phase, and the gas phase and solid phase [37–39]. The homogeneous reaction of
NO3

− formation is the oxidation of NO2 with ·OH in the atmosphere to form HNO3 which
then reacts with NH3 to form NH4NO3, while the heterogeneous reaction is the hydrolysis
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of N2O5 on the aerosol surface to form NO3
− [40]. NH4

+ is mostly produced by the reaction
of NH3 with acidic gases in the atmosphere [41], such as H2SO4, HNO3, and HCl.

The correlation between SIA and PM2.5 and the correlation between SIA and meteo-
rological factors were used to explain these secondary ions formation pathways to some
extent. NO3

− was significantly correlated with relative humidity (r = 0.777, p < 0.01) and
PM2.5 (r = 0.833, p < 0.01). The study of Gržinić [42], Wang [43], and McDuffie et al. [44]
showed that the heterogeneous uptake coefficient of N2O5 was significantly positively
correlated with the relative humidity of the atmosphere, while Meng et al. [40] pointed out
that the relative humidity increased the water content and surface area of the atmospheric
particulate matter, which could promote the attachment of N2O5 to particulate matter.
Relative humidity was significantly positively correlated with NO3

−, and the heteroge-
neous reaction was the main generation pathway of NO3

−. The results of this study were
consistent with the results of Meng et al. Therefore, NO3

− was most likely to be produced
by the heterogeneous reaction, while the correlation between SO4

2− and relative humidity,
as well as the correlation between SO4

2− and PM2.5, were not obvious, indicating that their
formation may be the result of both homogeneous and heterogeneous reactions.

3.4. Source Apportionment of PM2.5
3.4.1. Source Apportionment Based on the Ratios of Some Typical Components

1. Based on the ratios of OC/EC and char/soot

The OC/EC ratios in this study ranged from 1.03 to 4.67, with an average of 3.06.
When the OC/EC ratio is between 2.5 and 10.5, it reflects the strong contribution of
coal combustion sources [45]. When the OC/EC ratio is between 3.8 and 13.2, it reflects
the strong contribution of biomass combustion sources [46]. When the OC/EC ratio
is between 0.3 and 2.9, it reflects the strong contribution of mobile sources [47]. SOC
is generally considered to be generated when OC/EC is greater than 2, reflecting the
effects of secondary sources [48]. The OC/EC ratio in this study was between the char-
acteristic OC/EC ratios of the above primary sources and secondary sources, suggesting
that the source of carbonaceous aerosol during the sampling period was complex and
that multiple sources contributed. Wang et al. [49] proposed analysing the source of car-
bonaceous aerosol based on the char/soot ratio. Studies have shown that the char/soot
ratios of the biomass combustion source, coal combustion source, and mobile source are
22.6, 1.3 and 0.6, respectively [50]. Cao et al. found that the char/soot ratios of diesel,
gasoline, and coal combustion sources were 0.3, 0.7 [51], and 1.90 [52], respectively. The
char/soot ratios in this study were between 0.37–271.88 with an average of 39.29, which
was in the middle of the char/soot characteristic ratios of coal combustion and biomass
combustion sources, indicating that the PM2.5 in this sampling site was affected by coal
and biomass combustion.

2. Based on the ratios of different ions

The ratios of different ions in particulate matter can be used to analyse
sources [33,53–55]. The NO3

−/SO4
2− ratio is often used to analyse the contribution of

mobile sources and stationary sources. A NO3
−/SO4

2− ratio greater than 1 indicates that
the contribution of mobile sources is higher than the stationary sources. The Mg2+/Ca2+

ratio is often used to analyse the contribution of soil sources. The Mg2+/Ca2+ ratio in
the soil is about 0.09. The SO4

2−/K+ ratio is usually used to analyse the contribution of
coal-fired sources and biomass combustion sources. The greater the SO4

2−/K+ ratio, the
greater the contribution of coal-fired sources compared with that of biomass combustion
sources. The Mg2+/Na+ ratio is often used to analyse the contribution of sea salt sources,
which is usually 0.12 in sea salt aerosols [56].

The typical ion ratios in this study are shown in Figure 9. The average ratio of
NO3

−/SO4
2− was 1.44, which indicates that the PM2.5 in the region was not only affected

by local sources, but also by the increasing mobile sources of motor vehicles at the end of
the year and during the Spring Festival. In addition, the sampling site was surrounded
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by farmland, the terrain was flat, and there was no large shelter around. There was a
provincial road 1.5 km away from the south of the sampling site, and there were rural roads
100 m away from the east, west, south, and north of the sampling site. The influence of
motor vehicle exhaust cannot be ignored. The average ratio of Mg2+/Ca2+ was 0.18, which
was higher than that of soil (0.09). It has been shown that Mg2+ and K+ also had a good
correlation; therefore, the reason for the high Mg2+/Ca2+ ratio might be that some Mg2+

came from biomass combustion sources [57].
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3.4.2. Source Apportionment Based on HYSPLIT Model

A total of 360 backward trajectories were obtained after 48 h of backward trajectory
simulation. After the clustering analysis, there were five clusters classified. As shown in
Figure 10, Cluster 1 accounted for 29% of the total atmosphere mass, mainly from Binzhou
City near the Bohai Sea in the northern part of Shandong Province. It went south through
Shandong Province to reach the sampling site, and the initial height was less than 500 m,
which belongs to the low atmosphere mass, and the height change was small during the
movement. Cluster 2 accounted for 19% of the total atmosphere mass, mainly from Inner
Mongolia. It passed through the Beijing–Tianjin–Hebei region and the Bohai Sea, and then
went south to the sampling site. The initial height of the atmospheric mass was about 1000 m,
which belongs to the middle- and high-altitude atmosphere mass. Cluster 3 and Cluster 5
together accounted for 17% of the total atmosphere mass, and both originated from Outer
Mongolia. The initial height of Cluster 3 was 1000 m, and the initial height of Cluster 5
was about 3000 m. Cluster 4 accounted for the largest proportion of 35%, mainly from the
junction of Shandong and Jiangsu, with a lower starting height (500 m) similar to Cluster 1.

According to the moving distance of the atmospheric mass, the above five trajectories
were divided into three categories. First, the long-distance atmosphere mass included
Cluster 3 and Cluster 5, which moved fast and could carry a large amount of dust through
Inner Mongolia, accounting for 17%. The second was the middle-distance atmosphere
mass, mainly including Cluster 2, which moved faster and accounted for 19%. The third
was the local atmosphere mass, including Cluster 1 and Cluster 4—the atmosphere flow
trajectory of which was short and the movement speed was slow, accounting for 64%. It
showed that the primary emission source and the secondary source in Shandong Province
had an important impact on the aerosol in the sampling area.
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3.4.3. Source Apportionment Based on the PMF Model

Figures 11 and 12 show the source component spectrum and the source contribution
rate of the PMF model analysis. The characteristic components of the first factor included
EC2 and EC3. EC2 and EC3 are often considered tracers of diesel vehicles [52], so they were
identified as the contribution of mobile sources (4.59%). The characteristic components of
the second factor were Cl−, K+, and Na+, which could be identified as the contribution of
the primary combustion source (12.68%). The characteristic components of the third factor
included OC1, OC2, OC3, OC4, EC1, NO3

−, SO4
2−, and NH4

+. The four OC fractions were
significantly correlated with SOC (see Section 3.2.3), while NO3

−, SO4
2−, and NH4

+ were
secondary inorganic ions. Therefore, the third factor was identified as the contribution of
secondary sources that bring secondary organic and secondary inorganic aerosols (60.46%).
The fourth factor was characterised by Ca2+ and Mg2+, which can be identified as dust
source contributions (22.26%).
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4. Conclusions

In winter, the concentration of PM2.5 (55.79–236.11 µg/m3) in rural areas of North
China seriously exceeded the standard (the over-standard rate was 93.33% and the max-
imum over-standard multiple was 3.15). The negative correlation between PM2.5 and
air pressure and wind speed (<4 m/s) reflected that high pressure and strong wind con-
tributed to the diffusion of PM2.5. The positive correlation between PM2.5 and relative
humidity reflected that high humidity conditions led to the accumulation of PM2.5. OC
(19.01 µg/m3) and EC (7.49 µg/m3) accounted for 11.61% and 4.57% of PM2.5, respectively,
which were important chemical components in PM2.5. The proportion of SOC was high
(SOC/OC = 79.41%). OC3, OC4, EC1, and OC2 were the dominant fractions among the eight
carbon fractions. The four OC fractions were significantly correlated with SOC, indicating
that OC components contained a large amount of SOC. WSOC (12.82 µg/m3) and MSOC
(16.28 µg/m3) accounted for 67.47% and 84.99% of OC, respectively, indicating that a large
part of OC was SOC. Water-soluble ions accounted for 47.48% of PM2.5. The analysis of the
combination form of ions showed that NH4

+ can neutralise most of SO4
2− and NO3

− to
form (NH4)2SO4 and NH4NO3, while Cl− mainly existed in the form of KCl and MgCl2.
The analysis of the secondary ion formation pathway showed that NO3

− was mainly
formed by a homogeneous reaction, while SO4

2− was formed by both homogeneous and
heterogeneous reactions. The OC/EC ratio (mean 3.06) and char/soot ratio (mean 39.27)
indicated that regional PM2.5 was affected by various sources. The analysis of typical ratios
of different ions showed that PM2.5 was not only affected by local combustion sources, but
also by mobile sources. The cluster analysis of the backward trajectory model showed that
the primary emission sources and secondary sources in Shandong Province had a great
impact on PM2.5 (64%). The PMF model analysis results showed that the main sources of
PM2.5 in the region were primary combustion sources, secondary sources, and dust sources,
among which secondary sources contributed the most (60.46%). The results of various
source apportionment methods supported each other.
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